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Gene expression profiling of rat spermatogonia
and Sertoli cells reveals signaling pathways from
stem cells to niche and testicular cancer cells to
surrounding stroma
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Abstract

Background: Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and
their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate
before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to
support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells
niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model
for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia
and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in
testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells.

Results: The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem
cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts.
A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted
proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study
with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes
shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells
with statistic significance.

Conclusions: Our data suggest that SSC and their niche specifically express complementary factors for cell
communication and that the same factors might be implicated in the communication between tumor cells and
their micro-enviroment in testicular cancer.

Background
The balance between self-renewal and differentiation of
stem cells is tightly regulated during embryonic develop-
ment of higher eukaryotes. This control is defined by
intrinsic genetic programs within the stem cells and by
extracellular cues from the surrounding cells. Stem cells
are surrounded by a specialized microenvironment
termed “niche,” which promotes self-renewal and main-
tenance of stem cells in their undifferentiated state.

Niche cells produce extracellular components surround-
ing the stem cells, as well as factors of cell-cell contact,
and signaling molecules related to stem cell support
functions [1-3]. Much of our understanding of the mole-
cular features of the stem cell niches comes from the
work on C. elegans and Drosophila. In these species,
molecular mechanisms and genes involved in maintain-
ing germline stem cells and their niche have been char-
acterized. In contrast, little is known about the less well
defined mammalian germ stem cells and the somatic
support cells that form the niche [2,4].
Spermatogenesis is a highly organized process which

consists of three distinct phases during adulthood:
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mitosis, meiosis and spermiogenesis. In rodents, meiosis
and spermiogenesis are only initiated at puberty. Mitotic
germ cells are spermatogonia (Spga) that originate from
primordial germ cells (PGCs) in the embryo. In the
adult testis, Spga are localized to the basement mem-
brane of the seminiferous tubule, and Spga differentia-
tion during meiosis are taking place along a gradient
towards the lumen of the seminiferous tubule [5-9].
Spga can be sub-divided into two morphological groups:
undifferentiated Spga (type Asingle, Apaired, and Aaligned)
and the differentiated Spga (type A1-A4, Intermediate,
and type B Spga). Type Asingle Spga are defined as sper-
matogonial stem cells (SSCs) and are localized most
proximal to the basement membrane of the seminifer-
ous tubule [5-9]. Spga Apaired and Aaligned are already
committed to differentiation, but maintain similar mor-
phological and cellular properties as Spga Asingle, and
are called undifferentiated spermatogonia [5-9]. Several
groups have shown that undifferentiated Spga of the
first wave of spermatogenesis comprise a large fraction
of cells with stem cell characteristics and self renewal
potential [10-13]. Thus, Spga in pre-pubertal testis are
highly enriched in cells with stem cell potential.
Sertoli cells are the supporting somatic cells essential

for the development of male germ cells of all stages,
including Spga. Before puberty Sertoli cells provide
niche functions for Spga, stimulating their proliferation
and self-renewal. At puberty, mature Sertoli cells acquire
new functions to support the onset of meiosis. Tight
junctions are created between the Sertoli cells to sepa-
rate the niche of mitotic Spga from the niche required
for meiotic cells, the latter niche producing hormones
and paracrine factors that drive sperm diffentiation
[14,15].
Before puberty, immature Sertoli cells provide prolif-

eration and differentiation signals for Spga. Immature
Sertoli cells proliferate in parallel to Spga until the semi-
niferous epithelium reaches its final size. At each divi-
sion of pre-pubertal Sertoli cells, the daughter cells
generate specialized micro-domains to sustain the
amplification of the mitotic Spga. Sertoli cells thus
maintain the potential of a stem cell niche for dividing
SSCs. This was demonstrated by transplantation studies,
which showed that pre-pubertal rodents support higher
levels of donor germ cell engraftment than adult animals
[16-18]. Apparently, an increased number of niche cells
in recipient pups, which had endogenous germ cells
removed or compromised by busulfan treatment, favors
the engraftment of donor stem cells in animals, [19].
Reciprocally, an increase of engraftment was observed in
recipient adult busulfan-treated mice, when transplanted
germ cells from prepubertal donors (4-5 dpp) were
compared to Spga from pubertal animals (28 dpp).
These experiments suggest that pre-pubertal testis

