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Abstract

Background: Therapy-related acute myeloid leukemia (t-AML) is a secondary, generally incurable, malignancy
attributable to chemotherapy exposure. Although there is a genetic component to t-AML susceptibility in mice, the
relevant loci and the mechanism(s) by which they contribute to t-AML are largely unknown. An improved
understanding of susceptibility factors and the biological processes in which they act may lead to the
development of t-AML prevention strategies.

Results: In this work we applied an integrated genomics strategy in inbred strains of mice to find novel factors
that might contribute to susceptibility. We found that the pre-exposure transcriptional state of hematopoietic
stem/progenitor cells predicts susceptibility status. More than 900 genes were differentially expressed between
susceptible and resistant strains and were highly enriched in the apoptotic program, but it remained unclear which
genes, if any, contribute directly to t-AML susceptibility. To address this issue, we integrated gene expression data
with genetic information, including single nucleotide polymorphisms (SNPs) and DNA copy number variants
(CNVs), to identify genetic networks underlying t-AML susceptibility. The 30 t-AML susceptibility networks we found
are robust: they were validated in independent, previously published expression data, and different analytical
methods converge on them. Further, the networks are enriched in genes involved in cell cycle and DNA repair
(pathways not discovered in traditional differential expression analysis), suggesting that these processes contribute
to t-AML susceptibility. Within these networks, the putative regulators (e.g., Parp2, Casp9, Polr1b) are the most likely
to have a non-redundant role in the pathogenesis of t-AML. While identifying these networks, we found that
current CNVR and SNP-based haplotype maps in mice represented distinct sources of genetic variation
contributing to expression variation, implying that mapping studies utilizing either source alone will have reduced
sensitivity.

Conclusion: The identification and prioritization of genes and networks not previously implicated in t-AML
generates novel hypotheses on the biology and treatment of this disease that will be the focus of future research.

Background
Therapy-related acute myeloid leukemia (t-AML) is a
secondary malignancy attributable to chemotherapy
and/or radiation exposure. t-AML comprises 5-20% of
adult AML cases and its prevalence is increasing along
with the size of the population undergoing chemother-
apy [1,2]. While chemotherapy regimen [3] and genetic
background [4] contribute to t-AML, the risk factors are
not well understood. Strong evidence for genetic predis-
position to t-AML is provided by inherited cancer syn-
dromes such as neurofibromatosis, where germline

mutations of NF1 are associated with increased risk of
t-AML in humans and mice [5,6]. Gaining a better
understanding of t-AML susceptibility factors is a press-
ing concern as it may lead to prevention strategies and
provide insight into the genesis of de novo AML.
One class of chemotherapeutics associated with

t-AML is the alkylators (i.e. melphalan, busulfan, thio-
tepa). The therapeutic effect of alkylator agents is
believed to result from the formation of DNA adducts
and single and double-strand breaks, which trigger
apoptosis or growth arrest [7]. Based on this presumed
mechanism of alkylator action, genes involved in DNA
repair [8], response to oxidative stress [9], and drug
metabolism [10] have been investigated as mediators of
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t-AML susceptibility in candidate gene studies, with lar-
gely inconclusive results. A recent study in our lab
investigated the genetic basis of t-AML susceptibility
using inbred mice [11]. In this study, eight to twelve
individual mice from each of 20 inbred strains were
treated with the alkylating agent N-nitroso-N-ethylurea
(ENU), a potent mutagen with a propensity to cause
AT:TA transversions and AT:GC transitions [12]. Mice
were monitored for the development of AML for up to
16 months post ENU exposure. The incidence of AML
varied by strain from 0 to 80% (H2 = 0.10, P-value <
0.001), supporting the hypothesis that there is a strong
genetic component in t-AML susceptibility.
We hypothesized that the pre-exposure transcriptional

state of hematopoietic stem and progenitor cells, the puta-
tive target of leukemogenesis [13], underlies variation in
susceptibility to t-AML. A pre-exposure transcriptional
basis of susceptibility would be expected if a rapid
response is critical in determining a cell’s ultimate fate
upon mutagen exposure. This hypothesis is consistent
with the observation that expression of genes critical to
surviving genotoxic stress in yeast does not change after
exposure to DNA-damaging agents [14], implying that the
necessary factors are already expressed at baseline. A simi-
lar situation has been reported in human lymphoblastoid
cell lines, in which the pre-exposure transcriptional state
of the cell more accurately predicts survival after alkylator
treatment than the post-exposure state [15].
In this study, we apply an integrated genomics

approach [16] to identify and prioritize genetic and tran-
scriptional networks underlying t-AML susceptibility in
mice (Figure 1). By linking expression profiles and com-
plex traits to common genomic loci, this method can
ameliorate some of the limitations inherent in genetic
association and expression profiling studies [17-21].
When combined with network analysis, this methodol-
ogy has proven useful in elucidating the biological path-
ways underlying several complex traits [22,23].

