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Abstract

Background: Vibrio parahaemolyticus is a common cause of foodborne disease. Beginning in 1996, a more virulent
strain having serotype O3:K6 caused major outbreaks in India and other parts of the world, resulting in the
emergence of a pandemic. Other serovariants of this strain emerged during its dissemination and together with
the original O3:K6 were termed strains of the pandemic clone. Two genomes, one of this virulent strain and one
pre-pandemic strain have been sequenced. We sequenced four additional genomes of V. parahaemolyticus in this
study that were isolated from different geographical regions and time points. Comparative genomic analyses of six
strains of V. parahaemolyticus isolated from Asia and Peru were performed in order to advance knowledge
concerning the evolution of V. parahaemolyticus; specifically, the genetic changes contributing to serotype
conversion and virulence. Two pre-pandemic strains and three pandemic strains, isolated from different
geographical regions, were serotype O3:K6 and either toxin profiles (tdh+, trh-) or (tdh-, trh+). The sixth pandemic
strain sequenced in this study was serotype O4:K68.

Results: Genomic analyses revealed that the trh+ and tdh+ strains had different types of pathogenicity islands and
mobile elements as well as major structural differences between the tdh pathogenicity islands of the pre-pandemic
and pandemic strains. In addition, the results of single nucleotide polymorphism (SNP) analysis showed that 94% of
the SNPs between O3:K6 and O4:K68 pandemic isolates were within a 141 kb region surrounding the O- and K-
antigen-encoding gene clusters. The “core” genes of V. parahaemolyticus were also compared to those of V.
cholerae and V. vulnificus, in order to delineate differences between these three pathogenic species. Approximately
one-half (49-59%) of each species’ core genes were conserved in all three species, and 14-24% of the core genes
were species-specific and in different functional categories.

Conclusions: Our data support the idea that the pandemic strains are closely related and that recent South
American outbreaks of foodborne disease caused by V. parahaemolyticus are closely linked to outbreaks in India.
Serotype conversion from O3:K6 to O4:K68 was likely due to a recombination event involving a region much larger
than the O-antigen- and K-antigen-encoding gene clusters. Major differences between pathogenicity islands and
mobile elements are also likely driving the evolution of V. parahaemolyticus. In addition, our analyses categorized
genes that may be useful in differentiating pathogenic Vibrios at the species level.
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Background
Vibrio parahaemolyticus is a halophilic bacterium
which has long been recognized [1] as a human patho-
gen that causes gastroenteritis and, occasionally,
wound infections and sepsis in immunocompromised
patients. It is the leading etiologic agent for bacterial
foodborne disease in Japan and other parts of Asia,
and it is the most common bacterial cause of seafood-
associated disease in the United States. Prior to 1996,
there was no specific serotype of V. parahaemolyticus
that was associated with disease outbreaks, and the
bacterium had never been reported to cause a pan-
demic. However, during that year, a major outbreak
occurred in India, > 50% of the V. parahaemolyticus
strains isolated from patients were serotype O3:K6 [2].
Also, the outbreak rapidly spread to other countries in
Asia, South America, North America, Africa and
Europe, resulting in a pandemic affecting tens of thou-
sands of people [2,3]. During its global dissemination,
> 20 serovariants (including O3:K6, O4:K68, O1:K25,
O1:KUT [untypable], and others [2,4,5] rapidly evolved
from the original pandemic O3:K6 strain. The pan-
demic O3:K6 and its serovariants are termed strains of
the pandemic clone.
A thermostable direct hemolysin (TDH) is recognized

[6] as the most important virulence factor of V. para-
haemolyticus, and a TDH-related hemolysin (TRH) is
believed to account for the virulence of strains that do
not produce TDH. Prior whole-genome sequencing [7,8]
of a serotype O3:K6, pandemic isolate designated
RIMD2210633 identified two type III secretion systems
(T3SS). T3SSI is present in all V. parahaemolyticus iso-
lates examined and is required for the bacterium’s cyto-
lytic activity [8]; whereas, T3SSII is required for
enterotoxicity and is located in the tdh-containing
pathogenicity island [7,8].
Outbreaks of diarrheal disease caused by V. parahae-

molyticus may pose a significant health threat. Thus
far, the most affected country (other than India) has
been Chile, where > 10,000 cases were reported during

2005. This observation suggests that, under appropriate
conditions, V. parahaemolyticus may cause large-scale
outbreaks comparable to those elicited by V. cholerae.
At the present time, the reasons for the pandemic
strains’ rapid increase in virulence/prevalence have not
been rigorously determined. In addition, the mechan-
ism(s) for rapid serotype conversion warrant further
study. Furthermore, it is not clear whether the
virulence mechanisms of tdh+ and trh+ strains are
similar. Therefore, in order to address some of these
questions, we performed rigorous genomic analyses of
two pre-pandemic and four pandemic isolates of
V. parahaemolyticus.