contain a large proportion of Spga with stem cell poten-
tial [20] and of Sertoli cells that fulfill niche functions.
Based on these observations, we reasoned that com-

paring the gene expression profiles of Spga from
pre-pubertal and pubertal animals would lead to the
identification of stemness-specific genes. Similarly, com-
paring the expression profiles of the supporting Sertoli
cells in pre-pubertal and pubertal animals should lead to
identification of niche-specific gene expression. The
transcriptomes of mitotic germ cells or Sertoli cells have
been analyzed previously in isolated preparations of
adult testis [21-27], but their comparison at different
stages of development has not been addressed.
Spga, and in particular GSC, are believed to be the origin

of the most frequent types of testicular cancers: semino-
mas and non-seminomas. Indeed, expression of embryonic
stem cell markers was found in human seminomas, non-
seminomas, and the precursor lesion of testicular germ
cell cancer [28-30]. We therefore hypothesized that the
analysis of the expression profile of SSCs and their niche
should lead to identification of factors that are also impor-
tant in signaling between testicular cancers and their
tumor micro-environment.
In this study, we compared expression profiles of Spga

with Sertoli cells purified from pre-pubertal and puber-
tal rats and established gene lists that characterized the
stem cell and niche potential of pre-pubertal Spga and
Sertoli cells, respectively. Secondly, we compared the
SSC-specific genes and Sertoli cell (niche cell)-specific
genes to genes upregulated in testicular cancers and
genes specifically expressed in tumor stroma. Functional
data mining, and quantitative PCR performed for a
selection of candidate genes, highlighted the coinciding
upregulated expression of functionally interacting pro-
ducts in Spga and Sertoli cells, suggesting that certain
cell adhesion proteins and secreted factors interacting
with their receptors were specifically involved in the
essential interaction between SSCs and their niche, the
Sertoli cells. Published gene expression profiles of testis
cancer showed a highly significant overlap with gene
sets over-expressed in pre-pubertal Spga and Sertoli
cells underlining the relevance of the SSC to niche com-
munication in the development of testis cancer.

Results
Purification of SSC-enriched Spga and Sertoli cells
The maturation of the testis during puberty involves a
concerted change in the populations of germline cells
and of their supporting Sertoli cells (Figure 1A). Imma-
ture rat Sertoli cells at 9 dpp grow rapidly and divide,
stop dividing at 15 dpp, and are mature at 22 dpp hav-
ing established the blood-testis barrier by forming tight
junctions among themselves. The germ cell population
at 9 dpp contains type A Spga, which show rapid
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proliferation and self-renewal. At 22 dpp, the germ cell
fraction that we isolated still contains Spga type A, but
also intermediary, type B, and preleptotene spermato-
cytes [31-34].
We purified Spga and Sertoli cells from testis of pre-

pubertal rats at 9 dpp and pubertal rats at 22 dpp. To
demonstrate the proliferative stages of both cell types at
9 dpp, we stained sections from rat testis at 9 dpp and
22 dpp with the mitotic marker Proliferative Cell
Nuclear Antigen (PCNA). PCNA was highly expressed
at 9 dpp; PCNA staining was decreased at 22 dpp
(Figure 1B), consistent with a lower frequency of mitosis
due to the shift of the germ cell population towards dif-
ferentiated spermatocytes and the maturation of Sertoli
cells. These concerted changes present an opportunity
to study differential gene expression of SSC and their
niche by cross-comparison of purified Spga and Sertoli
cells at two crucial stages of testis development.

