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Abstract

Background: Aedes aegypti is arguably the most studied of all mosquito species in the laboratory and is the
primary vector of both Dengue and Yellow Fever flaviviruses in the field. A large number of transcriptional studies
have been made in the species and these usually report transcript quantities observed at a certain age or stage of
development. However, circadian oscillation is an important characteristic of gene expression in many animals and
plants, modulating both their physiology and behavior. Circadian gene expression in mosquito species has been

biological pathways.

previously reported but for only a few genes directly involved in the function of the molecular clock.

Results: Herein we analyze the transcription profiles of 21,494 messenger RNAs using an Ae. aegypti Agilent™
microarray. Transcripts were quantified in adult female heads at 24 hours and then again at 72 hours and eight
subsequent time points spaced four hours apart. We document circadian rhythms in multiple molecular pathways
essential for growth, development, immune response, detoxification/pesticide resistance. Circadian rhythms were
also noted in ribosomal protein genes used for normalization in reverse transcribed PCR (RT-PCR) to determine
transcript abundance. We report pervasive oscillations and intricate synchronization patterns relevant to all known

Conclusion: These results argue strongly that transcriptional analyses either need to be made over time periods
rather than confining analyses to a single time point or development stage or exceptional care needs to be made
to synchronize all mosquitoes to be analyzed and compared among treatment groups.

Background

Mosquito species exhibit a wide range of distinct daily
activity patterns and are, in fact, frequently character-
ized as to whether their feeding and mating behaviors
are diurnal, crepuscular, or nocturnal (reviewed in [1]
chapter 33). Activity and blood-feeding rhythms appear
to be controlled by a circadian (i.e. approximately daily)
clock [1]. Observations of circadian rhythms in the phy-
siology and behavior of the culicine mosquito species
Aedes aegypti (L) have been previously reported in the
field (biting patterns [2], biting and flight patterns [3])
and in laboratory studies (oviposition [4]; sugar-feeding
[5]). Both oviposition and sugar-feeding patterns have
been explained by an inherited endogenous circadian
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rhythm [1]. Entraining of flight pattern caused by the
change from light to dark as a time-cue was experimen-
tally studied by Taylor and Jones[6]. Subsequent publi-
cations in the culicine mosquito Culiseta incidens
reported differences in behavior in constant darkness
and constant light after light/dark 12 h:12 h entraining.
The authors proposed the existence of two dependent
oscillators which could be temporarily or permanently
uncoupled to explain lengthening and shortening of
activity periods [7,8]. Connection between metabolism,
feeding pattern and circadian regulation of gene expres-
sion has been explored by Das and Dimopoulos [9].
This study taking advantage of custom designed micro-
arrays has reported that genes controlling feeding beha-
vior are under circadian control. Long and short light
pulses can alter circadian feeding behavior through
unknown molecular mechanisms, possibly involving
chemosensory system [9].
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In no other insect species have the genes that control
circadian rhythms been as well characterized as in Dro-
sophila melanogaster. A number of genes have been
implicated in the control of circadian rhythms in this
species. Transcriptional analyses of these suggest a
mechanism whereby transcriptional negative feedback
loops control cyclic expression [10]. The two main regu-
latory loops of the circadian clock involve the genes per-
iod (per), timeless (tim), Clock (CIk), cycle (cyc), vrille
(vri), and Par-domain-protein-1 (Pdpl) [11-13]. Regula-
tory loops control the circadian expression of genes in
the clock and determine the abundance of a large num-
ber of fluctuating transcripts. These transcripts in turn
are thought to be indicators of a pacemaker that con-
trols various aspects of physiology and behavior [14].

Orthologues of Drosophila circadian genes have been
cloned or identified in the mosquitoes Anopheles gam-
biae [15] and Ae. aegypti [16]. Gentile et al [17] cloned
and analyzed expression of tim in Ae. aegypti. In Droso-
phila, tim controls a central pacemaker and a resetting
mechanism that allows the clock to synchronize with
environmental light-dark cycles. Predicted protein
sequence encoded by timeless in Ae. aegypti and D. mel-
anogaster were highly similar in domains of known
function, suggesting functional conservation. Analysis of
the daily expression of timeless indicated a peak in
mRNA abundance around the daily light-dark transition.
Gentile et al [18] compared the circadian expression of
clock genes in Ae. aegypti and Cx. quinquefasciatus.
Both species diverged > 22 MYA but exhibit conserved
circadian expression patterns for all major cycling clock
genes (with the exception of cryptochrome 2). However,
beyond these few core circadian genes, little is known
about circadian oscillations in gene expression in mos-
quitoes. Understanding these oscillations is essential for
learning the relationship between the circadian clock
and the observed periodicity in mosquito physiology and
behavior.

Due to the ease with which it can be collected in the
field and maintained in the laboratory, Ae. aegypti is the
most studied of all mosquito species. Much of what we
know about the genetic, biochemical, physiological, and
behavior of mosquitoes has come from this species. For
example, A.N. Clements’ (1992) encyclopedia on mos-
quito physiology contains 800 references and 400 of
these involve Ae. Aegypti [1]. As importantly the species
is the principal vector of the dengue and yellow fever
flaviviruses and a host of other important arboviruses
throughout all tropical and subtropical regions of the
world. Many transcriptional studies of genes involved in
development [19,20], competence for pathogen propaga-
tion and transmission [21,22], insecticide resistance
[23,24], blood-feeding [25] and blood meal digestion
[26] have been conducted in Ae. aegypti. More recently,
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the species has also been the subject of a number of
large scale transcriptional analyses using microarrays to
scan for genes involved in insecticide resistance [27,28],
development [29], vector competence [30-34], and
bloodfeeding [35]. In no case did these studies (includ-
ing those in which the senior author was directly
involved) consider the possibility of circadian oscillations
in expression of genes under study.