Results
An integrated genetic map of inbred mouse strains
Previously, we reported expression quantitative trait loci
(eQTLs) in mice using inherited DNA copy number var-
iant regions (CNVRs) as genetic markers [24]. This cis-
eQTL map did not explicitly include other sources of
genetic variation (i.e., SNPs). To derive a more complete
map of cis-eQTLs in this population, we used publicly
available SNP data from 48 classical inbred strains to
map SNP-based eQTLs http://www.broadinstitute.org/
mouse/hapmap/. The SNP resource includes 132,285
SNPs per genome, of which 115,009 we considered infor-
mative (as defined in Methods). We used these data to
derive haplotype blocks, which are ancestral regions of
shared genetic background among strains. Haplotype

blocks facilitate trait mapping because they robustly and
efficiently represent un-typed genetic variation at a locus.
The practical benefit of utilizing haplotype blocks instead
of individual SNPs is a reduced number of statistical
tests. We used a simple merging algorithm to iteratively
join adjacent SNPs into haplotype blocks. This algorithm
results in haplotype blocks in which the genotypes of a
complete set of SNPs are predictable to a given level of
accuracy. We selected a threshold such that for a given
block, we can accurately predict the genotype of every
SNP in all 48 strains with at most one error (Figure 2A).
The 23,884 resulting haplotype blocks are comprised of 1
to 62 SNPs (mean = 4.82, median = 4) (Figure 2B and
Additional File 1). The multi-SNP blocks range in length
from 18 to 7,618,246 bp (mean = 83,702, median =
43,404). There are 2 to 6 haplotypes per block (mean =
3.92, median = 4) (Figure 2C). Only 21 blocks include
haplotypes that are assigned to a single strain. 9,324
blocks have one error, and the remaining 14,560 have
zero. Of the 1,262 CNVRs within 250 Kb of a haplotype
block boundary, only one CNVR has a genotype that is
tagged (R2 > 0.80) by a SNP-based haplotype (Figure 2D).
We speculated that the low ability of SNP-derived haplo-
types to tag CNVRs was due to the fact that using all 48
classical inbred strains in the haplotype block construc-
tion resulted in higher numbers of haplotype labels.
Therefore, we also derived a haplotype block map using
only the 20 strains from the CNVR study, resulting in a
similar inability of SNP-haplotyes to tag CNVRs (data
not shown). This suggests that in current databases of
genetic variation in the mouse genome, the majority of
CNVRs are not captured by SNP resources.

Global pre-exposure transcriptional state of
hematopoietic stem and progenitor cells is associated
with t-AML susceptibility
We performed gene expression profiling (GEP) in
c-kit+/lineage- (KL) bone marrow cells (a population
enriched in hematopoietic stem/progenitors) from 20
inbred strains listed as Tier 1-4 from the Mouse Phe-
nome Database [25]. Two-to-three biological replicate
arrays were analyzed per strain. This gene expression
profiling (GEP) data was previously published [24].
Fifteen of the strains were previously assayed for sus-
ceptibility to t-AML after exposure to ENU [11]. Unsu-
pervised clustering of gene expression profiles largely
separated susceptible from resistant strains (Figure 3A).
The probability that the unsupervised clustering
of expression profiles predicts susceptibility status by
chance is < 0.01 (10,000 permutations, see Methods and
Additional File 2). Further, this clustering is not
observed in other tissues that are highly unlikely to be
involved in leukemogenesis (i.e., the hypothalamus and
adipose tissue), nor does it reflect SNP-based strain
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distances (Additional File 2). Taken together, this sup-
ports the notion that the KL clustering of susceptible
strains is not due to sequence polymorphism affecting
target hybridization [26], but rather reflects tissue-
specific differences in transcript abundance between
inbred strains [27]. Additionally, this observation sug-
gests that the pre-exposure expression differences of
many genes, rather than only a few, segregate the KL
cells of t-AML susceptible versus resistant strains.
Next, we asked which genes were differentially expressed

between susceptible and resistant strains in KL cells. We
identified 917 differentially expressed genes (976 probes)
at an FDR threshold of 5% (Additional Files 3 and 4).
The differentially expressed genes are enriched in several
GO-annotated biological processes (Table 1), including
the GO terms ‘apoptotic program’ and ‘nucleotide meta-
bolic process’. The KEGG pathways ‘Pyrimidine metabo-
lism’ and Colorectal cancer’ were also enriched. ‘Acute
myeloid leukemia’ and ‘p53 signaling’ are biologically
plausible pathways that were enriched at least two-fold
in the differentially expressed genes, however neither
of these pathways passed the FDR < 25% threshold.

GO-apoptosis-annotated genes included both cell-intrinsic
and extrinsic factors (Figure 3B).