Identification of differentially expressed transcripts in
Spga and Sertoli cells of pre-pubertal and pubertal rats
To identify genes that are specific for SSCs and their
niche, we compared gene expression profiles of sperma-
togonia and Sertoli cells prepared from testis of pre-
pubertal and pubertal rats at 9 and 22 dpp, respectively.
We established 4 expression profiles, namely for sper-
matogonia (G) and Sertoli (S) cells, of post-natal day 9
or 22, termed G9, S9, G22 and S22. Each profile was
based on three sets of separately purified spermatogonia
or Sertoli cells, which were used for mRNA preparation
and microarray hybridization.
Of 31099 genes on the microarray, 6908 transcripts

were expressed at a level above the threshold defining
differential expression (see Methods) and at least two
fold up-regulated over the other groups. Hierarchical
clustering of differentially expressed transcripts of the
four cell preparations showed that G9, S9, G22, and S22
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Figure 1 Proliferation and differentiation of germ cells and Sertoli cells of young rats at two different stages of development. (A)
Schematic presentation of differentiation stages of germ cells (Spermatogonia As, Apr, Aal, A1, A2, A4, and B, and Spermatocytes (Spcy)) and
Sertoli cells (blue shaded area) which surround the germ cells of pre-pubertal (9 dpp) and pubertal (22 dpp) rats. Blood-testis barrier (BTB)
formed by Seroli cells at 9 dpp is indicated. (B) Sections of seminiferous tubules were stained with hematoxylin (HE) and antibodies against
proliferating cell nuclear antigen (PCNA) to confirm proliferation of all spermatogonia at 9 dpp, but few at 22 dpp.
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formed distinct groups (Figure 2A). The clustering tree
showed that the differences in expression patterns were
less pronounced between the cell types of the same
developmental stage (between G9 and S9 or between
G22 and S22), than between different developmental
stages of one cell type (between G9 and G22, and S9
and S22). Specifically, Sertoli cells and Spga shared a
substantial set of similarly expressed transcripts at 9
dpp. Such overlapping gene expression pattern is consis-
tent with the mitotic program that is common to both
cell types.
We then performed pair-wise comparison of two-fold

enriched transcripts of the G9, G22, S9, and S22 gene
sets. As shown in Venn diagrams (Figure 2B), the cross-
section of the gene lists of the pair-wise comparison

(e.g. gene list of G9 versus G22 and versus S9) revealed
445, 314, 1101, and 708 transcripts that were selectively
enriched in G9 and S9, G22, and S22, respectively.
These four “selective” gene sets were termed G9-sel,
S9-sel, G22-sel, S22-sel. As shown in Figure 2C, hierarch-
ical re-clustering of each “selective” gene set revealed
specifically enriched (minimally 2-fold) transcripts in
each cell population and no overlap with the three other
cell populations. Thus, all four cell fractions have their
own unique, divergent gene expression profiles.

Functional data mining
To evaluate whether the differentially expressed genes
reflected specific biological functions, we assigned
them to gene ontology (GO) categories. This analysis

CBA

G9 S9 S22G22

0.987
1.312

0.855

5 4 3 2 1 0.5 0.25 0.1

G9-sel (445)

S9-sel (314) 

G22-sel (1101)

S22-sel (708)