Herein we present a study in which we tested for cir-
cadian oscillations in expression of genes in a large part
of the transcriptome using the Agilent® Aedes aegypti
microarray [15,33] and an experimental design that has
been successfully used to demonstrate circadian cycles
of gene transcription in model eukaryotic organisms
(mouse, yeast) and humans. Transcripts were collected
from the heads of females that were 72, 76, 80, 84, 88,
92, 96, 100 and 104 hours old. Transcripts were only
collected from the heads of females for three reasons.
First, whole bodies were not used because various stu-
dies have demonstrated asynchronous oscillations in
transcript abundance among different organs and tis-
sues. Analysis of whole carcasses could therefore mask
tissue- or organ-specific oscillations in transcript abun-
dance. Second, the head is a discrete structure that can
be easily and rapidly dissected from the body without
large amounts of contamination by transcripts from
other tissues. We are of course assuming uniformity in
transcript abundance among different organs and tissues
in the head; an assumption that is almost certainly false.
Third, we wished to avoid gender differences in tran-
script abundance. We demonstrate that a large number
of transcripts in the female head exhibit circadian
fluctuations.

Results and discussion

The amounts of the 21,494 unique transcripts on the
Agilent®™ Aedes aegypti microarray were quantified in
adult female heads. The first time point was at 72 hours
post-eclosion and each subsequent time point was col-
lected every four hours for the next 32 hours. A heat-
map of the female head transcriptome over 24 hours is
presented in Figure 1. The heatmap shows a clear pat-
tern of two peaks (red) and two troughs (green) in levels
of gene expression over two days of observation, which
corresponds to two 24 hour circadian cycles. This pat-
tern is very similar to a previously published circadian
heatmap of the murine transcriptome [36].

Figure 1 is also reminiscent of the heatmap diagram of
periodic genes in D. melanogaster [37-39] with a few
important differences. First, Figure 1 presents the entire
female head transcriptome rather than pre-selected frac-
tion of periodic transcripts. Second, we detected four
groups of same-phase expression profiles rather than a
rolling wave of profiles sorted by acrophase (the time of
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Figure 1 Heatmap overview of the circadian pattern in A.
aegypti transcriptome. Red areas correspond to higher levels;
green areas correspond to lower levels of expression over 2 days of
observation. The succession of light and dark periods is marked
along the bottom. Each expression profile is assigned one of four
phases (marked on the left margin). The algorithm for generation of
heatmap of gene expression is explained in Supplemental Figure 1
(see Additional File 1).

highest expression level). We assigned expression pro-
files to a phase group by fitting discrete expression pro-
files with low sampling rate (12 time points per series)
to a discrete cosine curve generated with the same sam-
pling rate. Hence, discrete presentation of four possible
phases is the correct way to present the results.

The majority of transcripts in Figure 1 exhibit two
cycles of oscillations over two days. This observation is
consistent with the hypothesis that there is a gradual
reduction of signal to noise ratio without an actual loss
of periodicity [36]. Tests for periodicity applied in a
straightforward way and testing each expression profile
independently report considerable numbers of periodic
transcripts (Table 1). The difference in estimated num-
bers of transcripts passing the standard cutoff of p =
0.05 is caused by the different set of assumptions under-
lying each of the tests. Application of statistical tests in
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Table 1 Numbers of rhythmically expressed (circadian)
genes reported by statistical tests for periodicity

Direct test Phase continuum test
Fisher's g-test 8445 (19%) 38%
Pt-test 19067 (42%) 62%
Autocorrelation 6058 (13%) 83%

Total number of probes 45220

All tests used standard p = 0.05 significance cutoff.

a phase continuum setting mitigates some of the critical
limitations of periodicity testing and allows improved
signal to noise ratio by digital signal processing [40].
The numbers of periodic transcripts reported by tests in
phase continuum (Table 1) are much higher and seem
to be in a better agreement with the visual pattern (Fig-
ure 1) than numbers of rhythmically expressed genes
reported in single-gene testing. Even the most conserva-
tive estimates reveal more cycling genes than previously
reported in circadian expression profiling of D. melano-
gaster. Our experiment does not focus specifically on
the genes controlled by circadian molecular clock; we
register all genes expressed in a rhythmic pattern in LD
environment. Some of the oscillations we observe may
be harder to detect in altered light conditions. Although
there must be some inter-species differences, we believe
that most difference arise from the analysis methodol-
ogy. The panel of statistical tests used in these studies
applied to publicly available circadian expression profiles
from the Gene Expression Omnibus (GEO) database
consistently reports more cycling transcripts than the
original publications [41]. It is also important to note
that results of different tests presented on Table 1 are
different estimations rather than exact count. It is rea-
sonable to assume that among genes tested positive for
circadian periodicity there are some false-positive
results. In one of the earlier publications Ptitsyn et al.
proposed a computational experiment with random per-
mutation of time points in microarray circadian expres-
sion profiles [36]. One of the outcomes of that
experiment was estimation of false-positive rate in
straight application of Pt-test to one expression profile
at a time. With all periodicity scrambled by random per-
mutations about 10% of expression profiles still tested
positive for baseline circadian rhythm. In our Aedes
aegypti microarray analysis some of the expression pro-
files estimated as rhythmic may turn out false-positive
in separate validation experiments. However, this num-
ber is likely to be less than 10%. Highly expressed tran-
scripts have more favorite signal to noise ratio and less
likely to produce false-positive results in periodicity
tests. On the other hand, it would be incorrect to
assume that transcripts that didn’t pass the arbitrary p =
0.05 cutoff in tests are non-periodic. There are also
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false-negative rhythmically expressed transcripts, parti-
cularly among low-expressed genes, for which test are
not sufficiently powerful. Reproducing the experiment
with more time points (and thus higher sampling rate)
can improve both testing for periodicity and determin-
ing the phase of oscillation. However, there are ways to
improve the validity of existing data. First, selected
microarray expression profiles can be validated using
alternative RT-PCR technique for estimation of tran-
script abundance. Second, validity of gene expression
patterns in time can be considered in the context of
their interaction, i.e. within corresponding biological
pathways.

