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Abstract

disease.

Background: High density linkage maps are essential for comparative analysis of synteny, fine mapping of
quantitative trait loci (QTL), searching for candidate genes and facilitating genome sequence assembly. However, in
most foodfish species, marker density is still low. We previously reported a first generation linkage map with 240
DNA markers and its application to preliminarily map QTL for growth traits in Asian seabass (Lates calcarifer). Here,
we report a high-resolution linkage map with 790 microsatellites and SNPs, comparative analysis of synteny, fine-
mapping of QTL and the identification of potential candidate genes for growth traits.

Results: A second generation linkage map of Asian seabass was developed with 790 microsatellite and SNP
markers. The map spanned a genetic length of 2411.5 cM, with an average intermarker distance of 3.4 cM or 1.1
Mb. This high density map allowed for comparison of the map with Tetraodon nigroviridis genome, which revealed
16 synteny regions between the two species. Moreover, by employing this map we refined QTL to regions of 1.4
and 0.2 cM (or 400 and 50 kb) in linkage groups 2 and 3 in a population containing 380 progeny; potential
candidate genes for growth traits in QTL regions were further identified using comparative genome analysis,
whose effects on growth traits were investigated. Interestingly, a QTL cluster at Lca371 underlying growth traits of
Asian seabass showed similarity to the cathepsin D gene of human, which is related to cancer and Alzheimer's

Conclusions: We constructed a high resolution linkage map, carried out comparative mapping, refined the
positions of QTL, identified candidate genes for growth traits and analyzed their effects on growth. Our study
developed a framework that will be indispensable for further identification of genes and analysis of molecular
variation within the refined QTL to enhance understanding of the molecular basis of growth and speed up genetic
improvement of growth performance, and it also provides critical resource for future genome sequence assembly
and comparative genomics studies on the evolution of fish genomes.

Background

Most economically important traits are quantitative in
nature and are determined by many genes and gene
complex where are described as quantitative trait loci
(QTL) [1]. Traditional methods of genetic improvement
of quantitative traits have relied mainly on phenotype
and pedigree information [1], which are easily influ-
enced by environmental factors. Genetic markers have
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made it possible to detect QTL that are significantly
associated with traits [2], and made selection more
effective. Genetic response can be improved by includ-
ing the QTL in marker-assisted selection, which is a
method of selection that makes use of phenotypic, geno-
typic and pedigree data [3].

Linkage maps are essential for mapping QTL [4]. In
the past, genotyping of many markers was expensive,
therefore, specific experimental designs were developed
to reduce the impact of having fewer markers on statis-
tical power [1]. More recently, however, high through-
put methods have been developed to genotype markers
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such as microsatellites [5] and single nucleotide poly-
morphisms (SNP) [6], which have significantly reduced
the cost. Linkage maps have been constructed for a
number of foodfish species, such as salmon [7], rainbow
trout [8,9], catfish [10], tilapia [11], grass carp [12], com-
mon carp [13], Asian seabass [14], European seabass
[15] and Japanese flounder [16], gilthead seabream
Sparus aurata [17-19] using RAPD, AFLP and microsa-
tellites. Only in a few species, linkage maps solely based
on codominant DNA markers (microsatellites and
SNPs) were constructed. Most linkage maps in food fish
species are not dense in comparison to these linkage
maps in model fish species (e.g. Zebrafish [20]), chicken
[21], live stock species (e.g. cattle [22,23], and pig [24])
and agronomic plant species (e.g. barley, soybean, grape-
vine [25-27]). QTL mapping in foodfish species is still in
its infancy [6]. Only in a few species, such as Asian sea-
bass [6], salmon [28], tilapia [29], Japanese flounder
[30], rainbow trout [31] and European seabass [32],
QTL for growth, meat quality, stress and disease resis-
tance have been mapped in large genomic regions due
to lack of a high resolution linkage map.

Linkage map with sequence-based markers is also a
platform for comparative genome studies [33-36].
Recent comparative genome analyses based on genetic
maps have already provided new insights into genome
organization, evolution, and function across different
organisms [12,33,35,37]. For example, comparison of the
Caenorhabditis briggsae genetic map and the Caenor-
habditis elegans genome reveals extensive conservation
of chromosome organization and synteny despite a very
long divergence time (80 to 110 million years), suggest-
ing that natural selection operates at the level of chro-
mosomal organization [37]. In another study, a genetic
linkage map of the blind Mexican cavefish Astyanax
mexicanus has been successfully applied to predict can-
didate quantitative trait genes relating to rib number
and eye size by anchoring cavefish QTLs to the zebra-
fish genome [36]. BLAST searches of sequences of
mapped markers of grass carp against the whole genome
sequence of zebrafish revealed substantial macrosynteny
relationship and extensive colinearity of markers
between grass carp and zebrafish [12]. Identification of
conserved synteny blocks across fish genomes would
help to unravel ancestral genome architecture of fish
and transfer genome information from model fish spe-
cies to non-model foodfish species.