Integrated cis-eQTL mapping identifies candidate drivers
of t-AML susceptibility
Our previous eQTL analysis identified 408 expression
traits (391 genes) in KL cells that were associated with
214 CNVRs [24]. We repeated this analysis using the
48-strain haplotype resource to map KL expression
traits to SNP-based haplotypes. We considered only cis-
eQTL-associated genes, as it has been shown that trans-
eQTLs contain a large proportion of false positives [28].
We found 127 associations between expression traits
and haplotypes, after selecting the most significant asso-
ciation per trait. In the current study, we used the com-
bined set of SNP- and CNVR-based eQTLs to discover
and explore genetically driven modules of co-expressed
genes associated with t-AML susceptibility.
There are 45 genes (45 probes) that are both differen-

tially expressed and linked to at least one eQTL. We
refer to these genes as anchors throughout the text. 37
are linked to CNVR-eQTLs; the remaining 8 are linked

Figure 1 Data analysis pipeline to identify networks of genes associated with t-AML susceptibility and their putative upstream
regulators. Gene expression profiling was performed on hematopoietic stem/progenitor cells from inbred strains of mice for which t-AML
susceptibility has previously been assessed. Expression quantitative trait loci were identified by testing for association between SNP-derived
haplotypes or CNVR genotypes (in cis) and expression. Genes differentially expressed between t-AML susceptible and resistant strains were
identified. Differentially expressed genes that were also associated with eQTL are referred to as anchors and seeded expression network searches.
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to haplotype-eQTLs. To validate the cis-eQTL associa-
tions, we mined publicly available expression data repre-
senting hematopoietic stem, progenitor, erythroid and
myeloid populations from the BXD recombinant inbred
panel [29]. Because this data was generated using the
same GEP platform that we used, we were able to ask
how our KL population is related to these more purified
populations (Additional File 5). As expected, our KL
expression profiles cluster most closely with stem and
progenitor profiles and are distinct from both erythroid
and myeloid lineages. For each anchor gene, we tested
the association between BXD genotypes of SNPs within
2 Mb and anchor expression and corrected for multiple
testing. We found that 30 of the 45 anchors were signif-
icantly associated with at least one SNP within 2 Mb in

at least one of the hematopoietic compartments (26 in
either Stem or Progenitor), supporting the hypothesis
that expression differences of the anchor are caused by
locally encoded genetic variation. Of 480 testable
eQTLs-transcript associations, 300 (62.5%) were repli-
cated in at least one of the hematopoietic data sets. KL
eQTLs may have failed to validate in the other tissues
because they are false positives, because the causative
genetic variant does not exist in the BXD strains, or due
to tissue-specific expression regulation.

Anchored network analysis identifies t-AML susceptibility
expression modules
Next, we hypothesized that expression differences
of anchor genes would cause expression differences

Figure 2 Mouse Haplotype Map. (A) Typical haplotype block (Block ID 13605, Additional File 1) derived from SNP data http://www.
broadinstitute.org/mouse/hapmap/. Rows represent SNPs at the indicated positions on chromosome 4, ‘=’ are untyped. Columns represent 48
classical inbred strains. Mouse Phenome Database strain identifiers are shown for each column. Strain haplotypes are shown on the right. Given
the strain haplotypes, it is possible to predict all typed genotypes with at most a single error. The distribution of the number of SNPs (B) and
haplotypes (C) per block. (D) SNP-derived haplotype blocks do not tag CNVRs within 250 kb.
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Figure 3 Gene Expression Profiling of Hematopoietic Stem and Progenitor Cells in t-AML Resistant and Susceptible Strains of Mice. (A)
Unsupervised clustering of expression probes that are present in at least 3 strains largely separates t-AML susceptible (blue) from resistant (red)
strains. Susceptibility status of some strains is undetermined (grey). (B) Differentially expressed genes are enriched in apoptosis-related genes. A
heatmap of apoptosis genes differentially expressed between t-AML susceptible and resistant strains is shown.
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(in trans) on multiple downstream genes (targets). For
each anchor, we identified correlated expression profiles
(FDR < 1%), resulting in 30 sets of co-expressed genes
or modules. The number of targets per module ranged
from 3 to 607 (mean = 113, median = 72). We reasoned
that true response genes will exhibit association with
anchor expression even when the remaining genome is
randomly shuffled, as it is in the BXD recombinant
inbred cross. For each module, we tested the association
between expression of the anchor and each response
transcript in each of the BXD hematopoietic popula-
tions. We removed target genes from modules that were
not associated with anchor gene expression in at least
one population (FDR < 25%) (Table 2). We also used a
Weighted Gene Co-expression Network Analysis
(WGCNA) [30,31], to derive modules of correlated
genes independent of linkage to eQTLs. We filtered
these modules on the basis of their reproducibility in
the BXD dataset and compared the resulting modules
with the anchored expression networks. The WGCNA
modules are highly similar to the anchored modules in
gene content, suggesting that the discovered co-expres-
sion structure is robust to different algorithms (data not
shown).
The expression of each anchor gene is, by definition,

associated with susceptibility status. However, the
strength of the association between the target genes of
an anchored module and susceptibility is unknown. To
determine these values, we first computed eigengenes

from each module [31]. Then, we ranked anchored
modules according to differential expression of the mod-
ule’s eigengene and susceptibility status. Using both
KEGG and GO annotations, we found that 8 anchored
modules were enriched in at least one annotation.
We visualized the anchored susceptibility modules as
both heatmaps of eigengene values (Figure 4A) and net-
works (Figure 4B), displaying the correlation between
anchored modules and the strength of association
between anchored modules and susceptibility status. We
also visualized one of the anchored susceptibility net-
works, focusing on a biologically compelling module
(Figure 4C).