Results and Discussion
Comparative genomics of V. parahaemolyticus
Prior to this study, an O3:K6 pandemic isolate (strain
RIMD2210633) was sequenced to completion [7] and an
O3:K6 non-pandemic isolate (strain AQ3810) was
sequenced to draft status [9]. In this study, we
sequenced four additional isolates of V. parahaemolyti-
cus to at least 8-fold draft coverage, for a total of six
clinical isolates; two non-pandemic and four pandemic
(Table 1). The two non-pandemic strains, AQ3810 and
AQ4037, were isolated in 1983 and 1985, respectively,
and both originated from Southeast Asia. Throughout
the remainder of this study, we will refer to these two
non-pandemic isolates as “pre-pandemic” because they
were isolated prior to the documented start of the pan-
demic. Three of the pandemic isolates were from South-
east Asia, including strain RIMD2210633 in 1996, strain
AN5034 in 1998, and strain K5030 in 2005, while the
fourth pandemic isolate (strain Peru466) was isolated
from Peru in 1996. Therefore, the isolates represented
two geographic areas where major outbreaks occurred.
In addition, they also have different serotypes and toxin
profiles. All of the pandemic strains were (tdh+ trh-)
and the pre-pandemic strains were either (tdh+ trh-) or
(tdh- trh+), thus representing two potentially different
virulence mechanisms. To improve our understanding

Table 1 Six V. parahaemolyticus strains analyzed during this study

Year Strain Source Serotype tdh trh # contigs Contig N50†§ (bp) Max. Contig Reference

1983‡ AQ3810 Singapore O3:K6 + - 1037 52609 295134 [9]

1985‡ AQ4037 Maldives O3:K6 - + 164 67710 241746 This study

1996 RIMD2210633 Thailand O3:K6 + - 2 N.A. 3288558 [7]

1996 Peru466 Peru O3:K6 + - 149 81497 273858 This study

1998 AN5034 Bangladesh O4:K68 + - 54 346246 1183081 This study

2005 K5030 India O3:K6 + - 164 62978 657114 This study
†The contig N50 is the length of the smallest contig in the set that contains the fewest (largest) contigs whose combined length represents at least 50% of the
assembly [41].
§The contig N50 was calculated from the Celera assembly, not the contigs submitted to Genbank.
‡Pre-pandemic years.

N.A. Not Applicable.
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of the pandemic clone’s evolution during their global
dissemination, the genome of a Peruvian isolate (strain
Peru466) [10] was sequenced and compared to the gen-
omes of Asian isolates collected at different time points
during the pandemic. In the later stage of the pandemic,
there were fewer cases of infection in South Asia; thus,
V. parahaemolyticus isolated during this time seems to
be less virulent (Nair, personal observation). Therefore,
an isolate (strain K5030) collected in 2005 from India
was included and considered a “less virulent” late stage
pandemic isolate in this study. Also, the genome of a
never-before-sequenced serotype O4:K68 pandemic
isolate (strain AN5034) was characterized in order to
advance our understanding of the mechanism for its
serotype conversion.
The pan genome of the six V. parahaemolyticus

strains we examined had 6,616 chromosomal coding
genes, and each individual genome (excluding plasmids)
had an average of 4,673 coding genes (Figure 1). Three
thousand twenty eight genes, ca. 71% of the coding
genes were present in all the strains (Additional file 1).
However, that number may be lower than the actual
number because the genomes, except for the genome of
RIMD2210633, were not sequenced to completion.
Therefore, some of the open-reading frames (ORFs) that
bordered contigs may have failed to meet the cut-offs
and, subsequently, were treated as not present. The four
newly sequenced genomes displayed a high degree of
synteny with RIMD2210633 (Figure 1). There was very
little rearrangement of the genome of the pre-pandemic
strain AQ4037 and essentially no rearrangement in the
pandemic strains. Because the gaps are not closed for
five of the genomes, our report of synteny represents
our best estimation.