Asian seabass, Lates calcarifer, also called Barramundi,
is one of the important foodfish species. This species
has been cultured for more than 20 years in brackish-
water ponds and in recent years in floating cages. The
global annual production of Asian seabass was currently
400,000 metric tons according to FAO statistics [38]. In
the past few years, we started a breeding program for
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Asian seabass [39] and developed a number of genomic
tools such as microsatellites [40-42], SNPs in genes [43],
microRNA [44], a linkage map with 240 microsatellites
[14], BAC and ¢DNA libraries [43,45,46] and a BAC-
based physical map [44] to facilitate the selective breed-
ing program. The linkage map has been used to map
QTL for growth traits, and significant QTL for growth
traits were mapped on linkage groups 2 and 3 [39,47].
However, due to the lack of markers in the QTL
regions, it is impossible to map the QTL in smaller
chromosomal regions. For fine mapping QTL, compara-
tive analysis of synteny and searching for candidate
genes in QTL region, a high-density linkage map is
essential.

In this report we present a second generation linkage
map of Asian seabass. The current updated version of
the Asian seabass consensus linkage map is a consider-
able improvement compared with the previous version
[14]. This linkage map allowed for carrying out com-
parative mapping of synteny between Asian seabass and
Tetraodon nigroviridis, and enabled fine mapping of
QTL for growth traits. In addition, we identified poten-
tial candidate genes in QTL for growth traits, and
defined the phenotypic consequences of alternative can-
didate gene alleles.

Results

Identification and genotyping of DNA markers

A total of 4300 clones collected from libraries enriched
for CA-, GA-, CAA- GACA- and GATA-microsatellites
were sequenced in both directions. Two thousand and
eight hundred clones contained microsatellites, yielding
1520 unique sequences. Among the 1520 sequences,
1280 had enough flanking regions for primer design.
The first set of 920 primer pairs was used to amplify
three parents from two reference families [14] for link-
age mapping. Six hundreds and sixty primers were
selected to genotype the two reference families including
96 individuals (3 parents and 93 offspring) due to the
fact that these primers could amplify easily scorable
PCR products. Among the 660 microsatellite markers,
280 were tetranucleotide microsatellites, which could be
more easily scored than the di-nucleotide microsatellites
(see Additional file 1). Ten SNPs in nine genes were
genotyped by direct sequencing each individual in the
two reference families.

Linkage mapping

Of 851 informative markers including 240 markers
mapped in the first generation linkage map [14], 822
markers were assigned to linkage groups by two-point
linkage analysis with LOD scores >3.0 using CRIMAP
(Green et al. 1990). From this, a total of 790 (97%) mar-
kers were mapped by multipoint linkage analysis.
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Among these markers, 53 initiated with LcaB were
microsatellites isolated from BAC clones, 53 LcaE from
ESTs and 10 SNPs from genes (Additional file 1).
Details about primer sequences, GenBank accession
number, annealing temperature for PCR, PCR product
size, and locations of the 790 markers are summarized
in Additional file 1.

In most regions, the order of the markers on the new
map was consistent with the previous map [14],
although some regions were rearranged through incor-
porating the new markers and correcting old marker
data. The current sex-averaged map spanned 2411.5 cM
of the Asian seabass genome (Figure 1, 2, 3,4, 5, 6, 7, 8,
9, 10, 11, 12). In the map, the intermarker distance was
3.0 cM. These 790 markers were located in 501 unique
locations on the linkage map of the Asian seabass, with
an average inter-location space of 4.8 cM (Table 1).

Sex-specific maps were also constructed. The length of
the male map was 2674.6 cM, with an average intermar-
ker distance of 3.4 ¢cM whereas the female map was
2294.8 ¢cM long, with an average intermarker spacing of
2.9 cM. The male map comprised linkage groups ran-
ging in length from 6.4 to 244.4 cM while the female
map contained linkage groups with a length ranging
from 22.3 to 225.6 cM.

The distances between LcaB201 and LcaTe0215 at the
end region of LG1, are 0 and 47.6 cM on female and
male map respectively, while the distances between
Lca270 and LcaTe0382 in the near middle region of
LG1, possible proximal to centromere region, are 39.2
and 0 cM on female and male map respectively.
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Similarly, in the end regions between LcaE142 and
LcaB128 on LG2, Lcal508 and LcaTe0045 on LG3,
LcaTe0194 and LcaEI169 on LG5 and Lcall4 and
Lca454 on LG9, females had much lower recombination
rates in telomeric regions than males. While in the near
middle regions, possibly within regions proximal to the
centromere between Lca359 and Lcal37 on LG3,
LcaB045 and Lca996 on LG9, Lca365 and LcaTe0191
on LG10, Lcal012 and Lca565 on LG17, Lca512 and
Lca564 on LG23, LcaTe0485 and LcaTe0214 on LG24,
recombination rates were much higher in females. It
showed that females have much lower recombination
rates in telomeric regions than males, while recombina-
tion rates were much higher in females within regions
proximal to the centromere.