G9 S9 S22G22

vs S9 vs G22
936 2156

G9

vs S22 vs G9
1884 2577

G22

vs S9 vs G22
1509 2333

S22

vs S22 vs G9
1267 1228

S9

Figure 2 Expression profiles of Spga and Sertoli cells from pre-pubertal and pubertal rats. (A) Triplicate profiles of the 6908 genes which
were differentially expressed in the 4 types of cells (germ cells at 9 dpp and 22 dpp {G9 and G22 respectively} and Sertoli cells at 9 dpp and
22 dpp respectively) were hierarchically clustered and are presented as a heat-map. Hierarchy and deviance are shown on top of the heat-map.
Expression level of each transcript is indicated in the color code bar, red for high and green for low expression. (B) Venn diagrams showing
genes which are at least twofold over-expressed in pair wise comparison of mean expression levels between either the same cell type (e.g. G9
vs G22) or the same developmental stage (e.g. G9 vs. S9). Overlap defines 4 “selective” gene sets: G9-sel (red); S9-sel (green); G22-sel (blue);
S22-sel (orange). Genes of these 4 sets are marked by small colored bars on the right of the heat-map in panel A. (C) Hierarchical re-clustering of
the 4 “selective” gene sets. Gene tree clustering parameters: Pearson Correlation, average linkage algorithm.
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revealed the functional networks involved in the onset
of spermatogenesis (Figure 3A). The G9 set contained
genes involved in “cell proliferation”, “progression
through cell cycle” or “cell cycle”. Transcripts of the
same GO categories were enriched in the S9 set when
compared to the S22 set. These results are consistent
with the fact that both Spga A and Sertoli cells are

proliferating in pre-pubertal rat testis [31-35]. As
expected, gene transcripts involved in “meiotic cell
cycle”, “M phase”, “DNA metabolism”, and “DNA
repair”, were enriched in the G22 sets. These gene sets
overlapped significantly with the mitotic and meiotic
germ cell gene clusters defined by Chalmel et al. [21]
(Additional file 1, Table S1).

6 / 310 / 25 / 10 / 00 / 00 / 02 / 15 / 22 / 12 / 10 / 00 / 0spermatogenesis (7283)

9 / 512 / 27 / 11 / 30 / 00 / 04 / 28 / 24 / 13 / 21 / 51 / 1reproduction (3)

36 / 1820 / 914 / 515 / 916 / 115 / 35 / 79 / 93 / 43 / 613 / 171 / 3defense response (6952)

34 / 1619 / 813 / 414 / 814 / 104 / 25 / 69 / 83 / 32 / 513 / 151 / 2immune response (6955)

37 / 1821 / 915 / 515 / 917 / 115 / 35 / 710 / 93 / 43 / 614 / 171 / 3

response to biotic stimulus (9607) 21 / 198 / 94 / 513 / 1025 / 112 / 38 / 89 / 97 / 410 / 629 / 187 / 3

5 / 51 / 20 / 02 / 314 / 31 / 10 / 01 / 30 / 04 / 213 / 53 / 1regulation of cell size (8361)

29 / 1613 / 88 / 48 / 418 / 109 / 25 / 710 / 84 / 44 / 518 / 162 / 3cell adhesion (7155)

4 / 71 / 31 / 221 / 911 / 46 / 13 / 32 / 43 / 25 / 214 / 74 / 1neurogenesis (48699)

5 / 112 / 51 / 310 / 616 / 78 / 26 / 55 / 66 / 27 / 420 / 115 / 2tissue development (9888)

2 / 31 / 10 / 02 / 23 / 20 / 08 / 16 / 23 / 10 / 01 / 30 / 0DNA repair (6281)

5 / 72 / 31 / 25 / 44 / 40 / 013 / 312 / 37 / 21 / 27 / 70 / 0DNA metabolism (6259)

1 / 24 / 10 / 01 / 13 / 11 / 07 / 17 / 16 / 13 / 10 / 00 / 0M phase (279)

0 / 04 / 10 / 00 / 00 / 00 / 05 / 05 / 14 / 03 / 00 / 00 / 0meiotic cell cycle (51321)

3 / 32 / 11 / 11 / 14 / 21 / 04 / 15 / 13 / 13 / 14 / 32 / 0mitotic cell cycle (778)

15 / 189 / 81 / 59 / 924 / 113 / 323 / 723 / 913 / 410 / 334 / 179 / 3cell cycle (general) (7049)