Discussion
There is accumulating evidence that many genetic con-
tributors to complex traits are not protein-coding
changes [32,33]. If true, then other classes of genetic
events that can affect phenotype must, at some level,
impact gene expression (i.e., eQTLs). Hypothesizing that
such events contribute to t-AML susceptibility, we took
an integrated genomics approach to identify and priori-
tize candidate transcriptional networks. The first step in
this approach was to identify eQTLs in hematopoietic
stem and progenitor cells, the likely target of leukemic
transformation. Previously, we described a CNVR eQTL
map in classical inbred mice [24]. In the current work,
we expanded this map to include SNP-based haplotype
eQTLs. In deriving the mouse haplotype map, we found

Table 1 Functional enrichment of differentially expressed genes

Annotation Annotation name Count P-Value
(nominal)

Fold
Enrichment

FDR
(%)

GO:0008632 apoptotic program 11 9.58E-05 4.71 0.17

GO:0006464 protein modification process 88 1.77E-04 1.46 0.31

GO:0019318 hexose metabolic process 15 0.00107053 2.76 1.88

GO:0005996 monosaccharide metabolic process 15 0.00129867 2.71 2.28

GO:0046907 intracellular transport 43 0.00182315 1.63 3.18

mmu00240 Pyrimidine metabolism 11 0.00325706 2.98 3.99

GO:0031324 negative regulation of cellular metabolic process 25 0.00230736 1.95 4.01

GO:0009117 nucleotide metabolic process 18 0.00246768 2.27 4.29

GO:0009142 nucleoside triphosphate biosynthetic process 9 0.00286827 3.68 4.96

GO:0045934 negative regulation of nucleobase, nucleoside, nucleotide and nucleic acid
metabolic process

22 0.00335044 2.00 5.78

GO:0006915 apoptosis 39 0.00643571 1.56 10.81

mmu05210 Colorectal cancer 10 0.00953927 2.74 11.28

GO:0008637 apoptotic mitochondrial changes 5 0.00751505 6.23 12.52

GO:0006396 RNA processing 25 0.00852521 1.76 14.08

GO:0009064 glutamine family amino acid metabolic process 6 0.00927287 4.57 15.22

GO:0015031 protein transport 39 0.01063622 1.51 17.27

GO:0019362 pyridine nucleotide metabolic process 5 0.01370052 5.27 21.69

GO:0008219 cell death 39 0.01444197 1.48 22.73

GO:0016481 negative regulation of transcription 19 0.01461908 1.85 22.98

Count: Number of genes differentially expressed between t-AML-resistant and -susceptible inbred strains of mice with given annotation.
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surprisingly little correlation between haplotypes and
neighboring CNVRs. This is in contrast to human stu-
dies, where nearly 75% of common CNVRs are esti-
mated to be in linkage disequilibrium with neighboring
SNPs [34]. This suggests that at the currently available
resolution and coverage (and genotyping accuracy),
mouse haplotypes and CNVRs represent distinct sources
of genetic information. We found two-fold more CNVR
eQTLs than haplotype-based eQTLs (401 vs. 167). It is
tempting to speculate that this difference in eQTL types
is because CNVRs have a stronger impact on expression
in cis and therefore are more likely to be detected as
eQTLs. However, the difference could largely be due to
the reduced power to detect haplotype eQTLs because

of the exacerbated multiple testing problem that comes
with performing approximately 20 times more statistical
tests. In total, greater than 60% of the eQTLs were
reproducible in an independent dataset.
The second step in the integrated approach was to

find genes differentially expressed between t-AML sus-
ceptible and resistant strains. Because unsupervised clus-
tering using all expressed transcripts grouped strains by
susceptibility status, we expected to find a large number
of genes associated with susceptibility. Greater than 7%
of the expressed transcripts are differentially expressed
(976/13,496). These genes are enriched in several, inde-
pendent biological processes, most notably apoptosis.
Among the differentially expressed intrinsic apoptosis