Comparative genome analysis

We used BLAT to identify homologs of the sequence-
based markers of Lates calcarifer on the map. Sixty
seven markers had a homolog and could be assigned to
the chromosomes of Tetraodon nigroviridis. We com-
pared the Lates calcarifer genetic map with assembled
genome sequences of Tetraodon nigroviridis, identifying
conserved synteny blocks in 16 of the 24 Lates calcarifer
linkage groups, each of which contained 3 to 8 markers.
The largest synteny block conserved between Lates cal-
carifer and Tetraodon nigroviridis was found in LG5
with 8 markers spanning 48 cM in the Lates calcarifer
linkage group and their best matches spanning 4 Mb in
chromosome 18 of the Tetraodon nigroviridis genome
(Figure 13, 14, Additional file 2). Blasting sequences of
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Figure 1 The second generation linkage map of Asian seabass (LGs

respectively, and the consensus map is shown in the center. The same loci are connected with solid lines.
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Figure 2 The second generation linkage map of Asian seabass (LGs 3-4).
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DNA markers of Asian seabass against whole genome
sequences of zebrafish and medaka detected only very
few conserved synteny (data not shown).

Fine mapping QTL

Additional 33 novel microsatellites located near QTL

further QTL mapping as compared to the previous
map by enhancing the density of markers for refine-
ment of QTL positions (Figure 15). QTL analysis was
carried out with genotype data of the markers and
phenotypic data of all the progeny in the QTL map-

ping panel.

for growth traits on LGs 2 and 3 were selected and
mapped with QTL panel containing 380 offspring.
The linkage map was significantly improved for

QTL affecting body weight, total length and standard
length were identified on an experiment-wise scale. The
experiment-wise LOD significance thresholds were 3.6,
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Figure 3 The second generation linkage map of Asian seabass (LGs 5-6).
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Figure 4 The second generation linkage map of Asian seabass (LGs 7-8).

5.5 and 5.4 for body weight, total length and standard
length, respectively, while the linkage-group-wise LOD
significance thresholds varied from 2.3 to 5.5 (Table 2).
Eleven QTL controlling body weight, total length and
standard length were detected on LGs 2 and 3. Multiple
QTL Model (MQM) mapping with initial QTL did not
change the results.

The three QTL qBW2-a, qTL2-a and qSL2-a near the
marker Lca287 showed high percentage of phenotypic
variance explained (PVE) of 30.2, 53.1 and 53.8%,
respectively (Table 2). These QTL together with qBW2-
b are consistent to the previous QTL mapping results
and their positions were finely refined as discussed later
on.

Due to the more markers integrated in the QTL
region, five QTL, i.e. gBW2-c, qgBW2-d, qBW2-¢, qTL2-

c and qTL2-d, were newly detected. Although LOD
values of qSL2-a and qSL2-c were not higher than the
significant threshold, we still listed qSL2-a and qSL2-c
to Table 2 as they showed obvious peaks and the LOD
scores were very close to the threshold.

On LG2, the peaks of qBW2-a and qBW2-b were
flanked by Lcal82 and Lca287 with distance 6.0 cM,
and closely linked to Lca287 with a distance of 2 cM.
Similarly, the peaks of the other QTL (qBW2-b, ¢, d
and e) were located in a small region between flanking
markers, with intervals of 6.1, 1.4, 0.6, 0.2 and 0.1 cM
respectively. On LG3, ¢BW3 was located in an interval
of 0.1 ¢cM between Lcal37 and Lcal59. The LOD peaks
were detected near the positions of markers Lca562,
Lca371, LcaTe0359, Lca250 and Lcal37 respectively
(Table 2, Figure 15).
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Figure 5 The second generation linkage map of Asian seabass (LGs 9-10).
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Figure 6 The second generation linkage map of Asian seabass (LGs 11-12).
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Potential candidate genes in refined QTL

As positions of some microsatellites collocating with
QTL peaks, sequences of these DNA markers were
blasted against the whole genome sequences of zebrafish
and medaka. We detected some potential candidate
genes for growth. Among these markers, a QTL cluster
including qBW2-c, qTL2-c and qSL2-c were located in
between markers Lca371 and Lca480 with distance of
1.4 cM, and QTL peaks collocated with the position of
Lca371, whose sequence hit to genome sequences at
16.325 Mb on the chromosome 18 (Dr-18) in zebrafish,
and at 2.311 Mb chromosome 3 (OI-3) in medaka

(Figure 16). When looking closely, we found that the
sequence of the marker Lca371 showed very high simi-
larity of the cathepsin D gene of medaka and zebrafish.
We also found that the Lca371 showed similarity to the
cathepsin D gene (Genbank accession nos: TC168775
and TC156330) of rainbow trout. Comparing the
sequences of Lca371 to all 24,000 EST sequences gener-
ated by our group (unpublished data); we found that
Lca371 was located in the cathepsin D gene of Asian
seabass.