11 / 123 / 60 / 06 / 622 / 72 / 211 / 513 / 66 / 311 / 434 / 119 / 2progression to cell cycle (74)

11 / 94 / 41 / 26 / 517 / 51 / 12 / 42 / 41 / 217 / 622 / 87 / 1cell proliferation (8283)

vsG22vsS9SelvsG9vsS22SelvsS22vsG9SelvsS9vsG22Sel

S22S9G22G9

pValues
10-40.01 10-6 01 0.9

attenuated enriched

morphogenesis (9653)

A

0

0 .05

0 .1

0 .15

0 .2

G 9 G 22 S 9 S 22

gap43 pap3

0

0 .4

0 .8

1 .2

1 .6

G 9 G 22 S 9 S 22

plk 2
plk2/ubc pap3/ubcgap43/ubc

0

1 .0

2 .0

3 .0

4 .0

G 9 G 22 S 9 S 22

B

ra
tio

ra
tio

ra
tio

Figure 3 Gene ontology (GO) category enrichment in the differentially up-regulated gene clusters present in pre-pubertal and
pubertal germ cells and Sertoli cells. (A) Gene ontology categories for transcripts enriched or attenuated in G9 and S9 cells. Number of
transcripts associated with a specific GO category and enriched in a cluster are given within rectangles as observed and as expected values. For
each GO category, P values are shown by a gradual color code bar. Red indicates over-representation of transcripts in a GO category whereas
blue specifies under-representation. The gene sets up-regulated in one condition (as defined in Figure 2B) were analyzed here for GO
enrichment and ordered according to the peak expression found in pre-pubertal (G9) and pubertal (G22) germ cells and in Sertoli cells (S9 and
S22). Only the most enriched GO categories are displayed here for the four cell populations. (B) Validation of Spga and Sertoli cell specific gene
expression at pre-puberty by RT-PCR. Expression of Polo-like kinase 2 (plk2), growth associated protein 43 (gap43) and pancreatitis associated
protein 3 (pap3) in prepubertal (9 dpp) and pubertal (22 dpp) spermatogonia and Sertoli cells (G9, G22. S9, S22, respectively) was quantified by
real time RT-PCR. Values normalized to the housekeeping genes ubc are shown; the same pattern was observed when normalizing with the
expression of ps9, the other housekeeping gene (not shown). Shown are the mean values (± SEM) from the 3 distinct cell preparations, for
which genome-wide analysis by hybridization to a high density array is shown in Figure 2.
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Genes that were most upregulated in the S9 set com-
prised a significantly elevated number of genes of the
GO categories “cell adhesion”, “neurogenesis”, “tissue
development”, “morphogenesis”, and “regulation of cell
size” (Figure 3A). Mature Sertoli cells in the adult have
to support a larger number of germ cells than immature
Sertoli cells in pre-pubertal rats, and accompany their
differentiation [36]. Presumably, the expression of genes
associated with “morphogenesis” and “cell size” in S22
reflects commitment to maturation of Sertoli cells and
to the onset of spermiogenesis. “Tissue development”
and “neurogenesis” genes were highly expressed in S9,
but were under-expressed in S22. This suggested that
during the first wave of spermatogenesis at 22 dpp, the
Sertoli cells are fully mature. Further, we observed a sig-
nificant enrichment of the GO “immune or defense
response”, “response to biotic stimulus”, “reproduction”,
and “spermatogenesis” in S22. The up-regulated expres-
sion of genes of the immune system in S22 presumably
reflects the physiological process that leads to immuno-
tolerance in the testis [37]. Thus, the gene categories
up-regulated in the different gene sets are consistent
with the functions attributed to Spga and Sertoli cells.
In the “selective” gene sets the enrichment of these GO

categories was similar despite the smaller list of
transcripts.
To identify the most differentially expressed genes, we