Table 2 Anchored susceptibility modules

BXD

Module Anchor Gene KL KLS KLS- Gr Ter N* P-value# Top GO Top KEGG

A_1 LOC634046 460 43 2 23 199 236 2.25 GO:0032940 NE

A_2 scl41743.2_361 402 140 272 207 19 329 1.09 GO:0019219 map04120

A_3 GI_38089999 38 4 1 0 2 7 1.72 NE NE

A_4 A330106M24Rik 4 3 3 3 1 4 1.82 NE NE

A_6 Ociad2 132 63 3 16 10 75 1.5 GO:0043666 NE

A_7 GI_46852192-I 97 1 15 1 50 54 1.95 GO:0051329 NE

A_9 Zfp862 106 13 19 1 0 26 2.3 NE NE

A_12 A630001G21Rik 112 79 50 38 48 104 2.38 GO:0045449 NE

A_14 Aste1 102 7 48 0 1 52 2.67 NE NE

A_16 Ckap2l 607 4 116 289 4 356 1.28 GO:0006281 map04070

A_17 H2-Ke6 238 12 109 2 81 152 1.93 NE NE

A_20 Dusp16 91 45 4 43 30 72 2.08 NE NE

A_21 scl0217069.13_16 58 3 4 21 4 29 2.72 NE NE

A_22 Atf7ip 39 1 1 9 10 19 2.61 NE NE

A_23 Snrpn 4 2 2 0 1 3 0.94 NE NE

A_24 Atp6v0e2 78 4 5 1 0 5 2.91 NE NE

A_25 Gimap7 30 3 2 0 6 9 2.35 NE NE

A_26 Pdzk1ip1 79 39 31 0 20 57 2.35 NE NE

A_27 Polr1b 27 3 10 4 2 12 3.11 NE NE

A_28 Magohb 65 55 35 24 47 61 0.97 GO:0044242 NE

A_30 Sox13 34 18 25 3 1 29 1.45 GO:0006631 NE

A_32 Ptcd3 18 7 14 5 4 17 2.68 NE NE

A_33 Casp9 37 1 0 6 1 6 3.22 NE NE

A_34 Ctsf 223 53 123 8 71 169 2.34 NE NE

A_36 scl46617.10.1_4 13 4 3 8 5 10 2.5 NE NE

A_37 Parp2 88 21 21 17 19 42 2.05 NE NE

A_38 Hdhd3 178 72 2 70 1 102 1.78 NE NE

A_39 5830417I10Rik 5 1 3 1 1 3 2.07 NE NE

A_41 Prcp 3 2 1 2 2 3 2.11 NE NE

A_43 Ggcx 7 6 7 5 3 7 2.53 NE NE

KL: Number of probes significantly associated with anchored gene expression in kit+/lineage- (KL) cells.

BXD: Number of probes in module significantly associated with anchored gene expression in BXD KLS (Sca+/kit+/lineage-, HSC), KLS- (Sca-/kit+/lineage-,
Progenitor), Gr-1+ (Myeloid), or Ter-119+ (Erythroid) cells.

*, Number of probes in module significantly associated with anchored gene expression in at least one BXD data set.
#, -Log10(P-value) for association with t-AML susceptibility.

Top GO/KEGG, annotations significantly enriched in each module; NE, not enriched.
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Figure 4 Anchored Susceptibility Networks. (A) Heatmap of anchored module eigengenes. For clarity, eigengene values were averaged by
strain, and each module was row-normalized. Module Eigengenes are either positively (bottom half) or negatively (top half) correlated with
susceptibility status. (B) Network view of anchored modules. Anchored modules are represented as nodes. Edges between modules represent
network eigenegene correlation. Low and negative correlations are not shown for clarity. Edges between the ‘Susceptibility’ and anchored
network nodes represent association between network eigengenes and susceptibility status. Node size indicates the number of response genes
in the anchored network. The top super-module corresponds to the top half of the module heatmap displayed in panel A. Likewise, the bottom
super-module corresponds to the bottom half of the module heatmap. (C) Module A_37, includes 10 genes on chromosome 14 located within
7 Mb of a CNVR. Green nodes represent genes with lower expression in susceptible strains, red nodes represent genes with higher expression in
susceptible strains. Correlations among response genes, represented as edges, are only displayed for those relationships where the Pearson
correlation > 0.5.
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genes are Caspase 9 (Casp9), B-cell leukemia/lymphoma
2 (Bcl-2), BCL2-associated agonist of cell death (Bad),
BCL2-associated X protein (Bax), and mutS homolog 6
(Msh6). Msh6 is a member of the mutSa DNA mis-
match recognition complex that has been shown to
mediate apoptosis in certain contexts [35,36]. Notably,
the absence of mutSa activity in myeloid progenitors
results in the complete loss of O6-methylguanine
(O6MeG)-mediated cytotoxicity [37]. That resistant
strains have higher expression of Msh6 suggests that
upon alkylator exposure, resistant strains may recognize
DNA damage and respond appropriately (i.e. undergo
apoptosis) whereas the KL cells of susceptible strains
may tend to survive, accumulate mutations, and become
transformed. In KL cells, almost all susceptible strains
have no detectable expression of Casp9, an initiator of
programmed cell death, suggesting that these cells (low-
to-no Casp9 expression) are less primed for Casp9-
dependent apoptosis. Although knockout of Casp9 in
mice is embryonic lethal, presumably due to severe
brain development defects [38,39], Casp9 is not required
for apoptosis during normal hematopoiesis [40]. There-
fore, inbred strains may exhibit genetically-driven yet
tissue-specific differences in apoptosis such that hemato-
poietic cells of susceptible strains are relatively protected
from cell death after exposure to genotoxic stress.
Differential expression and gene enrichment analysis