Selected expression profiles were validated using RT-
PCR (Figure 2). Overall the RT-PCR profiles are in a
good agreement with the microarray profiles (panel A).
Panel B shows agreement between intensity signal from
microarray probes (two probes) and RT-PCR estimation
of gene expression. For compatibility, raw RT-PCR
values have been subtracted from the maximum. On the
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other hand, one of the microarray probes selected for
RT-PCR validation demonstrated a clear circadian oscil-
lating profile, but in a counter-phase to microarray
expression profile (panel C). In turn, microarray probes
are not in complete agreement with each other. The
first probe (blue line) shows a mixed profile, which
could be resulting from competing cross-hybridization
between different transcripts. In previous publications it
has been reported that alternatively polyadenylated tran-
scripts of the same gene can oscillate in counter-phase
to one another [42]. We hypothesize that RT-PCR
expression values show behavior of only one of the
alternative transcripts (green line), while microarray
probes target the alternative transcript (probe b, red
line) and both transcripts (blue line).

Genes encoding the 40S ribosomal protein S7 and the
60S ribosomal proteins L8, L44, and P1 are commonly
used as “standards” for adjusting transcript abundance
during RT-PCR. Figure 3a demonstrates clear and
reproducible oscillations in 40S ribosomal S7 transcript
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abundance among the three probes for this gene in the
Agilent®™ Array. Figure 3b demonstrates clear oscillations
in 60S ribosomal transcript abundance for L8 (UniGene:
XM_001657661), L44 (UniGene: XM_001648014), and
P1 (UniGene: XM_001656376). Note also that while 60S
L8 and L44 transcripts are in the same phase that 60S-
P1 is in opposite phase. Thus, conflicting signals would

be obtained if one were to use 60S-P1 transcript abun-
dance with abundance of any of the other three genes.
A general observation is that more highly transcribed
genes tend to have less noisy expression profiles and
instead exhibit a clear cycling profile. This is also con-
sistent with the idea that the majority, if not all
expressed genes experience diurnal variation in baseline
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expression. Thus we should account for such diurnal
oscillation when considering gene function in the con-
text of biological pathways. Coordinated non-random
timing of peak and troughs of gene expression activity
within a functionally related group can also serve as evi-
dence of rhythmic expression.

The first example of coordinated rhythmic pattern in a
biological pathway is presented in Figure 4. Here we pre-
sent the components of the basic circadian clock identified
in the mosquito genome form a circuit of the same design
as the D. melanogaster molecular clock. The timeline
expression profiles reported in Drosophila [43] are similar
for the genes forming circadian molecular clock. In our
experiment all components of the pathway are found to be
oscillating and have expected differences in different
phases of the oscillation. This observation confirms the
previous report of circadian oscillation in A. aegypti
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mosquito [9]. In contrast to that study we did not attempt
to alter the pattern of gene expression by alternation in
light condition. Instead we used the same type of microar-
rays to probe longer time spans with regular sampling.
This design allowed identification of oscillation and phase
shift with more precision in much larger number of
expressed genes. The fact that the majority of expressed
genes experience circadian oscillation also means that
oscillation affects the majority of biological pathways.
Some of the pathways implicated in oscillatory expression
are discussed in Das and Dimopoulos report [9]. We con-
firm the original report and extrapolate the oscillatory pat-
tern to all other pathways. Evidence of coordinated timing
of gene expression is seen in Figure 5, showing the expres-
sion profile of the mosquito basal promoter complex. All
elements show some evidence of periodicity, but transcrip-
tion factors TFIIA [UniGene: XM_001652453] and TFIIH

Figure 4 Expression profiles of the components of circadian molecular clock of A. aegypti. The schema is adopted from KEGG database.
Each pane shows expression profile of genes (marked by gene symbols) over two complete circadian periods. Light and dark periods are
marked on the horizontal axis; vertical axis corresponds to relative abundance of transcripts (see Methods). Green arrows mark positive
regulation, red arrows mark negative regulation of gene expression. P+ marks activation by phosphorylation, tr+ and tr- mark positive and
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BASAL TRANSCRIPTION FACTORS

ANATA

abundance of transcripts (see Methods).