The peak of gBW2-e was located between the markers
Lca568/LcaTe0265 and Lca250 with distance of 0.2 cM
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Figure 7 The second generation linkage map of Asian seabass (LGs 13-14).
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Figure 8 The second generation linkage map of Asian seabass (LGs 15-16).
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(Figure 16). The sequence of the marker Lca568 hit to
genome sequences at 29.898 Mb on the chromosome 3
(Ol-3) in medaka, and some of the sequences of the
marker Lca568 showed very high similarity of the
KCTD15 gene of medaka. The sequences of LcaTe0265
hit to genome sequences at 35.626 Mb on the chromo-
some 19 (Dr-19) in zebrafish, and some of the
sequences of the marker LcaTe0265 showed very high
similarity of the csmd2 gene of zebrafish.

For Lca562, LcaTe0359 and Lcal37, there were no
hits to genes in medaka and zebrafish genomes.

Effects of gene allele substitution

A two-way ANOVA was performed on the 380 progeny
using four allelic combinations (m1f1, m1f2, m2f1 and
m2f2) from markers in the three candidate genes of
cathepsin D, KCTD15 and csmd2 in order to investigate
associations between traits and genotypes of these
genes. The phenotype values of each allelic combination
of these three genes are listed in Table 2 and Figure 17.

Significant differences of phenotype means among dif-
ferent allelic combinations were identified, revealing the
effects of alternate gene alleles inherited from the par-
ents. Progeny with m2f2 genotype at the marker Lca371
located in cathepsin D, showed the highest phenotype
values. Similarly, progeny with m1f2 genotype at the
marker Lca568 located in KCTDI15 and LcaTe0265 in
csmd?2, showed the highest phenotype values. These
results suggested the effect of these genes on growth
related traits.

Discussion

Map density and recombination rate

The linkage map presented in this paper represents one
of the most dense linkage maps based on microsatellites
and SNPs for foodfish species. This second generation
linkage map of Asian seabass contained 3.3 times as
many sequence-based co-dominant loci as did the pre-
vious linkage map [14], and more sequence-based co-
dominant markers than the linkage maps of major
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Figure 9 The second generation linkage map of Asian seabass (LGs 17-18).
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Figure 10 The second generation linkage map of Asian seabass (LGs 19-20).

foodfish species, such as salmon [7], tilapia [11], com-
mon carp [13], grass carp [12], Japanese flounder [16],
catfish [10] and European seabass [15]. However, in
comparison to the linkage maps of model fish species
(e.g. zebrafish [20]), livestock (e.g. cattle [22,23], pig
[24]), chicken [21]) and agronomical plant species (e.g.
rice, barley, soybean, grapevine, [25-27,48], the marker
density of the Asian seabass linkage map is still lower.
This is mainly because the whole genome sequence and
large number of SNPs in Asian seabass are still not
available. Fortunately, sequencing the whole genome of
Asian seabass is in agenda. The third generation of link-
age map could be based on large number of SNPs. The
current Asian seabass map spanned 2411.5 cM, and it is
estimated to span much more of the Asian seabass gen-
ome in comparison with the previous linkage groups
[14]. It had a resolution of 3.4 ¢cM, which is sufficient

for fine mapping QTL for future marker-assisted
selection.

The average recombination rate across all linkage
groups is approximately 3.4 cM/Mb in Asian seabass,
which is higher than that in zebrafish (1.35 cM/Mb)
[20], catfish (1.65 cM/Mb) [10], tilapia (1.3 cM/Mb)
[11], grass carp (1.2 cM/Mb) [12], human (1.20 cM/
Mb), mouse (0.5 cM/Mb) [49] and lower than the plant
Arabidopsis thaliana (5 cM/Mb; calculated based on
data from The Arabidopsis Information Resource web-
site). Based on the genome size of 700 Mb [14,50] we
estimated the average intermarker distance to be
approximately 0.88 Mb in the new linkage map which
consisting 790 markers. This suggests that QTL, if iden-
tified, can be narrowed down to rather small genomic
regions. The enhanced map will be invaluable not only
for QTL and gene mapping but also for comparative

LG21-F

LeaTe0545

LcaTe0050
Lca22g
LcaB116 Leal155
I Leaa2
idLca1503 Lca566
LeaTe0402

1617 LcaTe0347 LeaTel418

823 LcaBoos

843 Lca521 Lcab38
863 Lcagoz

882 LeaTe0185

902 LcaTe0244 LeaTel047 &

ca379 LeaTe0216

916 LeaTel610

S LcaB169

944 h LcaTe0199

858 Lcab3?

997 Lca269
1036 Lca260

LG21

LcaTe0545

Leca521 Lcab3s

i | caTe0244
fi LeaTe0047

Lcad02 LeaTe0195

LG21-M

LcaTe0545

LcaTe050

Lca22s

LcaB116

Lca1ss

Lca421 Lecal503

Lcadtn LeaTe0402

LcaB008

Lca521 Leab2g

Lcagd2 LecaTe0195

LcaTe0244

LcaTeD047

Lca379

A LeaTe0216
j\|LcaTe0610 LeaB169

LcaTe0199 Lcafa?

i ca269 Lca2B0

p== 1]

o~

\

LG22-F
00 LcaTe0025
144 Lca545
154 LeabT9 Leadal
165 LcaTe0609
176 Lcad90
252 Lca968

Lca%967 Lea3ds
LcaZ36 Lca026
Lcal87 LeaEOT
Lca040

384

Figure 11 The second generation linkage map of Asian seabass (LGs 21-21).
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Figure 12 The second generation linkage map of Asian seabass (LGs 23-24).

genome analysis and assembling the Asian seabass gen-
ome once the whole genome sequencing available.