highlighted several biologically plausible pathways that
may underlie t-AML susceptibility. However, it
remained unclear which pathway members, if any, are
causal contributors to the phenotype, as illustrated by
the complex expression patterns of the intrinsic apopto-
sis genes. More broadly, the role and relative importance
of each of the 917 differentially expressed genes in sus-
ceptibility remained undetermined. We hypothesized
that among the 917 differentially expressed genes would
be a subset in which expression variation is caused by
cis-encoded genetic variation. Further, we posited that
these ‘anchor’ genes cause expression variation of multi-
ple downstream genes, which collectively are associated
with t-AML susceptibility (or resistance). The mechan-
isms by which anchors might act in trans are varied.
They include altered transcription factor abundance and
homeostatic or compensatory forces within and between
biological pathways. Regardless of the mechanisms of
action, the identification of putative events that influ-
ence susceptibility and their linkage to gene networks
forms a powerful and practical strategy to both find bio-
logical pathways underlying cancer susceptibility and to
prioritize candidate mediators. Therefore, as the third
step in the integrated genomics approach, we identified
networks of genes that are significantly correlated with
candidate susceptibility anchors. To validate the net-
works, we used independent gene expression data from

multiple hematopoietic populations, trimming the net-
works of response genes whose expression was not
reproduced.
One of the benefits of the integrated genomics

approach is that it can implicate biological processes
that would not have been detected using differential
expression alone. The susceptibility networks that we
identified are enriched in genes involved in DNA repair,
base excision repair, apoptosis, and cell cycle, among
other annotations. A second potential benefit of the
integrated approach is that it differentiates between
upstream (anchors) and response genes, an advantage
over existing approaches that derive gene regulatory net-
works from expression data alone. While this is a
hypothesis that remains to be tested, the identification
of candidate upstream factors will be useful in prioritiz-
ing among apoptosis-related genes for experimental vali-
dation. For example, although Casp9 and Bcl2 are
differentially expressed, Casp9 is also the candidate
anchor of module A_33, the module most strongly asso-
ciated with susceptibility status. We speculate that per-
turbation of candidate anchors, such as Casp9, are more
likely to be informative in elucidating susceptibility than
response genes (i.e. Bcl2).
Network analysis allowed us to predict the function of

uncharacterized genes. For example, A630001G21Rik is
expressed primarily in primitive hematopoietic and
B-cells [41], yet its function is undetermined. Our analy-
sis places it as the anchor of module A_12, which is
enriched in apoptosis-related genes, including Bcl2.
Therefore, A630001G21Rik may play previously
unknown role in regulation of Bcl2 expression and
apoptosis activity. Similarly, Cytoskeleton-associated
protein-like 2 (Ckap2l) is the anchor of the largest mod-
ule, A_16, enriched in both cell cycle and DNA repair
genes. Although Ckap2l is highly expressed in hemato-
poietic progenitors [41], its functions are unknown. Its
closest ortholog, Ckap2, is highly expressed in mouse
stem cell lines and has detectable expression in hemato-
poietic progenitors, bone marrow, osteoclasts, osteo-
blasts, and macrophages [41]. There is a growing body
of literature suggesting that Ckap2 (also known as
Tumor-associated microtubule-associated protein) is
involved in cell cycle progression [42-44]. It is possible
that Ckap2l contributes to cell cycle regulation in HSCs
and progenitors, and that genetic disturbances of its
expression impact t-AML susceptibility. Experiments
that perturb expression of anchor genes such as Casp9
and Ckap2l to assess their impact on module expression
and activity are the next logical steps in determining the
role of candidate networks in susceptibility. If such
experiments demonstrate a causal link between anchor
genes and module expression, then moving forward to
formally define their role in leukemia will be warranted.
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A drawback to the anchored network approach, as
currently implemented, is that it assumes there is only a
single anchor per module. In cases where CNVRs dis-
rupt regulatory elements, it is possible that a single
genetic event impacts the expression of multiple neigh-
boring genes. For example, in module A_37 (Figure 4C)
we found 10 response genes within 7 Mb of a CNVR.
This module warrants special attention because it
includes poly (ADP-ribose) polymerase family member 2
(Parp2, the anchor) and apurinic/apyrimidinic endonu-
clease 1 (Apex1), both members of the base excision
repair pathway [45,46]. Both genes have lower expres-
sion in susceptible strains, again suggesting that lowered
overall DNA damage response promotes susceptibility.
A caveat to the current work is that maps of genetic