sorted the “selective” gene sets by their fold change of
mean expression and classified them in 14 functional
categories. Listing only genes with a minimum 4 fold
variation of mean expression, we defined 176 genes
for G9 and 170 for S9 (Table 1). Among the “cell cycle”
genes upregulated in G9 were Gadd45gamma
(Gadd45g), Myc, and Polo-like-kinase 2 (Plk2). S9 cells
expressed significantly more inhibitors of cell cycle, such
as Cdkn2a (ARF/INK4) and Mtsg1. The most up-regu-
lated genes in the GO category “neurogenesis” were in
S9, namely Growth Associated Protein 43 (GAP43) and
Prepronociceptin (Pnoc). The most prominent gene
transcripts within the “cell adhesion, ligand, ECM” cate-
gory, differentially enriched in S9 were pap/REG3,
thrombomodulin (Thpd), and Ncam1. A complete
description of the genes listed in Table 1 is shown in
Additional file 1, Tables S2 and S3.
To confirm the specific differential expression of genes

by other means, we quantified a small set of relevant
gene transcripts by RT-PCR in total RNA extracted
from the same cell preparations by the same procedures

Table 1 The most up-regulated genes found in type A spermatogonia and Sertoli cells at 9dpp

Mitotic Spermatogonia type A at 9dpp Immature Sertoli cells at 9dpp

Cell adhesion,
ligand, ECM

(12) Alcam, Bdnf, Ctgf, Cyr61, Daf1, Hbegf, (19) Asam, Boc*, Cdh11, Cdh22, Col4a1*, Itgav*, Mdk, Pdgfc, Pvr, Tpbg, Vasn*,
Col4a2*, Cthrc1, Cxcl13, Fbn1, Gpc1, Madcam1, Ncam1, Npy, Pap, Pap3, Sfrp1,
Spp1, Thbd, Torid

Cytoskeleton (5) Actn1, Coro1a, Mig12, Nef3, Sprr1* (8) Dbn1, Mybpc3*, Nes, Pdlim2, Pdlim3, Tmod1, Trim2*, Tubb2b*

Cell cycle,
Apoptosis

(6) Gadd45a, Gadd45b*, Gadd45g*, Myc, Plk2,
Tpd52l1*,

(3) Cdkn2a, Cdkn2b, Mtsg1

Intracellular
membranes,
Trafficking

(3) Mal2, Scrn1, Snx7* (2) Ech1, Tmem98*

Metabolism (10) Akr1c18, Gls, Gpx1, Lpl, Prkaa1, Qpct*, Rfk*, Sms*,
Txnip, Ugcg

(12) Ddah2, Cbr3*, Cox6a2, Cp, Crym, Dio3, Gpx7*, Gsta2, Idh2, Mgst2*, Pygl,
SelM*

RNA Splicing,
translation

(2) Rpl13, Rpl37 (1) Hspb1

Receptors,
channels,
transporters

(11) Cd7*, Edn1, F2r, Gnai1, Lgr4, Nritp, P2ry1, Slc4a4,
Slc6a15, Slc7a3, Slc16a6

(11) Gpr83*, Kdr, Ntrk1, Scn3b, Scn4b, Slc15a2, Slc26a3, Smstr28*, Sntg2*,
Tacstd2, Trfr2*

Signal
transduction

(13) Anxa3, Arhgap18*, Arhgap21*, Dusp1, Hipk3,
Ppp1r14c, Ptpre, Rnd3, Sdpr, Sgk, Tm4sf12, Trib2*,
Trib3