Sex-specific patterns of recombination

Different recombination rates between the sexes have
been reported in mammals [8] and other fish species
[15,17,51] with female map distances usually greater
than those in male maps [8,52]. In Japanese flounder,

the recombination rate was unusually higher in males
(7.4 times) compared to females [16]. Different to the
previous map [14], the overall sizes of the male and
female maps are comparable (female: 2294.0 cM; male:
2674.6 cM). Females had much lower recombination
rates in telomeric regions than males, while recombina-
tion rates were much higher in females within regions
proximal to the centromere. Females have much lower

Table 1 Summary of the second generation linkage group of Asian seabass

LG No. of Markers Sex averaged Female Male
cM cM/marker cM cM/marker cM cM/marker

1 48 236.7 4.9 2256 47 239.8 50
2 49 975 20 91.0 1.9 99.9 20
3 31 1324 43 1028 33 2444 79
4 23 665 29 50.7 22 56.2 24
5 58 130.1 22 62.7 1.1 1823 3.1
6 40 846 2.1 60.1 1.5 104.7 26
7 27 1418 53 914 34 186.2 6.9
8 29 787 2.7 104.0 36 119 04
9 33 993 30 66.3 20 165.5 50
10 37 1163 3.1 1276 34 1238 33
M 48 1266 26 146.0 30 553 12
12 51 1338 26 1219 24 186.1 36
13 36 1298 36 105.7 29 205.1 5.7
14 30 751 25 472 1.6 108.8 36
15 30 1158 37 143.0 46 90.8 29
16 19 151 0.8 223 12 6.4 03
17 28 929 33 1286 4.6 694 2.5
18 24 768 32 84.2 35 76.5 32
19 29 765 25 67.3 2.2 63.3 20
20 20 687 34 72.8 36 69.8 35
21 31 1069 34 1617 52 1217 39
22 14 483 35 384 27 67.8 4.8
23 27 874 32 91.1 34 70.8 26
24 28 739 26 824 29 68.1 24
Total 790/501* 24115 3.0/4.8% 22948 29 2674.6 34

LG: Linkage group; *: data is shown as number of markers mapped/unique locations; **: data is shown as cM/marker and cM/unique marker location.
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recombination rates in telomeric regions than males on
LGs 1, 2, 3, 5 and 9, while recombination rates are
much higher in females within regions possibly proximal
to the centromere on LGs 1, 3, 9, 10, 17, 23 and 24.
This is similar to linkage map of rainbow trout [8].

QTL fine mapping

To improve the utility of the QTL in MAS, and to move
toward the positional cloning of candidate genes, fine
mapping of the QTL to a smaller region of the chromo-
some is necessary [53,54]. In foodfish species, although
QTL mapping has been conducted in a few species,
such rainbow trout [31,55], salmon [56], Japanese floun-
der [30] and tilapia [29], QTL were mapped in large
genomic regions, usually bigger than 10 ¢cM. In Asian
seabass, the number of available markers on our pre-
vious map [14] limited the possibility for fine mapping
QTL in Asian seabass; therefore the development of
additional markers in the QTL regions is an important
target in this study. As compared to the previous QTL
mapping results, the positions of QTL were much
refined with the markers from the enhanced map

(Figure 15). The peaks of ¢BW2-a and BW2-b were
flanked by Lcal82 and Lca287 with distance reduced
from 11.3 ¢cM on previous map to 6.0 cM, and closely
linked to Lca287 with a distance of 2.0 cM. Similarly,
the peaks of the other QTL (qBW2-b, ¢, d and e) was
refined from 8.3 ¢cM on previous map to a small region
between flanking markers, with intervals 6.1, 1.4, 0.6, 0.2
and 0.1 cM respectively. On LG3, qgBW3 was from 9.6
cM to 0.1 cM. The refined QTL supply a basis for iden-
tifying potential candidate genes located in these refined
QTL through comparative genome analysis. Fortunately,
the complete genome sequences of several mode fish
species (i.e. zebrafish, medaka, freshwater pufferfish,
fugu and stickleback) [57-60] are available, and the
sequencing of genomes of several important foodfish
species (common carp, salmon and tilapia) are in
progress.

Comparative genome analysis

Methods to map sequence based markers and to com-
pare maps with relevant model systems are crucial to
extend genomic-level analysis to non-model species
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Figure 14 Lates calcarifer (Lca) linkage map and Tetraodon nigroviridis (Tni) synteny (continued). Homologous Lca (empty) and Tni
(dashed) chromosomes are shown with lines connecting homologous markers.