Figure 5 Expression profiles of the basal transcription factors in A. aegypti. Elements of basal transcription complex show various degree
of rhythmicity and different phase shifts modulating gene expression patterns. Each pane shows expression profile of genes (marked by gene
symbols) over two complete circadian periods. Light and dark periods are marked on the horizontal axis; vertical axis corresponds to relative

[UniGene:XM_001651873] are expressed clearly in coun-
ter-phase to transcription factors TFIIF [UniGene:
XM_001648018] and TFIID [Unigene: XM_001657785].
Previously reported differences in oscillation patterns of
basal transcription factors in murine bone [44] has been
attributed to differential modulation of gene expression by
different signaling systems, creating complex orchestration
of transcription for different genes. In A. aegypti the pat-
tern might be less complicated or the analysis might have
omitted minor details due to technical noise. Overall,
parts of the basal transcription complex and transcription
factors in particular, follow the pattern set by the elements
of the basic molecular clock, such as TFIID-F expressed in
the same phase as Pdp and TFIIA in the same phase with
dCLK [UniGene: XM_001654547] (opposite to Pdp, [Uni-
Gene: XM_001650542]). Timeless (Tim, [UniGene:
XM_001657734]) and Period (Per, [Unigene:
XM_001658926]) oscillate in the same phase with TFIIH
slightly ahead of dCLK and Cycle (Cyc, [XM_001654547]).
Among all pathways composed of oscillating genes basic
energy metabolism is particularly significant.

The expression profiles of the major components of oxi-
dative phosphorylation are presented in Figure 6. Remark-
ably, all genes involved in oxidative phosphorylation are
among the most prominently oscillating genes. Phase shift
in production rates for the oxidative phosphorylation
genes is in agreement with expectations from the general

model of the process: components of the oxidative phase
are expressed in counter-phase to the components of the
reductive phase. Previous studies have pointed to the oxi-
dative phosphorylation pathways as the intrinsic oscillator
[45] modulating expression of many genes [46,47] and gat-
ing DNA replication [48]. Other studies outline the regula-
tory connection between basic metabolism and circadian
clock [49]. Even though these studies used different model
organisms it is reasonable to assume a connection between
circadian clock and oxidative phosphorylation in mosqui-
toes as well. We hypothesize that circadian clock and oxi-
dative phosphorylation are two main intrinsic oscillators
modulating physiology and behavior of A. aegypti mosqui-
toes. These oscillators are linked and work in synchrony,
but can be temporarily or permanently uncoupled by
changing environmental conditions or due to mutations
that lead to the creation of the behavioral patterns
reported in previous publications [7].

Understanding circadian oscillation rhythms and gene
synchronization patterns is essential to understanding
mosquito molecular biology. Pesticide resistance is clo-
sely related to detoxification pathways which in turn are
interlinked with oxidative phosphorylation. The oscillat-
ing pattern of oxidative phosphorylation gene expression
may modulate the mosquito’s ability to withstand insec-
ticide exposure. On the other hand a mosquito’s meta-
bolism is also modified by a blood meal, which changes
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Figure 6 Expression profiles of genes in oxidative phosphorylation pathway. Ordinate shows relative abundance (z-score of microarray
probe intensity) in 12 time points (abscissa) evenly spaced over 2 days of observation.

the energy balance from glycolytic to oxidative phos-
phorylation, changing the synchronous pattern for mul-
tiple genes. This alteration in expression timing can be
potentially used to identify the age of larvae and adults,
the availability of blood meal and other parameters
important for disease control. There is a reason to
believe that egg formation in mosquitoes is also gated
by oxidative phosphorylation in a way similar to DNA
replication in yeast [48] thus minimizing DNA damage
from free radicals. Understanding the mechanisms of
gene orchestration and correct timing of gene expres-
sion may help to identify the most vulnerable times and
most promising targets for intervention in ever shifting
patterns of interacting genes networks.

We also examined expression of genes involved in
metabolism of xenobiotics in general and insecticides in
particular (Figures 7 and 8). Glutathione-S-transferases
(GST [Unigene: XM_001648685]) are a diverse family of
enzymes involved in a wide range of biological pro-
cesses, many of which involve the conjugation of the tri-
peptide glutathione to an electrophilic substrate.
Elevated levels of GST activity have been associated
with resistance to all the major classes of insecticides
[50]. The epsilon-class GSTs in particular are frequently
associated with resistance. Figure 7 examined the abun-
dance of transcripts from the eight epsilon class GSTs.
All of these are located in a single cluster on

chromosome 2 in the Ae. aegypti genome[51,27]. Figure
7A demonstrates co-oscillation of GST -5 [VectorBase:
AAEL007964], GST -7 [VectorBase: AAEL007948], and
GST -8 [VectorBase: AAEL007955] transcript abun-
dances while Figure 7B shows co-oscillation of GST -1
[VectorBase: AAEL00795] and GST -2 [VectorBase:
AAELO007951] transcript abundances. Figure 7C demon-
strates that GST -3 [VectorBase:AAEL007947], GST -4
[VectorBase:AAEL007962] and GST -6 [VectorBase:
AAELO007946] transcripts do not co-oscillate with the
other GST in Figures 7a and 7b nor with one another.
GST -6 shows only shallow oscillations throughout the
experiment. GST -3 remains constant with the shallow
cosine curve of GST -6 until but increases the amplitude
in the second half of the experiment. This pattern may
reflect variation between parallel batches of biological
replicates (see experiment design in Methods).