variation in the mouse genome are incomplete, a knowl-
edge gap that promises to be filled by more informative
SNP arrays [47] and next-generation sequencing [48,49].
It is possible that un-captured genetic variants may be
the ultimate cause of the observed co-expression net-
works. These variants may mediate their impact through
mechanisms other than altering the expression of
anchors. In the extreme case, all modules may not be
controlled by anchor expression, but by undetected
causes. Nevertheless, the modules themselves are still
informative in that they describe sets of coordinately
regulated genes that, collectively, are associated with
both t-AML susceptibility and biologically plausible pro-
cesses and pathways.

Conclusions
To our knowledge, this is the first report of an inte-
grated genomics approach to dissect the role of the pre-
exposure transcriptional state in t-AML susceptibility.
From a clinical perspective, t-AML is important because
the response to treatment is poor and survival is short
[3]. But because t-AML is a clinically-induced malig-
nancy, it is by definition preventable. Therefore, a long-
term goal in this field is to gain sufficient understanding
of susceptibility factors in order to make worthwhile the
personalization of chemotherapeutic regimens based on
t-AML risk. The transcriptional networks and their can-
didate anchors described here are an important early
step towards gaining such an understanding.

Methods
Construction of SNP-based haplotype map
Genomic coordinates of 1,333 CNVRs were mapped
from mm8 to mm9 using liftOver. 31 CNVRs were
unmapped and dropped from further analysis. To derive
haplotype blocks, SNPs for the haplotype map construc-
tion were downloaded from the Broad Institute http://
www.broadinstitute.org/mouse/hapmap/. Only SNPs
from 48 non-wild-derived strains were used. SNPs that

were contained within CNVRs, had minor allele fre-
quencies < 5%, or were not genotyped in 25% or more
of strains were considered uninformative and were
excluded from further analysis. The following steps were
performed to simultaneously group SNPs into blocks
and to assign haplotype to strains:

(1) Begin with the first informative SNP on a
chromosome.
(2) If the number of SNPs in the current block is 1
then go to (3). Otherwise, go to (4).
(3) Group strains by genotype and add the next con-
secutive SNP to the current block.
(4) Cluster strains by SNP-based distance using Par-
titioning Around Medioids[50] (number of clusters =
2 to 6).
(5) Assign haplotype labels to strains based on the
clustering with the maximum average silhouette [50].
(6) Derive consensus haplotypes. For each haplotype
cluster, a consensus haplotype is defined as the
string comprised of the most frequent genotype at
each SNP position.
(7) Compare the consensus haplotypes to the actual
SNP genotypes.
(8) If the number of errors is greater than 1 then go
to (9), otherwise go to (10).
(9) Remove the most recently added SNP from the
current block. Store the haplotyping results from the
previous iteration. Start a new block with the current
SNP. Go to (3).
(10) Add the next consecutive SNP to the current
block. Go to (4). If there are no more SNPs on the
current chromosome, select a new chromosome and
go to (2). The computation is complete when all
chromosomes have been analyzed.

SNP-based distances between strains are computed as
the sum of SNP differences between strains. The range
of number of allowable haplotypes per block was
selected based on the estimated number of ancestral
haplotypes [51]. Pooled multi-allelic R2 was computed
based on haplotype frequencies [52].

Integrated expression QTL mapping
Pre-processing
GEP expression profiling was previously described [24]
and is available at GEO under accession GSE10656.
This data is referred to as kit+/lineage- (KL) throughout
the text. Hypothalamus and adipose tissue expression
data were obtained from GEO (accessions GSE5961 and
GSE8028, respectively). For clustering and network ana-
lysis, probes were first filtered based on detection. In
the KL data, a probe was considered detected in a sam-
ple if its signal was greater than a set of negative
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controls on the Illumina array. 13,496 probes were
detected in all biological replicates of at least three
strains (excluding C3H, for which only one array was
analyzed). Only the 14,871 and 10,040 probes that were
detected as present in at least 25% of the strains in
the hypothalamus and adipose data sets, respectively,
were kept for clustering analysis.
Cluster analysis
Unsupervised hierarchical clustering was performed with
R’s hclust function, using 1-Pearson correlation as the
distance metric and the complete linkage method for
node merging. To assess the non-randomness of the
strains clustering according to susceptibility status, we
computed the ratio of the mean of the distances among
susceptible strains to the mean of the distances between
all susceptible and resistant strains. Then, we permuted
the strain labels 10,000 times, and recomputed the ratio
of distances. The P-value of the observed clustering is
the number of random permutations in which the dis-
tance test statistic > = observed distance test statistic
divided by 10,000. This analysis was performed on the
median expression profiles of strain replicates, only in
those strains in which the susceptibility status is known.
SNP clustering was based on strain-strain pair-wise dis-
tances computed by counting the number of SNPs that
differ between each of the strains divided by the total
number of SNPs that are typed in both strains.
Differential expression analysis
Strains with unknown susceptibility status were not
included in the differential expression analysis. We used
the limma package in R to model the expression of each
gene with coefficients representing strain replicates and
susceptibility status [53,54] and the false discovery rate
(FDR) was estimated using q-value [55]. All of the 976
significant probes were detected as present in at least
50% of either the susceptible or resistant strains. When
a gene is targeted by more than one probe, only the
most significant differentially expressed probe was used
for visualization. Association of module eigengenes with
susceptibility was tested in the same way as differential
expression. Enrichment analysis was performed using
DAVID [56]. Only the GO annotations Biological Pro-
cess 5 and KEGG pathways were assessed. We only
report annotations that pass an FDR threshold < 25%.
Expression data from all 20 strains previously profiled
were used in expression network analysis. Anchored
expression networks were identified by searching for
probes that exhibited expression profiles that were sig-
nificantly correlated with anchor gene expression at an
FDR threshold < 1%.
Expression quantitative trait locus mapping
CNVR eQTLs previously identified were used in this
analysis [24] and eQTLs based on SNP haplotypes were
identified using the haplotype association method with