[54]. According to the phylogenetic tree including over
30 fish species, constructed using 12 mitochondrial
genes in our previous study, Asian seabass is more clo-
sely related to T. migroviridis than to zebrafish and
medaka [61]. However, in our previous comparative
mapping, no synteny block could be identified between
Aisan seabass and T. nigroviridis although flanking
sequences of 55 microsatellites showed high similarity
to known genomic DNA sequences of T. nigroviridis
[14]. Herein, we developed our second generation link-
age map with high density and demonstrated that, 16
syteny blocks of Asian seabass were syntenic to the 16
counterparts of 7. nigroviridis chromosomes. The result
showed certain colinearity for the 16 syntenic chromo-
some/linkage pairs between the two foodfish species, T.
nigroviridis and Asian seabass. The conserved syntenies
identified here between the Asian seabass and T. nigro-
viridis should facilitate studies on genome evolution and
analysis of structural genome, but more importantly
should facilitate functional inference of genes in Asian
seabass. It is well known that determination of gene
functions is difficult in non-model species; functional
genome analysis will have to rely heavily on the estab-
lishment of homologies from model species. Mapping
more ESTs or gene sequences on the linkage map of
Asian seabass should enhance comparative mapping,

thereby transferring genome information from model
species to Asian seabass.

Identification of candidate genes in QTL

Maps with sequence-based markers are useful not only
for comparative genomics but also resolving mapped
genomic regions to a tractable number of candidate
genes, especially if there is synteny with related model
species. After refining the positions of QTL, the regions
of candidate genes were delimited more precisely. The
LOD peaks were detected near the positions of markers
Lca562, Lca371, LcaTe0359, Lca250 and Lcal37 respec-
tively, therefore we examined regions of the sequenced
zebrafish and medaka genome corresponding to the
QTL regions on Asian seabass, using the markers over-
lapped on QTL LOD peaks. Such an approach allows us
to prioritize our research effort on candidate genes that
are found collocating with QTL LOD peaks. Candidate
gene approaches have been successfully used for identi-
fication of QTL [62,63]. Three putative growth-related
genes, cathepsin D, KCTD15 and csmd2, were found to
be positioned directly at QTL peaks between small
region of 0.2-1.4 cM, making them the strongest candi-
date genes for growth traits. Further two-way ANOVA
revealed that allelic substitution at these two genes
showed significant effects on growth-related traits.
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Figure 15 QTL for growth traits identified on Asian seabass. See Table 2 for details about the effects of QTL. The position of the QTL is
indicated on the right of the linkage groups. The QTL bars indicate experiment-wise LOD support confidence interval in which the inner line
indicates position of maximum LOD score. The highlighted region on LGs shows QTL interval between two flanking markers. The peaks of
gBW?2-a and BW2-b were flanked by Lcal82 and Lca?87, and closely linked to Lca287 with a distance of 2 cM. The peaks of the other QTL
(qBW2-b, ¢, d, e and gBWS3) were detected near the positions of markers Lca562, Lca371, Te0359, Lca250 and Lcal37.

Certain allelic combinations showed significantly higher
values of the growth traits. The candidate genes are rare
examples of QTL fine mapping in foodfish species.
Interestingly, the QTL cluster at Lca371 underlying
growth traits of Asian seabass showed similarity to the

cathepsin D gene of human, which is related to cancer
[64] and Alzheimer’s disease [65] and has become a hot-
spot of human genetics study. The genotypes at these
genes may be useful for growth improvement through
marker-assisted selection, gene cloning and functional



Table 2 Location of QTL and magnitude of QTL effects on growth traits in Asian seabass