Super integron
V. parahaemolyticus harbors a super integron (SI) on
chromosome I. The SI is about 48 kb long and con-
tains ca. 77 ORFs, which is much smaller than the SIs
in V. cholerae (120 kb) and in V. vulnificus (138 kb).
Most of the ORFs in the SI regions encode hypotheti-
cal proteins. The SI integrases were identical in the six
V. parahaemolyticus strains examined, but the cassettes
in the SI regions of the pre-pandemic strains varied
greatly from those of the pandemic strains. For example,
only 24 and 28 of the 77 ORFs in the pandemic strains’
SI regions were present in those of pre-pandemic strains
AQ3810 and AQ4037, respectively. However, the cas-
settes in the SI regions of the four pandemic strains
were nearly identical; i.e., they contained only a few
point mutations. The only exception was isolate K5030,
which had an additional six hypothetical proteins
inserted between the integrase and the rest of the cas-
settes. These observations indicate that the integrase is

active in V. parahaemolyticus and contributes to species
evolution. However, the fact that its SI region is smaller
than those of other pathogenic Vibrio species, and the
presence of highly conserved cassettes in the pandemic
strains, suggests that the genomes of V. parahaemolyti-
cus may be more stable than those of other pathogenic
Vibrios.

Pathogenicity islands, prophages, and integrated
elements
Only the pandemic strains examined in this study con-
tained the pathogenicity islands previously described [7]
for V. parahaemolyticus (Table 2). In addition, we
detected various prophages and integrated elements
using Phage_Finder [11]. Prophage f237, which has been
widely used as a genetic marker for the pandemic clone
[12], was present in chromosome I (loci VP1549-1562 in
strain RIMD2210633) of all the pandemic strains we
examined, but it was absent from the pre-pandemic
strains (Figure 2A). However, a prophage similar to f237
was present in pre-pandemic strain AQ4037, in the
same location occupied by f237 in the pandemic strains
(Figure 2A). In addition to f237, another prophage was
identified adjacent to f237 (loci VP1563-1586 in strain
RIMD2210633) in all of the pandemic strains and in
pre-pandemic strain AQ3810, but it was absent from
strain AQ4037. Also, a second copy of that prophage
was present in chromosome II of the pandemic strains
and in strain AQ3810 (Figure 2B). In addition, a proph-
age region unique to the serotype O4:K68, pandemic
strain AN5034 (AN5034_0425-0489) was identified by
Phage_Finder (Table 2 and Additional file 1).
Each of the strains we studied had one or two inte-

grated elements targeting the tmRNA gene (Table 2).
For example, Peru466, AN5034, and K5030 had two dif-
ferent, integrated elements inserted in tandem into the
3’ end of their tmRNA genes. The element closest to
the tmRNA gene contained two genes that may influ-
ence virulence: a putative cyclic diguanylate phospho-
diesterase EAL domain protein and an AraC superfamily
putative fimbrial transcriptional activator. The second
element was distinguished by the presence of a ribonu-
clease H-encoding gene. The first element was present
in strains AQ3810 and AQ4037, but not in strain
RIMD2210633. However, strains AQ3810 and AQ4037
lacked the ribonuclease H-encoding element present in
strain RIMD2210633.

Characterization of the pathogenicity islands
Pre-pandemic strain AQ4037 is tdh-, trh+ and urease-
positive, and its genome sequence revealed a pathogeni-
city island (hereafter called trhPAI) containing 81 ORFs
(Figure 3). Another pathogenicity island (hereafter
referred to as tdhPAI) was previously identified in
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Figure 1 Whole-genome comparison of six V. parahaemolyticus strains. Panel A: Colored lines denote the percent identities of protein
translations, and they are plotted according to their locations in the reference strain (RIMD2210633) and query strain’s genomes. Panel B: Venn
diagrams indicate the number of shared proteins (black) and unique proteins (red) within a particular relationship for all six V. parahaemolyticus
strains.
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Table 2 Variable regions in V. parahaemolyticus

# Region or insertion site
relative to RIMD2210633

Number
of ORFs

Function RIMD
(O3:K6
1996)

Peru466
(O3:K6
1996)

AN5034
(O4:K68
1998)

K5030
(O3:K6
2005)

AQ3810
(O3:K6
1983)

AQ4037
(O3:K6
1985)