(9) Arhgef4*, Cpne8, Ptpns1, Ltbp2, Rerg*, Rrad, S100a3, S100a5*, Smoc2*

Transcription,
chromatin

(11) Anp32a, Atf3, Ets1, Fosl1, Hes1, Mycn, Nap1l3,
Parp8*, Rb1, Tle4, Zfp469*

(9) Giot1, Lmcd1*, Nr4a1, Nupr1, Rgc32, Sox18*, Tead2, Znf292, Znf704*

Angiogenesis,
Immune response

(3) F3, Tmem23, Vegfc (1) Thbd

Development (7) Bmp2, Bmp4, Id2, Inha, Inhbb, Kitl, Nog (3) Bmf, Inhba, Mgp

Neurogenesis - (9) Apoe, Dscr1l1, Efna1, Gap43, Ntf5, Penk-rs, Plxnb1*, Pnoc, Rogdi*

Proteolysis,
peptidolysis

(3) Gzmc, Lcn7, Prss23 (9) Adam10, Adam33*, Htra3*, Masp1, Plau, Plat, Plxnc1*, Tessp6, Ube2c

Others (90) 37 predicted EST, 53 unknown EST (74) 33 predicted EST, 41 unknown EST

Total (176) (170)

Ryser et al. BMC Genomics 2011, 12:29
http://www.biomedcentral.com/1471-2164/12/29

Page 6 of 16



as for microarray hybridization. Figure 3B shows three
typical examples: plk2 is specifically expressed in G9
cells, and expression is nearly absent in the three other
cell preparations. The gap43 and pap3 genes are
expressed specifically in S9 cells, and expression is com-
pletely absent in the other cell types. This supports the
notion that gap43 and pap3 have stage-specific func-
tions in pre-pubertal Sertoli cells and that plk2 is rele-
vant for pre-pubertal spermatogonia.

Identification of SSC marker genes
Pre-pubertal Spga comprise all subtypes of undifferen-
tiated and differentiated type A Spga, but their respec-
tive abundances are not clear [19,38,39]. To evaluate
stem cell characteristics of pre-pubertal Spga, we first
established a list of 63 genes, composed of selected mar-
kers of embryonic stem cells, primordial germ cells
(PGCs), gonocytes, or Spga from published data
(Figure 4A). Of these 63 genes, 50 were represented on
the RAE230 2.0 gene chip used in this study. Most of
these markers were present in the G9 and G9-sel gene
sets. Not included in differentially expressed gene sets
were the PGCs markers DPPA3, Thy-1, TNAP and the
SSC marker Neurogenin 3 (Ngn3). The absence of Ngn3
is consistent with previous reports that Ngn3 is only
expressed in adult SSC [10]. The majority of previously
identified SSC genes, such as Bcl6b, Egr2, Egr3, GFRA1,
and Kit Ret, showed similar expression levels in G9 and
G22. Only 12 of the 50 genes were specifically up-regu-
lated in G9 versus G22 (Figure 4A). These included
Dnd1 [27], GPR125 [40], Nmyc [41], ItgB1 and ItgA6,
as well as Sox2, Myc, Klf4 recognized for stem cell
maintenance in ESs or PGCs[42]. Surprisingly, KitL/
SCF, coding for a protein secreted by Sertoli cells and
involved in Spga differentiation, was up-regulated in G9
as compared to G22 [43]. This result was confirmed by
immunofluorescence microscopy on Spga and Sertoli
cells isolated from pre-pubertal (9 dpp) and pubertal (22
dpp) rats (Additional file 2, Figure S1). A similar obser-
vation was made by Munsie et al. [42].
Interestingly, the transcription repressor PLZF, a marker
of SSCs, was expressed at higher level in G22 than in
G9, suggesting that PLZF expression could reduce the
proliferation rate of Spga. Indeed in hematopoietic cells,
PLZF induces the G0/G1 arrest by repressing c-myc
expression [44]. The other genes up-regulated in G22
(Sohlh1, Taf4b and Tex14) are known to be more
expressed in differentiated type A Spga than in undiffer-
entiated Spga [45,46].
To further evaluate the “stemness” of Spga in testis at