Trait QTL LG Position CI Flanking Interval of Nearest marker Distance to the nearest LOD LOD threshold PVE Phenotype means
(cM) (cM)  markers flanking markers and gene marker (cM) (%)
(cM)
Experiment- Linkage m1fl mi1f2 m2f1 m2f2
wise group-wise
Body gBW2- LG2 203 203- Lcal82- 6.0 Lca287 2 49% 36 35 302 268 236 395 269
weight a 223 Lca287
gBW2- LG2 264 244-  Lca562- 6.1 Lca562 0 4.0% 36 35 53 293 258 329 281
b 305  Lcab24
gBW2- LG2 325 32.5- Lca371- 14 Lca371 in 0 45 36 35 70 254 290 289 340
c 339  Lca480 cathepsin D
gBW2- LG2 352 352- LcaTe0359- 06 LcaTe0359 0 45%% 36 35 53 330 284 291 257
d 364  Lcale0138
gBW2- LG2 39.1 376- Lca250- 0.2 Lca568 in 0 40 36 35 47 286 328 259 290
e 40.1  Lca568 KCTD15;
LcaTe0265 in
csmd2
gBW3 LG3 0 0-0.1  Lcal37- 0.1 Lcal37 0 53% 36 26 63 318 251 323 280
LcaB002
Total gr2- LG2 223 203-  Lcal82- 6.0 Lca287 2 55% 55 55 531 1201 1050 1380 1305
length a 205  Lca2g7
qlt2-c LG2 325 325- Lca371- 14 Lca371 in 0 55% 55 55 86 1165 1233 1230 1310
327 Lca480 catheps D
qrL2-  LG2 352 352-  LcaTe0359- 0.6 L.caTe0359 0 55% 55 55 65 1296 1218 1232 1175
d 354  LcaTe0138
qrt3 LG3 0 0-0.1  Lcal37- 0.1 Lca137 0 57% 55 23 6.7 1272 1169 1282 1216
LcaB002
Standard  gSL2- LG2 223 203-  Lcal82- 6.0 Lca287 2 51 54 53 538 987 867 1142 1081
length a 205  Lca287
gSL2-c LG2 325 325- Lca371- 14 Lca371 in 0 50 54 53 79 966 1018 1015 1081
327 Lca480 catheps D
gSL2-  LG2 352 352-  LcaTe0359- 0.6 LcaTe0359 0 53* 54 53 6.2 1071 1006 101.8 973
d 354  LcaTe0138
gsL3  LG3 0 0-0.1  Lcal37- 0.1 Lca137 0 57% 54 25 6.7 1052 965 1060 1004
LcaB002

For each QTL detected, the confidence interval (Cl), linkage group maximum LOD score, and percentage of the phenotypic variance explained (PVE) are indicated. The experiment-wise LOD significance thresholds
are 4.5 for body weight, and 6.1 for total length and body length. Mean phenotypic values of each trait were also calculated for those progeny with the alternate alleles at the most closely linked microsatellite
markers, inherited from the male parent (m1 or m2), alleles from the female parent (f1 or f2). **: Experiment-wise significant QTL; * Linkage-group-wise significant QTL.
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analysis. In humans, KCTDI15 may be associated with
obesity [66], while csmd2 may be an oligodendroglioma
suppressor [67]. Therefore it is interesting to further
study the mechanisms underlying the associations
between polymorphisms in these two genes with growth
traits in Asian seabass.

Conclusions

We constructed a second generation genetic linkage
map and carried out comparative mapping of synteny
between Asian seabass and T. nigroviridis. Moreover, we
applied this map for refinement of QTL for growth
traits using extensive progeny testing with defined
recombination within the QTL region. We estimated
their locations within short intervals, identified potential
candidate genes, and further defined the phenotypic

consequences of alternative candidate gene alleles. This
second generation linkage map should facilitate the
advancement of genetic studies for a wide variety of
complex traits in foodfish species. In the future, more
SNP markers should be identified by using next genera-
tion sequencing [68] to enable whole genome associa-
tion studies [69] to facilitate genomic selection [70] and
to understand the genetic basis of phenotypic variation
of important traits [71,72].

Methods

Reference families for linkage mapping and QTL analysis
The reference families used for the construction of the
first generation linkage map [14] were used for the con-
struction of the second generation linkage map. Briefly,
a whole broodstock containing 94 brooders, including
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T tests at a <0.01) difference.

48 males and 46 females collected from the wild in
Southeast Asia four years ago, were genotyped with nine
polymorphic microsatellites as described previously
[14,41]. One female and two male brooders were
selected for constructing a mapping panel because of
their high allelic diversity and genetic differences. By
crossing the female and two male brooders, millions of
eggs were produced. A total of 47 and 46 full-sib pro-
geny were randomly collected from the two full-sib
families, respectively. The reference family including one
parental pair and 380 offspring used for preliminary
QTL analysis for growth traits was used in the fine
mapping of QTL for growth traits.

Fin clips of the parents were collected and kept in
absolute ethanol, whereas the whole body of each off-
spring at the age of 90 days post hatch (dph) was cut
into small pieces, soaked in absolute ethanol, and kept
in a -80° freezer. DNA was isolated and arrayed into 96-
well PCR plates as described preciously [14].

Identification and genotyping of DNA markers
Partial genomic DNA libraries enriched for CA-, GA-,
CAA-, GACA- and GATA- repeats were constructed as
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described previously [73]. Repeat-enriched DNA frag-
ments of 400-1200 bp in length were cloned into
pGEM-T vector (Promega, San Luis Obispo, CA), and
transformed into XL-10 blue supercompetent cells (Stra-
tagene, La Jolla, CA). The libraries were arrayed into 96-
well plates for bidirectional sequencing on an ABI3730x]
DNA sequencer (ABI, Foster City, CA) using the BigDye
V3.0 kit and M13 and M13 reverse primers. Redundant
and overlapping sequences were grouped using
Sequencher (Gene Codes, Ann Arbor, MI). Unique
sequences were compared to known microsatellite
sequences of Asian seabass prior to primer design to
remove redundancy. Microsatellites in ESTs were iso-
lated using a method described previously [74].
Sequences containing CA>7, GA>7, CAA>6, GACA>5
and GATA>5 were subjected to primer design using Pri-
merSelect (DNASTAR, Brighton, MA), targeting a pro-
duct size between 100 and 400 bp. Primers were
designed for each unique sequence using PrimerSelect
(DNASTAR, Madison, WI). One primer of each pair
was labeled with FAM or HEX fluorescent dyes at the
5’-end. PCR for genotyping was carried out as described
previously [14]. Products were analyzed using the DNA
sequencer ABI3730x], and genotyping was carried out to
determine fragment size against the size standard GS-
ROX-500 (Applied Biosystems, Foster City, CA) with
software GeneMapper V3.5 (Applied Biosystems).