1 Between VP0001-0002
(K5030_3039-3061)

23 DNA sulfur
modification proteins

- - - + - -

2 VP0197-0238 42 O3:K6 LPS/CPS + + - + + +

3 Replaced VP0197-0238
(AN5034_1849-1901)

53 O4:K68 LPS/CPS - - + - - -

4 Between VP0248-0249
(AN5034_1830-1837)

8 Unknown - - + - - -

5 VP0380-0403 24 Type I restriction
endonuclease in tRNA-
Met-1

+ + + + - -

6 VP0637-0643 7 Integrated element
target tmRNA

+ + + + - -

7 Between VP0643-0644
(AN5034_1437-1442)

6 Integrated element
target tmRNA

- + + + + +

8 VP1071-1076 6 Unknown, contains
phage integrase

+ + + + - -

9 VP1077-1087 11 Unknown, contains
phage integrase

+ + + + + -

10 VP1385-1421 37 Type VI secretion
system

+ + + + - +

11 VP1549-1562 14 Phage f237 + + + + - -

12 Replaced VP1549-1562
(AQ4037_2432-2444)

13 Phage similar to f237 - - - - - +

13 VP1563-1586 24 Phage alpha* + + + + + -

14 Between VP1604-1605
(AN5034_0425-0489)

65 Phage - - + - - -

15 VP1787-1865 78 Super integron + + + + v v

16 Between VP1864-1865
(K5030 1808-1814)

7 Addition to super
integron, next to
integrase

- - - + - -

17 VP1884-1891 8 Unknown + + + + - -

18 VP1969-1974 6 Fatty acid and amino
acid metabolism

+ + + + - +

19 VP2131-2144 14 Hypothetical proteins + + + + - -

20 Between VP2275-2276
(AQ4037_1749-1829)

81 trh pathogenicity island - - - - - +

21 Between VP2638-2639
(AQ4037_1361_1383)

23 Hypothetical proteins,
contains integrase

- - - - - +

22 VP2900-2910 11 Hypothetical proteins + + + + - -

23 VPA0434-0440 7 Hypothetical proteins + + + + - -

24 VPA0889-0912 24 Phage beta* + + + + + -

25 VPA1254-1270 17 Unknown + + + + - -

26 VPA1310-1398 86 tdh pathogenicity
island

+ + + + + -

27 Replaced VPA1310-1313
(AN5034_A0845-A0851)

7 Hypothetical proteins - + + + - -

28 Replaced VPA1310-1398
(AQ4037_A1228-A1253)

25 Nutrient uptake and
metabolism

- - - - + +

In the first column, if genes are absent from RIMD, the gene numbers in one of the other genomes are indicated in the parenthesis.

* These two phages are very similar.

v Variable contents in the super integron
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chromosome II of pandemic strain RIMD2210633 and
includes loci VPA1310-1398 (Figure 3). tdhPAI contains
a type III secretion system (T3SSII) and two copies of
tdh; whereas, trhPAI contains trh, an integrase, transpo-
sases, a urease gene cluster, a peptide/nickel transporta-
tion system, and a T3SS that is different from the one
in tdhPAI (Figure 3). The T3SS in AQ4037’s trhPAI is
similar to T3SSIIb in V. parahaemolyticus TH3996,

which is related to the T3SS in non-O1, non-O139
strains of V. cholerae [13]. Interestingly, trhPAI was
found in chromosome II of strain TH3996, but it was
located in chromosome I of strain AQ4037. This discre-
pancy in chromosomal location may be providing a clue
to the pathogenicity island’s mobility.
Close examination of the tdhPAI region in the six

genomes revealed major differences between the
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pre-pandemic and pandemic strains (Figure 4). The four
epidemic strains’ tdhPAIs were very similar to one
another; however, the entire pathogenicity island was
absent from the pre-pandemic, tdh- strain AQ4037.
Instead, that strain contained a pre-pandemic-specific
region of 18 ORFs important for the uptake and meta-
bolism of carbon sources and other nutrients. In addi-
tion, although pre-pandemic strain AQ3810 contained
both tdhPAI and the pre-pandemic nutrient uptake
region, it had an inverted tdhS gene (Figure 4). Thus,
the pre-pandemic and pandemic strains exhibited major
differences between the region upstream of the patho-
genicity island and in tdh’s orientation. Whether those
variations affect the expression of the pathogenicity
island’s genes, which contributes to differences between
the pre-pandemic and pandemic strains’ virulence,
remains to be determined. The pathogenicity island’s
organization suggests that an ancestral strain possessing
the O3:K6 serotype may have recruited a tdhPAI next to
VPA1309, which yielded a transient strain that

subsequently lost the pre-pandemic island and gave rise
to the pandemic strains. Another possibility is that the
tdh+, pre-pandemic strain and the pandemic strains
independently recruited the pathogenicity islands into
the same location.
The tdh and trh genes are related but vary substan-