The cytochrome P450 superfamily of genes encodes a
large and diverse group of proteins that catalyze the oxi-
dation of organic substances including endogenous
lipids and steroidal hormones and xenobiotic substances
including insecticides. In Ae. aegypti members of the
CYP9J family in particular seem to be involved in resis-
tance to pyrethroid insecticides[27]. Figure 8 examined
the abundance of transcripts from 17 members of the
CYPYJ family. All of these except CYP9J32 [VectorBase:
AAEL008846] are located in a single cluster on
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chromosome 3 in the Ae. aegypti genome [51,27].
CYP9J19 [VectorBase:AAEL006810], CYP9J22 [Vector-
Base:AAEL006802] and CYP9J27b [VectorBase:
AAEL014616] are represented by two oligonucleotide
probes each and CYP9J27a and b are different but

orthologous genes. Figure 8A demonstrates co-oscilla-
tion of CYP9J10 [VectorBase:AAEL006798], CYP9J19
(478) [VectorBase:AAEL006810], CYP9J22(703) [Vector-
Base:AAEL006802], CYP9J24 [VectorBase:AAEL014613]
and CYP9J27 VectorBase:AAEL014616] while 8B shows
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Figure 8 Shifts in the abundance of transcripts 17 members of the CYP9J family of cytochrome P450 superfamily of genes CYP9J family.
J

co-oscillations in CYP9J9 [VectorBase:AAEL006793], [VectorBase:AAEL014617] but shifted by 8 hours from
CYP9J22(470) [VectorBase:AAEL006802], CYP9J23 the genes in 8A. 8C shows co-oscillations in CYP9J8
[VectorBase:AAEL014615], CYP9J27(99) [VectorBase: [VectorBase:AAEL006811], CYP9J20 [VectorBase:
AAEL014616], CYP9J26 [VectorBase:AAEL014609], AAEL006814] and CYP9J29 [VectorBase:AAEL014610]
CYP9J27 VectorBase:AAEL014616] and CYP9J28  but shifted by 8 hours from the seven genes in 8B and
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16 hours from the genes in 8A. 8D shows that CYP9]7
[VectorBase:AAEL014606], CYP9J18 [VectorBase:
AAEL006804], CYP9J19(695) [VectorBase:AAEL006810],
CYP9J30 [VectorBase:AAEL014603] and CYP9J32 [Vec-
torBase:AAEL008846] do not have an obvious oscillating
pattern. However, the increase and decline pattern in
one of two concatenated profiles might be indicative of
a weak oscillation obscured by stochastic noise. We are
uncertain as to how these oscillations affect insecticide
resistance. Metabolic resistance is closely related to
detoxification pathways which in turn are interlinked
with oxidative phosphorylation. The oscillating pattern of
oxidative phosphorylation gene expression may modulate
the mosquito’s ability to withstand insecticide exposure
and suggests the interesting possibility that susceptibility
to insecticides may show diurnal fluctuations.

The purpose of these experiments was to document
that diurnal fluctuations occur in the heads of female
mosquitoes. Having demonstrated these diurnal pat-
terns; a whole series of additional questions arise. Are
there diurnal fluctuations in gene expression in other
adult tissues and organs? Are diurnal fluctuations seen
in the developing embryo? Do they occur in larvae?
How do the oscillations relate to chitin deposition and
sclerotization in the cuticle? How does moulting affect
oscillations? Is moulting coordinated by oscillations in
different tissues? Are oscillations coordinated among
different tissues? How do these oscillations respond to
major perturbations in the mosquitoes environment?
Specifically, how do diurnal fluctuations respond to a
blood meal in the female? Are there oscillations in the
production of vitellogenins (egg yolk precursor glycoli-
poproteins) that arise following a bloodmeal? Similarly,
how are these perturbations influenced by oviposition?
Are diurnal fluctuations in cytochrome P450s and Glu-
tathione-S-Transferases perturbed by exposure to xeno-
biotics? If so, how soon after exposure? Are innate
immunity pathways affected by the ingestion or expo-
sure to pathogens? How does mating affect diurnal fluc-
tuations? How are oscillations affected by lengthening or
shortening the photoperiod away from the current 12:12
pattern? Due to the limitations of our incubator, a cre-
puscular period prior to and following the scotophase
could not be included. Are the observed oscillations
affected by the lack of a crepuscular period? These ques-
tions all require very specific experimental designs that
are far beyond the scope or intention of the current
study.

In this study we have made a first attempt to identify
the baseline rhythms and co-oscillation patterns in
genes in the female head beyond the basic circadian
molecular clock. Due to the noisy nature of high-
throughput microarray expression analysis we cannot
observe a baseline rhythm in abundance of every
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detected transcript. However, we do observe baseline
oscillation in majority of genes and thus it can be rea-
sonably extrapolated that rhythmicity permeates every
biological pathway in mosquitoes. We hypothesize that
this is orchestrating changes in both mosquito physiol-
ogy and behavior. Apart from the technical challenges
of microarray analysis this study is limited in resolution
ability by the low sampling rate of circadian time series.
We could only distinguish as many as four discrete
phases. The sampling rate determines the precision with
which one can identify the phase of oscillation and
superimpose the timing of expression of inter-dependent
genes in biological pathways. We hope to intensify sam-
pling rates in future studies.

Conclusions

The utility of understanding the timeline of gene expres-
sion throughout the entire transcriptome is not an aca-
demic exercise limited to understanding circadian
behavior. Most transcriptional experimental designs
involve comparisons of strains or of individuals from a
strain that exhibit different phenotypes. Implicit in these
comparisons is the assumption that transcript abun-
dance is constant within strains and individuals. If this
assumption is invalid these experimental designs may
have a low power to detect true differences in gene
abundance. Furthermore, considered in the broader con-
text of gene interaction networks, timeline expression
can help the reverse-engineering of biological pathways,
identify alternative transcripts and potential drug targets.
These results are the first step towards understanding
the structure and orchestration of molecular processes
and gene functions in Ae. aegypti in relation to the
dimension of time.