SNPs in genes were detected by PCR amplification of
DNA of three parents and sequencing of PCR products.
Briefly, genes of Asian seabass were aligned with geno-
mic sequence data from zebrafish on GenBank. Primer
sites in conserved exon regions were identified and pri-
mer pairs allowing PCR amplification of an intron-span-
ning fragment were developed. Amplified intron-
spanning fragments which were sequenced as described
above to detect SNP in the three parents from the refer-
ence families for linkage mapping. Ten SNPs were
detected in 9 genes (Additional file 1). The genotyping
for the 10 polymorphic SNP markers were performed by
direct sequencing PCR products using ABI 3730xl
Genetic Analyzer (Applied Biosystems). SNP genotypes
were scored using Sequencher 4.9 (Genecodes).

Linkage Analysis

CRIMAP 2.4 software [75] was used for linkage analysis.
Markers were placed into linkage groups based on two-
point LOD scores (>3.0) with markers from the previous
map. Ordering the markers within a linkage group
began with the previous map. A new marker was
inserted into the map by evaluating the LOD at every
possible location. The marker was then inserted at the
location with the best LOD, and the change in length of
the linkage group was evaluated. If a switched pair
improved the LOD, the pair was switched and the
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process repeated until no better LOD could be found.
The process of switching the order of marker pairs was
repeated to finalize marker order. The final maps repre-
sent the most likely marker order identified with the
complete data set. Once the most likely order had been
derived, sex-average and sex-specific linkage distances
were estimated for each using the Kosambi function.
MapChart 2.2 software was used for graphical visualiza-
tion of the linkage groups [76]. The total length of the
linkage map was calculated by summing up the length
of all 24 linkage groups.

Comparative genome analysis

As our previous study showed that Asian seabass is more
closely related to T. migroviridis than to zebrafish and
medaka [61], comparison of flanking sequences of each
Asian seabass marker on the map with the assembled
genomic DNA sequences of the T. nigroviridis was con-
ducted using BLAT http://www.genoscope.cns.fr/blat-
server/cgi-bin/tetraodon/webBlat. BLAT searching was
performed with a score above 80 and an alignment length
of more than 50 bp as recommended [77].

QTL fine mapping

In our previous studies [39,47], we identified significant
QTL for growth traits on LGs (linkage groups) 2 and 3.
To map the QTL on LGs 2 and 3 with more precision,
33 additional microsatellites located near the QTL on
these two linkage groups were genotyped. With genotype
data of the markers on the QTL regions and phenotypic
data of the 380 progeny, QTL analysis was carried out
using the program MapQTL 5.0 [78]. Interval mapping
and multiple QTL model (MQM) mapping were utilized
to detect any significant association between growth-
related traits and marker loci in the data sets. Cofactors
for MQM analyses were automatically selected with a p-
value of 0.02. The LOD score significance thresholds
were calculated by permutation tests in MapQTL 5.0,
with a experiment-wise significance level of a < 0.05, n =
1000 for significant linkages. Calculation of the percen-
tage of phenotypic variance explained (PVE) by a QTL
was performed in MapQTL 5 on the basis of the popula-
tion variance found within the progeny of the cross.

Potential candidate genes and their effects on growth
traits

For those microsatellites, positions of which were
detected well-overlapping with QTL peaks, we did a
blast search of the sequences of microsatellites to iden-
tify potential candidate genes in these loci. Blast
searches were done against the whole genome sequences
of zebrafish and medaka in the current ENSEMBL
release version http://www.ensembl.org and against all
known sequences in GenBank.
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A two-way ANOVA was performed on the 380 pro-
geny using four allelic combinations (m1f1, m1f2, m2f1
and m2f2) from markers in the three candidate genes in
order to investigate associations between phenotypic
traits and genotypes of these genes. Mean phenotypic
values of each trait were calculated for those progeny
with the alternate alleles of the microsatellite markers,
inherited from the male parent (m1 or m2), alleles
inherited from the female parent (f1 or f2). This was
conducted by using the general linear model (GLM)
procedure of SAS (SAS Institute) and the Bonferroni
method of multiple comparisons with o < 0.01.

Additional material

Additional file 1: 790 DNA markers mapped to the second
generation linkage map of Asian seabass.

Additional file 2: Comparative mapping of markers of Lates
calcarifer through BLAT search against Tetraodon nigroviridis
genome.
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