tially [14], and many variants of tdh and two trh genes
have been described. They have been found in various
Vibrio species and their phylogenetic relationships are
not in accordance with the relationship of the host
species [14]. Although most of them are in the chromo-
somes, some of them are present in plasmids, a finding
that is consistent with their proposed mobility. Also,
the presence of trh and tdh on both chromosomes of
V. parahaemolyticus supports the idea that they may
have been acquired by lateral gene transfer and may
have integrated into the bacterium’s genome during
independent events. Also, since V. parahaemolyticus
strains that have both tdh and trh have been described
[15], it might be worthwhile to sequence those strains’
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genomes in order to understand the evolutionary history
of tdh and trh in their hosts.
TDH and TRH are the only confirmed virulence fac-

tors of V. parahaemolyticus; however, their precise roles
are not well understood. Genomic sequencing revealed
that the genes encoding those toxins are in close proxi-
mity to a T3SSII system, which suggests they may have
the same origin as that transport system. Thus, it is
tempting to speculate that TDH (and/or TRH) and
T3SSII have coordinating activities related to the viru-
lence of V. parahaemolyticus. Some translocon proteins
and effectors have been identified for T3SSII [16,17];
however, the putative relationship between TDH, TRH,
and T3SSII needs further investigation. Another T3SS
(T3SSI) identified in the V. parahaemolyticus genome
was demonstrated [8,18] to be required for cytolytic
activity. However, T3SSI was conserved in all of the
genomes we examined.

Variability within the O3:K6 genetic locus
Since 1996, serotype O3:K6 has predominated among
clinical isolates of V. parahaemolyticus, thus that sero-
type has been associated with the bacterium’s increased
virulence. However, strains of O3:K6 serotype had been
isolated more than a decade before the pandemic
initiated. It is not clear if there are variations within the
O3:K6 genetic determinants between non-pandemic and
pandemic strains, and thus causing subtle structural dif-
ference of the O and K antigens that could not be
detected by the serotyping techniques. Therefore, we
examined the O- and K-antigen-encoding gene clusters
in the pre-pandemic and pandemic O3:K6 strains for
any variations that may explain the observed increase in
virulence. The O- and K-antigen-encoding gene clusters
are juxtaposed in V. parahaemolyticus O3:K6 [19]. In
strain RIMD2210633, they are located at loci VP0190-
0238 in chromosome I (position 201,797-253,279)
[20,21]. However, that region was conserved in all O3:
K6 strains (sharing > 99.5% amino acid-encoding iden-
tity), which suggests that the serotype of V. parahaemo-
lyticus may not be directly related to the pandemic
strain’s increased virulence.

Serotype conversion from O3:K6 to O4:K68
In addition to serotype O3:K6, > 20 other serotypes of
V. parahaemolyticus were detected among pandemic
strains [2]. The mechanism for this serotype conversion
remains unknown. Since the O- and K-antigen loci are
tightly linked on the chromosome [19], a recombination
event involving this region would enable rapid conver-
sion of serotypes. Before comparing the O- and K-
antigen region between O3:K6 and O4:K68 serotypes,
we first wanted to determine the variability of this
region within the O4:K68 serotype as we did above for

the O3:K6 serotype. We compared the O- and K- region
of strain AN5034 (O4:K68), AN5034_1842-1901, to the
O- and K- region of another O4:K68 strain designated
NIID242-200 [21]. Both clusters were nearly identical (9
mismatches in a 63-kb-long region), as observed above
for the O3:K6 loci. When comparing the O- and K-anti-
gen regions between strain AN5034 (O4:K68) and strain
RIMD2210633 (O3:K6), this region varied substantially,
except for the first seven genes, suggesting recombina-
tion as a method for serotype conversion. To help iden-
tify the scope of the recombination event, we analyzed
the distribution of single-nucleotide polymorphisms
(SNPs) in the genome of strain AN5034 compared to
strain RIMD2210633. Compared to the other pandemic
isolates, strain AN5034 had 2,281 SNPs (excluding
insertions and deletions), 2,142 (94%) of which clustered
in a 141 kb region (position 199,786-341,273 in
RIMD2210633 chromosome I, and position 166,252-
324,726 in AN5034 contig ACFO01000016.1), corre-
sponding to between 2-kb upstream and 88-kb down-
stream of the O- and K-antigen-encoding gene clusters
(Additional file 2 blue highlight, Figure 5 circle 5). This
observation suggests that a recombination event invol-
ving a much larger region than the O-antigen- and
K-antigen loci occurred and gave rise to the new O4:
K68 serotype during the pandemic.