Methods

Mosquito processing

Eggs were hatched from each of 11 field collections
made in 2006 from the state of Chiapas in Mexico.
Cities sampled were Ciudad Hidalgo, Motozintla, Rio
Florido, Puerto Chiapas, Mazatin, Huehuetdn, Huixtla,
generation of each colony was used and 600 first instar
larvae from each collection were hatched in water that
had been autoclaved and cooled in sealed bottles at
room temperature to promote uniform hatching time.
Equal numbers of larvae from the 11 collections were
mixed and reared at a density of 200 mosquitoes in 2
liters of water in Pyrex™ 4 liter autoclaved baking dishes
(33 containers total). The larvae were maintained at a
constant 28°C and a 12:12 photoperiod. Liver powder
suspension (1 mL of a 10% (w/v) solution) was provided
in the morning on each day and water was added back
to maintain a constant volume.
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Pupae first appeared four days after being counted
into the Pyrex® dishes. However, no pupae were col-
lected for transcriptional analyses until day 8 when a
large number of female pupae became available. We
removed and counted all pupae into two plastic 500 mL
beakers. Each beaker was placed into one of two 2" x 2’
x 2’ cages that were treated as biological replicates. In
this context “biological replicate” means replicated
extraction of biological material from separate batches
of mosquitoes, but not necessarily hatched from a sepa-
rate batch of eggs at a different time. Assuming an even
sex ratio and allowing for daily mortality, 1,170 mosqui-
toes were introduced as pupae into each cage to obtain
~585 adult females.

Adult mosquitoes were maintained at a constant 28°C
with 80% relative humidity, and a 12:12 photoperiod.
The light safe incubator was locked during the 12 hour
scotophase. Exactly 24 hours after placing the adults
into the cage, 30 females were aspirated from replicate
cage #1 into a small 500 mL cardboard carton and
rapidly killed in a -80°C freezer. The heads of mosqui-
toes were individually removed with a scalpel and trans-
ferred with forceps into a 1.5 mL Diethylpyrocarbonate
(DEPC) treated microcentrifuge tube labeled “24.1” and
100 pL of RNA later® were added. These heads were
immediately homogenized with a DEPC treated 500 pL
Kontes Pellet Pestle” and the volume was brought up to
500 pL with RNA later®. Contents were further homo-
genized until no large pieces of tissue were visible. The
tube was then returned to a -80°C freezer. All steps
were repeated for the second replicate cage, except that
the tube was labeled “24.2” This entire process was
repeated at 72, 76, 80, 84, 88, 92, 96, 100 and 104 hours
after placing the adults into the cage. At the end of the
experiment two replicate pools of female heads had
been collected at each of 10 time points.

RNA isolation, cRNA synthesis, amplification and labeling

The RNeasy Midi-kit (QIAGEN Inc. Valencia, CA) was
used to isolate total RNA according to manufacturer’s
instructions. RNA was eluted in 150 uL DEPC-ddH20
into a 1.5 mL DEPC-treated tube. RNA concentration
was read on a Nanodrop® spectrophotometer and the
tube was maintained at -80°C. The Agilent RNA Spike-
In"® kit provided two-colored standards in all experi-
ments. RNA (500 ng) was placed in a 200 uL tube along
with two uL of either Diluted Spike A or B and 1.2 uL
of T7 Promoter Primer Mix. RNA from 24 hour old
heads was labeled with Cyanine 5-CTP while RNA from
all heads collected at later time points were labeled with
Cyanine 3-CTP using the Agilent Technologies® low
input linear amplification RNA labeling kit according to
the manufacturer’s instructions. The RNeasy Mini-kit
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(QIAGEN Inc.) was used to purify the labeled/amplified
cRNA. The purified cRNA was eluted in 30 pL RNase-
free water and quantified in pmol/uL using a Nano-
drop® spectrophotometer. We did not proceed to the
hybridization steps if the total yield was < 825 ng or if
the specific activity was < 8.0 pmol Cy3 or Cy5 per ug
cRNA.

Hybridization

The Agilent™ Aedes aegypti microarray described in Xi
et al [33] and Nene et al [16] was used. Each array con-
tained 45,220 features, 43,803 of which correspond to
21,494 unique Ae. aegypti oligonucleotides replicated
twice (20,692), thrice (793) or four times (10). The
remaining features hybridized to oligonucleotides con-
tained in the Agilent RNA Spike-In"™ kit for quality con-
trol. Hybridizations were conducted with the Agilent
Technologies® In Situ Hybridization kit at 60°C accord-
ing to the manufacturer’s instructions. Hybridization
intensities were determined with an Axon GenePix
4100AL scanner at 635 nm for Cy-5 and at 532 nm for
Cy3, and images were analyzed with Gene Pix Pro 6.0
software. The quality of the hybridization was assessed
with Gene Pix software for control, feature and replicate
quality control software packages. Two of the 26 arrays
that were processed failed to pass the quality control
screens. Both were repeated from the original RNA and
passed on the second attempt.