weighted strain permutation to account for strain relat-
edness [57-59]
Analysis of coexpression networks
Normalized gene expression data used for validation of
eQTLs and anchored modules was downloaded from
GEO (GSE18067). This data set includes profiling on
sorted (purified) hematopoietic stem, progenitor, mye-
loid and erythroid populations from female BXD recom-
binant inbred mice [29]. Only detection calls, coded as 0
for absent or 1 for present, were used to globally com-
pare our KL data to the BXD data. Clustering was per-
formed using the same parameters as described above
for the KL data. KL eQTLs were validated by testing the
association between the genotypes of SNPs within 2 Mb
of anchor genes and driver gene expression in each
compartment separately. Genotypes were treated as
factors in a linear model of driver gene expression.
P-values of the resulting F-statistics were adjusted for
multiple testing using Holm’s method [60]. Drivers that
had corrected P-values < 0.05 in at least one compart-
ment were considered validated. Assessing the reprodu-
cibility of the association between driver and response
gene expression was performed in a similar manner. A
linear model of response gene expression was fit with
driver gene expression as the dependent variable (one
model per driver-response gene pair per compartment).
In this case, Benjamini and Hochberg’s method to con-
trol the false discovery rate was applied to the resulting
p-values [61]. WGCNA analysis was performed as pre-
viously described using the R package WGCNA [31].
Briefly, b values for calculating the weighted network
adjacency were selected based on the power at which
the scale law R2 exceeded 0.9. Weighted adjacency
matrices were computed, modules were defined using
the cut Tree Dynamic function (which selects good den-
drogram cutoffs) and similar modules were merged
using merge Close Modules (which compensates for the
high sensitivity of WGCNA). Eigengenes were computed
as the first principal component of a module’s expres-
sion matrix. Eigengenes were tested for differential
expression between susceptible and resistant strains, as
described above for individual genes.

Additional material

Additional file 1: Supplementary Table S1. SNP-derived haplotype
blocks in 48 inbred mouse strains.

Additional file 2: Dendrograms showing clustering of strains by
gene expression profile or SNP-derived haplotype blocks. (A)
Unsupervised clustering of strains using the strain median expression
profile in KL cells groups strains by t-AML susceptibility status to an
extent greater than expected by chance (see text), and differently than
when clustering gene expression profiles of the hypothalamus (B),
adipose tissue (C), or when clustering based on SNP-based distance (D).
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Additional file 3: Heatmap of genes differentially expressed in KL
cells from t-AML susceptible vs. resistant strains of mice. 917 genes
(976 probes) are differentially expressed between t-AML susceptible
(SWR/J, DBA2/J, PL/J, AKR/J, BALB/cByJ) and t-AML resistant (C58/J, C57/J,
FVB/J, C57BL/6J, A/J, NZB/J, C3H/HeJ, SJL/J, and 129S1/SvImJ) mice.

Additional file 4: Supplementary Table S2. Annotation of genes
differentially expressed between t-AML susceptible and resistant strains
of mice.

Additional file 5: Unsupervised clustering of expression profiles of
purified hematopoietic compartments. BXD populations are indicated
by the enriched population: erythrocytes (Ter119+, orange), myeloid
lineage (Gr1+,green), hematopoietic stem cells (Lineage-Kit+Sca1+, red),
and progenitors (Lineage-Kit+Sca1-, blue). Hematopoietic stem and
progenitors from classical inbred strains are indicated by inbred strain
name (Lineage-cKit+, navy blue). Each population forms a distinct cluster,
with KL cells grouping most closely with stem and progenitor cells.
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