Origin of the South American outbreaks
Our results indicated that the pandemic strains are
closely related to one another. Strain RIMD2210633
differed from strain K5030 and the Peruvian strain
(Peru466) by 70 and 76 SNPs, respectively (Additional
file 2). Peru466 was isolated at approximately the same
time the first outbreak (which later evolved into a pan-
demic) was reported in India. Also, its gene content is
almost identical to that of a pandemic Asian strain
(RIMD2210633) isolated at the same time, which
supports the idea that the pandemic strain spread from
Asia to South America very soon after it emerged.
Considering the proximity, it is likely that the 2005
outbreak in Chile was caused by strains descended
from the Peruvian isolates. We speculate that the
strains from South American outbreaks are closely
related to the strains from Indian outbreaks. This
hypothesis will require genomic sequencing of addi-
tional strains from South America, specifically those
from Chile, to confirm.
Fewer cases of disease caused by V. parahaemolyticus

were reported from Asia during the later stages of the
pandemic than during its early stages (Nair, personal
observation); thus, we suspect that the strains isolated
during the later stages were not as virulent as those
obtained during its early stages. Therefore, we
sequenced and analyzed the genome of strain K5030,
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which was isolated from India almost a decade after the
pandemic started, to look for gene deletions and varia-
tions. Major gene deletions were not identified in strain
K5030; instead, several insertions were detected (Table
2). In addition to the cassettes added to the strain’s SI,
K5030 had an insertion of 23 ORFs (between VP0001
and VP0002) containing a DNA phosphorothioation
(dnd) system, which incorporates sulphur into the DNA
backbone, [22,23]. Recent evidence supports the lateral
transfer of dnd genes among bacterial genomes [24].
Besides the dnd genes, there were also two transposases
and one integrase in the insertion. However, it is not
clear whether the addition of those ORFs reduced the
strain’s virulence by altering the structure and function
of virulence factors.

Comparative genomic analyses of the three major
pathogenic Vibrio species
In order to characterize important genetic differences
between V. parahaemolyticus, V. cholerae and V.

vulnificus, we compared their core genomes. The V.
cholerae group consisted of four completely sequenced
genomes of toxigenic, serotype O1 strains: N16961,
M66-2, MJ-1236 and O395 [25-27]. The V. vulnificus
group contained two completely sequenced genomes of
strains CMCP6 and YJ016 [28,29], and the V. parahae-
molyticus group consisted of strain RIMD2210633 and
the two pre-pandemic isolates (strains AQ3810 and
AQ4037). The orthologs from each group were
extracted by comparing all members of the group, after
which the core genes from each group were compared
to each other.
Forty-nine to 59% of the core genes in each species

were common to all three species (Figure 6). However,
14-24% of the core genes in each group were only con-
served in its own group and were in different COG
(Clusters of Orthologous Genes) categories (Figure 6).
These are likely to be the genes that define the bacteria
at the species level. Furthermore, each species had speci-
fic genes and transporters required for various metabolic

Figure 5 Circular Illustration of Single Nucleotide Polymorphisms and Genome Features Relative to the Reference Strain
RIMD2210633. Chromosomes I (A) and II (B) are illustrated as a circles where each concentric circle represents genomic data and is numbered
from the outermost to the innermost circle. Circles 1 and 2 represent RIMD2210633 ORFs and are colored based on function role categories.
Circle 3 depicts the location in RIMD2210633 of various genomic features described in this study. Circles 4-8 denote the location of SNPs relative
to RIMD2210633 and genomic features for strain Peru466, AN5034, K5030, AQ4037, and AQ3810, respectively. Refer to the key for details on color
representations and circle numbers.
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pathways, which indicates that they have different
requirements for transporting various ions, nutrients,
and other metabolites across their outer membranes. In
addition, each species had unique two-component regu-
latory systems and chemotaxis genes, which indicate
that they have specific signal pathways that respond to
various environmental stimuli.
The three species also differ in their outer membrane

structure and virulence genes (e.g. they had different sets
of genes for surface polysaccharide biosynthesis).
Furthermore, V. vulnificus has a unique set of genes for
FLP pilus synthesis, and toxigenic strains of V. cholerae
have genes for toxin co-regulated pilus synthesis, a well-
studied virulence factor [27] (the ctxØ phage is not
included as containing genes specific for toxigenic V. cho-
lerae because it is not present in strain M66-2). V. para-
haemolyticus possesses genes encoding two unique
flagella, in addition to the genes required for the

biosynthesis of flagella possessed by all three species. V.
cholerae also has two different T3SS-containing islands
[7]. T3SS has been reported to be closely related to
T3SSII in V. parahaemolyticus and to be present in non-
O1, non-O139 strains of V. cholerae [30,31], but we did
not detect it in the toxigenic strains of V. cholerae. How-
ever, the possession of T3SS by V. parahaemolyticus and
non-O1, non-O139 strains of V. cholerae suggests that
this transport system is required for colonization of their
unknown environmental hosts and reservoirs.