Data pre-processing

Values from all 1,417 spots that hybridize to the probes
in the Agilent® RNA Spike-In kit were removed. Median
background values at 635 nm were subtracted from
median spot values and the same was repeated for back-
ground and spot values at 532 nm. Background cor-
rected values were then transformed to relative
intensities using the formula:

M = log, (Cy5/Cy3)

so that all Cy3 values from 72 - 104 hours were stan-
dardized against the same pool of Cy5 labelled RNA
from the 24 hr timepoint. This experiment layout has
been chosen to standardise the impact of technical var-
iation on different time points. The chosen reference
point is the same for all microarrays and placed far
ahead of the starting point for the time series to allow
sufficient numbers of genes differentially expressed in
comparison to the Cy5 control at any point of the time
series. Thus estimates of RNA quantities for each
of the 21,494 Ae. aegypti gene features was estima-
ted from 2-4 technical replicates and two biological
replicates.
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Analysis of periodicity
We composed 48 h gene expression profiles out of a ser-
ies of observation covering continuous 32 h period with
2 independent replicates for each time point sampled
every 4 h. The technical replicates were processed as
separate entities, rather than averaged. The two biological
replicates we considered as two independent timelines.
The first six time points of each were concatenated to
construct a continuous 48 hour time line used in analysis
of periodicity. This experimental design reconstructing
two consecutive periods from two simultaneously pro-
cessed independent timelines has been approbated in
previous studies [36]. The reconstructed time series starts
with the first time point at 9 am. The experiment design
with numbers of replicates and time of sample collection
is given in Supplemental Table 1 (see Additional File 1).
Expression profiles were smoothed using a 3" degree
polynomial procedure and median-subtracted using the
seven-point Savitzky-Golay algorithm [52]. To take advan-
tage of all points in the time series a single-pass smoothing
was applied in a circular manner, with the last points con-
tributing to smoothing of the starting points. The same
smoothing and median subtraction procedure was applied
to all data sets. The results of application of periodicity
tests to individual gene expression profiles are given in
Supplemental Table 2 (see inside Additional File 1).

Spectral Analysis

For purposes of spectral analysis, consider a series of
microarray expression values for gene x with N samples
of the form:

Y = xo, %1, %2, ..XN—1

This series can be converted from time-domain, where
each variable represents a measurement in time to a fre-
quency domain using a Discrete Fourier Transform
(DFT) algorithm. Frequency domain representation of
the series of experiments is also known as a periodo-
gram, which can be denoted by I(o):

N—1 2

Z xte(fiwt)

t=0

;o€ [0,m]

I(a))=11]

If a time series has a significant sinusoidal component
with frequency o € [0, 7], then the periodogram exhibits
a peak at that frequency with a high probability. Conver-
sely, if the time series is a purely random process (a.k.a
“white noise”), then the plot of the periodogram against
the Fourier frequencies approaches a straight line [53].

Fisher's g-test
The significance of the observed periodicity can be esti-
mated by Fisher’s g-statistic, as recently recommended
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[54]. Fisher derived an exact test of the maximum
periodogram coordinate by introducing the g-statistic:

_ maxl ()
W @)

where I(wy) is a k-th peak of the periodogram. Large
values of g indicate a non-random periodicity. We cal-
culate the p-value of the test under the null hypothesis
with the exact distribution of g using the following
formula:

where n = [N/2] and p is the largest integer less than 1/x.

1 "

P(g>x)=) [(—1)% (n"_ ) (1- px)"_1:|,

p=1

This algorithm closely follows the guidelines recom-
mended for analysis of periodicities in time-series
microarray data [54] except that we applied C++ code
(written by and available from AP) instead of R scripts.
Fisher’s g-test has low power on short time series under
50 samples [55]. Attaining such series using contempor-
ary technology would be prohibitively expensive. How-
ever, the problem can be mitigated by application of the
g-test in a phase continuum setting (see below).

Autocorrelation

For a given a discrete time series Y = xg, X1, X9, ...Xnr1
the autocorrelation is simply the correlation of the
expression profile against itself with a frame shift of k
data points (where 0 < k < N-1, often referred as the
lag). For the time shift f, defined as f=i + kif i + kK <N
and f= i + k - N otherwise:

N-1

N-1 =2
0 (x;i — X)

For each time series we calculated the maximum posi-
tive R(f) among all possible phase shifts fand use tabulated
0.05 significance cut off values for correlation coefficient.
Time series that shows significant autocorrelation R(f)
with the lag f corresponding to one day (6 time points x
4 hours) are considered circadially expressed.

Pt-test

Consider a time series Y = xg, X1, X9, ...xx-1 in which
technical variation approaches or even exceeds the
amplitude of periodic expression. In a very short time
series stochastic noise often obscures periodicity. How-
ever, the periodic change of the base expression level
can still be identified in spite of the high noise level. If
the periodogram of the original time series /Y(®) con-
tains a significant peak corresponding to a particular
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frequency (e.g. circadian) this peak results from observa-
tion in the Y. A random permutation would preserve
the same noise level, but not the periodicity. Let YR be
a random permutation of Y with a corresponding peri-
odogram is IR(w). After applying the DFT, a periodo-
gram IR(w) would represent only the peaks occurring by
chance. However it would miss the true periodic fre-
quencies unless permutations happen to preserve the
period. This could occur if, for example the rank of
each point x in a permutated series YR is Xy + np
where # is a natural number and p is a period corre-
sponding to a significant peak in /Y(w). To avoid ran-
dom re-institution of periodicity a C++ program was
written to generate YR by multiple shuffling of randomly
selected time points x,, < x,,, where |n - m| = p. For
each shuffle the program swaps time points from a dif-
ferent phase. Comparing permutations with deliberately
wiped out periodicity to the original time series, we esti-
mated whether the original order of observations mini-
mized the overall noise. For each gene expression
profile we generated two series of min (n/,100) random
permutations. Each permutated series YR was trans-
formed to the frequency domain and a single peak of
the periodogram IR(w) was stored. The p-value for the
null-hypothesis of random nature of a particular peak of
periodogram can be estimated by comparing the stored
IR(w) values to the observed I(w):

_ Nir@)z1v()
min (n, 100)

High p-values that exceeded the threshold, for exam-
ple 0.05, indicate that at least 5 out of 100 random per-
mutations of the time series produced a periodogram
with the same or a higher peak, corresponding to a
given periodicity. Low p-values indicate a significant dif-
ference between periodogram IR(w) preserving circadian
periodicity and randomly permutated periodogram IY{w)
with the same level of technical variation. This differ-
ence leads to rejection of the null-hypothesis of purely
random nature of variation in the original time series Y.