Evolution of V. parahaemolyticus
In order to advance our understanding of the relation-
ships between the V. parahaemolyticus strains we
characterized, a set of 924 single-copy genes present in
all six strains (plus an outlier of V. vulnificus CMCP6),
taken from the analysis of three pathogenic Vibrios,
was compiled, and a nucleotide maximum-likelihood
tree was inferred for the concatenated set of 924 genes
(Additional file 3). Our expectation that a resolved
phylogeny supported by the majority of genes would
be found and interpreted as an estimate of the strains’
phylogenies was not met, a result similar to that of
Boyd et al 2008 [9] who also found that all of the pan-
demic strains were intermixed with pre-pandemic
strains, but used just three genes in their analysis.
Inspection of the aligned genomes with the SNPs
marked in each one (Figure 5) revealed that the SNPs
were often clustered, possibly indicative of recombina-
tion events. Recombination events involving multiple
SNPs would distort the branch lengths and provide a
poor estimate of the phylogeny. In retrospect, this
result might have been expected because we have
shown that recombination events can involve a large
number of variable nucleotides in numerous genes and
each one of those events will distort the distance mea-
sure used for phylogenetic trees that assume all muta-
tions are independently acquired. In the sequenced
strains, the single recombination event that converted
the serotype and replaced the neighboring 90 kb con-
tained 14 times the total number of variable nucleo-
tides observed in the rest of the genome (Additional
file 2, Figure 5 circle 5). Thus, if only one of the 110
genes from this region were included with the rest of
the genes in the genome to calculate a tree, that one
gene, on average, would contribute 11% of the total
variation. In order to calculate accurate trees, each
recombination event and independent mutation event
must be given equal weight.

Conclusion
This study helps to improve our understanding of how
V. parahaemolyticus evolved during a pandemic. The
results of our multiple genome analyses are consistent
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with the idea that pandemic strains of V. parahaemolyti-
cus evolved from pre-pandemic strains by numerous
deletions and acquisitions of genetic material. Pandemic
strains differ from pre-pandemic strains mostly in
mobile genetic elements and the structure of the patho-
genicity islands. Serotype conversion to O4:K68 was
likely due to a recombination event involving a region
much larger than the O-antigen- and K-antigen-encod-
ing gene clusters. In addition, this study revealed that
(tdh+ trh-) and (tdh- trh+) strains not only have differ-
ent toxin genes, but also differ in the structures and
locations of their pathogenicity islands.
Lateral gene transfer seems to be the major force

shaping the virulence of V. parahaemolyticus, as evi-
denced by the diversity in the locations and nucleotide
sequences of the virulence factor-encoding genes. In
addition, previous studies had shown that insertion
sequences in V. parahaemolyticus could change the gen-
ome structure and result in the loss of a major virulence
factor [32,33]. However, the pandemic strains we studied
are almost monomorphic (except for pathogenicity
islands and mobile elements) and the outbreaks in Asia
and South America are closely related. During the pan-
demic’s later development, pandemic strains with the
O3:K6 serotype (and its serovariants) were no longer
prevalent in India, where the pandemic originated (Nair,
personal observations). Instead, massive outbreaks were
reported in Chile. This observation suggests that the
virulent clone that spread to South America during the
pandemic’s early stage has persisted in that area and
continues to cause outbreaks. There was no loss of
known virulence genes in the later stage pandemic
(K5030) isolate from south Asia; therefore, its virulence
status needs further evaluation.
Genetic changes in the etiologic agent may not be the

only factor leading to V. parahaemolyticus-mediated pan-
demics (e.g. optimal environmental conditions may
enable pandemic strains to flourish in their reservoirs).
For example, an outbreak of foodborne diarrheal disease
caused by V. parahaemolyticus was reported on an Alas-
kan cruise ship during 2004, and the source of the infec-
tion was V. parahaemolyticus-contaminated oysters
harvested following warm weather in Alaska, where V.
parahaemolyticus had not been previously isolated [34].
In addition, although there are major genetic differences
between pre-pandemic and pandemic strains of V. para-
haemolyticus, and they may, to some extent, contribute
to the pandemic strains’ increased virulence, a pathogeni-
city island (which contains tdh and T3SS) is also present
in the pre-pandemic strain AQ3810. Thus, it is likely that
the recent V. parahaemolyticus-mediated pandemic
resulted from the convergence of genetic changes in the
etiologic agent and the presence of optimal conditions
for survival and growth in its natural reservoirs.

Materials and methods
Strain isolation and verification
The V. parahaemolyticus strains were isolated on
TCBS (thiosulfate, citrate, bile salts, and sucrose) agar
medium followed by their presumptive identification
with a multitest medium [35]. The strains’ identities
were confirmed by a species-specific toxR assay [29], a
commercially available V. parahaemolyticus antiserum
kit (Toshiba Kagaku Kogyo Co., Ltd., Tokyo, Japan)
was employed for serological typing, and tdh and trh
were identified by PCR [36]. Strains were cultured
overnight in Luria-Bertani broth, and DNA was
obtained by lysing the bacteria with proteinase K fol-
lowed by DNA extraction and purification with a Qia-
gen Maxi Kit (Valencia, CA).

Genome sequencing
The genomes of V. parahaemolyticus strains AN5034,
AQ4037, K5030, and Peru466 were sequenced by the
Sanger whole-genome random shotgun method [37].
Briefly, one small insert plasmid library (3-4 kb) and
one medium insert plasmid library (10-12 kb) were con-
structed by random nebulization and cloning of genomic
DNA. During the initial random-sequencing phase, 8-
fold sequence coverage was achieved with the small-
and medium-size libraries sequenced to yield 5-fold and
3-fold coverage, respectively. The sequences were
assembled using the Celera Assembler [38], and ordered
scaffolds were generated by using NUCMER [39] to
align the contigs to the genome of V. parahaemolyticus
RIMD2210633, followed by hierarchical scaffolding with
BAMBUS [40]. The contig N50 was determined as
described [41].
An initial set of open-reading frames (ORFs) was iden-

tified using GLIMMER [42], and ORFs shorter than 90
bp (and some with overlaps) were eliminated. A region
containing the likely origin of replication was identified,
and base pair 1 was designated adjacent to the dnaA
gene located in that region [43]. The ORFs were
searched against a nonredundant protein database, and
the ORF predictions and gene family identifications
were done as previously described [27]. Two sets of hid-
den Markov models (HMMs) were used to determine
ORFs membership in families and super families. These
included 721 HMMs from Pfam v22.0 and 631 HMMs
from the TIGR ortholog resource. A transmembrane
hidden Markov model (TMHMM) [44] was used to
identify membrane-spanning domains in proteins, and
putative functional role categories were assigned intern-
ally as previously described [45].
The nucleotide sequences and the corresponding

automated annotations for the genomes of
V. parahaemolyticus strains AN5034, AQ4037, K5030,
and Peru466 were submitted to NCBI, with accession
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numbers [GenBank:ACFO00000000, Genbank:
ACFN00000000, Genbank:ACKB00000000, and Gen-
bank:ACFM00000000], respectively.

Comparative genomics
The database and cut-offs mentioned above were used,
as previously described [37], to (i) produce an ortholog
match table, (ii) construct a Venn diagram, and (iii) bin
the relationships within the Venn diagram. Synteny
plots using PROMER [39] were computed as previously
described [37]. SNPs were identified by mapping chro-
mosomal contigs to the complete reference genome of
RIMD2210633 using NUCMER [39] with default setting
and displayed using the SHOW-SNPS tool with the -C
(do not report SNPs from alignments with an ambigu-
ous mapping) and -I (do not report indels) options.
SHOW-SNPS is part of the MUMMER 3 distribution
http://mummer.sourceforge.net/. DNA maximum likeli-
hood trees were created (using PAUP* 4.0b) for each of
the 924 entries in the above mentioned ortholog table
that had orthologs for V. vulnificus CMCP6 and the six
V. parahaemolyticus strains. In order to ensure proper
alignment of the coding regions, the trees were based
on DNA alignments back-aligned from the proteins’
alignments.

Additional material

Additional file 1: Vibrio parahaemolyticus Ortholog Match Table.
BLAST-based ortholog Match Table of V. parahaemolyticus strains

Additional file 2: Vibrio parahaemolyticus Single Nucleotide
Polymorphisms. Single Nucleotide Polymorphisms of V.
parahaemolyticus genomes relative to reference strain RIMD2210633

Additional file 3: Relationships of V. parahaemolyticus strains. DNA
Maximum Likelihood tree based on 924 orthologs of the six V.
parahaemolyticus strains. V. vulnificus strain CMCP6 was used as an
outlier.
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