Phase continuum

We start with phase classification, assigning each gene a
phase based on maximal correlation to an ideal cosine
curve. This method is superior to assigning a phase by
position of peaks only because it takes into account more
data. Each profile is subjected to z-score transformation
equalizing the variation between time points. Autocorrela-
tion with circadian lag (R,.) was calculated for each profile
and all profiles were sorted first by phase then by descend-
ing order of R.. Concatenating all profiles of the same
phase with an equalized range of variation (amplitude) we
generate a continuous stream C,;, of measurements
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containing a clear signal on one end and stochastic noise
on the other. This continuum was treated with a low-pass
frequency filter and polynomial smoothing [52]. As dis-
cussed in the original publication of the method, some
digital filters can artificially modulate the expression pro-
file [40]. For this reason we have limited the choice of fil-
ters to a few least likely to propagate the oscillation along
the phase continuum. We analyzed each phase fraction
separately to detect the point at which circadian signal
deteriorates beyond a p = 0.05 cutoff. A window W mov-
ing along the stream is tested for periodicity using one of
the previously described tests. Once the point at which I,
does not differ significantly from a random periodogram
I,,,, we counted all original gene expression profiles that
had circadian signal above the established cutoff [40].
Here we applied the frame length 5 (testing 5 genes or 60
timepoints at a time, the recommended minimal length
for g-test power) for Fisher’s g-test and frame length 3 for
Permutation and Autocorrelation tests.

False Discovery Rate analysis

This methodology is often applied to reduce the number
of false-positive results. It is based in the assumption of
independent or mildly dependent [56] hypothesis test-
ing. However, in the case of testing timeline expression
profiles for periodicity, independence cannot be
assumed. First, the pattern of circadian oscillation is
obvious in the great majority of expression profiles (see
Figure 1, for example). Second, an analysis of correla-
tions with phase shift (also used to identify phase
groups) confirms high correlation of nearly all profiles
to common cosine curves. Third, living cells are known
to have more than one oscillator, but these oscillators
are normally synchronized to the rhythm of the circa-
dian molecular clock, active in peripheral tissues. When
testing individual expression profiles for periodicity we
are looking for manifestation of the same factor, hence
not an independent hypothesis. For these reasons FDR
correction was not applied to reduce the number of
detected oscillating genes. In earlier publications explor-
ing this methodology independent validation of expres-
sion profiles confirmed oscillation pattern for multiple
genes that did not pass the periodicity test, with or
without FDR adjustment [36].

Biological Pathway analysis

Functional annotation of A. aegypti transcripts targeted by
microarray followed the annotation of nearest orthology in
the D. melanogaster genome. Information on gene interac-
tion and charts for biological pathways specific to A.
aegypti has been extracted from the Kyoto Encyclopedia of
Genes and Genomes (KEGG). Correspondence between
KEGG genes and A. aegypti probe sequences has been ver-
ified by the rapid BLAT [57] search.
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Real Time PCR analysis

Microarray results were tested for selected genes using
real time PCR amplification of 2 ul of cDNA, and 10
pum of each primer with SYBR green detection in a Bio-
Rad iCYCLER using the IQ SYBR Green Supermix (Bio-
Rad, Hercules, CA 94547). The cycling conditions were
Step 1: 50.0°C for 2 min Step 2: 95.0°C for 10 min; Step
3: 95.0°C for 10 seconds Step 4: 60.0°C for 20 seconds,
Step 5: 72.0°C for 10 seconds. Repeat steps 3-5, 40
times. This was followed by a melting curve analysis
with 55 points collected between 68.0°C and 95.0°C.

Heatmap visualization

A heatmap was constructed to represent gene expression
profiles in 72 hour-104 old female mosquito heads
wherein all twelve timepoints are represented as columns
along the abscissa. Each line on the ordinate corresponds
to the M-values for a particular gene feature and appear
as shades of red to black to green. Bright red indicates
large positive M-values (M,4 > M, where t = 1,2,....,,12),
while black values indicate M4 = M, and bright green
indicates large negative M-values (M4 < My).

Each column is further vertically subdivided into four
“same-phase” groups. Each gene feature was assigned to a
group that contained gene features with the same-phase as
explained above. Within each group, gene expression pro-
files were sorted and stacked on top of each other so that
most clearly oscillating (i.e. highest signal to noise ratio)
profiles are on top and the least periodic profiles are at the
bottom of each group. All expression profiles were tested
for periodicity by autocorrelation test and sorted in order
of decreasing correlation between an early time and a sec-
ond time 24 hours later. Additional explanation of the
algorithm for generating gene expression heatmap is given
in Supplemental Figure 1 (see inside Additional File 1).

Additional material

Additional file 1: Supplementary Information. This is a zip archive file
that contains Supplemental Table 1 (MS Excel file), Supplemental Table 2 (MS
Excel file) and Supplemental Figure 1 (Adobe PDF file). Supplemental Table 1
reports the experiment design for sample collection with date, time, pooling
and replication information. Supplemental Table 2 reports the results of
straight application of periodicity tests to reconstructed 48 h expression
profiles (see Methods). Supplemental Figure 1 illustrates the process of
generation of circadian expression heat map (presented in Figure 1).
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