9 dpp, we compared our microarray data with a rat SSC
gene list reported by Hamra et al. [23]. In this study 255
SSC marker genes were identified based on the microar-
ray analysis of rat Spga with in vitro defined stem cell

properties. We found that genes upregulated in the G9
vs G22 or the S9 vs S22 sets were significantly enriched
in the SSC gene list of Hamra et al (Figure 4B, left);
namely 61 genes were common to the set of genes up-
regulated in G9 versus G22 and could be classified in
ten functional categories according to their GO annota-
tions (Figure 4B, right).
A large proportion of these 61 genes encode receptors,

transporters, transcription factors and elements of signal
transduction. Among the latter, five protein tyrosine
phosphatases (PTP), namely Dusp6, Ptpn14, Ptprg,
Ptprm, and Ptprd, are known to regulate adhesion, cell
growth, differentiation and cell migration. The dual spe-
cific phosphatase 6 (dusp6 or MKP-3) encodes a nega-
tive feedback regulator of ERK signaling and regulates
FGFR signaling during mouse development [47]. Ptpn14
and PTPrm are associated with adherent junctions and
dephosphorylate key signaling substrates like beta-cate-
nin [48] and cadherin adhesion molecules [49]. PTPrd
encodes the receptor tyrosine phosphatase that regulates
actin stress fibers [50]. Ptprg is transiently expressed
during ES-derived embryoid body differentiation and is
required for HSC lineage commitment [51]. In addition
to PTPs genes, we found other genes, such as the
thrombin receptor gene (F2r) or the fatty acid elongase
(Elovl6), which were previously found to be differentially
expressed in neuronal, embryonic and hematopoietic
stem cells [52]. Thus, the G9 versus G22 gene set pre-
sented here is largely similar to the previously defined
set of SSC markers. However, the SSC markers estab-
lished by Hamra et al. also overlap significantly with the
Sertoli-specific gene set at 9 dpp, defined by our more
comprehensive approach.

Pre-pubertal Spga and Sertoli cells specifically express
genes involved in the communication between stem cells
and their niche
Stem cell niche functions are inherently linked to the
communication between the niche and the stem cells.
To define stem cell niche elements, we extracted the
expression profiles of receptors, ligands, adhesion and
extracellular proteins that are specifically up-regulated
in Spga and immature Sertoli cells (Figure 5A). Some
molecules are already defined as cell surface markers of
SSCs, in particular integrin a6 and b1 and cadherin 1
(Cdh1), and have been associated with niche functions
in pre-pubertal spermatogonia [53,54]. We found integ-
rins a6 and b1 up-regulated in G9, but Cdh1 was not
(Figure 5A). The basement membrane of the seminifer-
ous tubule is composed of laminins, collagens, and
fibronectins, ECM components that interact with integ-
rins a6 and b1. The S9 gene set from immature Sertoli
cells comprised a number of genes involved in the for-
mation of the ECM of the basement membrane (Table 1
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and Figure 5A). Interestingly, the most upregulated
genes in S9 were two members of the C-type lectin
gene family, pap and pap3 (pancreatitis-associated pro-
tein), which bind collagens, fibronectins and laminins.
The pap/REG III family promotes cell proliferation and
regeneration of pancreatic islets and may protect against
apoptosis and oxidative stress [55].
The complex including the GDNF receptor GFRA1

and the receptor tyrosine kinase c-RET plays an impor-
tant role in the maintenance of mouse SSC [56]. GFRA1
and GDNF were expressed both in rat Spga and in Ser-
toli cells, and no significant change was observed
between 9 and 22 dpp (Figure 4A). This result is

consistent with previous findings that GFRA1 and
GDNF are expressed both in germ cells and Sertoli cells
of rat testis [39]. However, although these genes are not
differentially expressed in pre-pupertal versus pubertal
rats, the GDNF signaling pathway is likely to be more
active in pre-pubertal testis, since the downstream effec-
tor N-myc is strongly up-regulated in G9 (Table 1
and [42]).
Genes encoding the osteoblast type (Ob-Cdh, cdh11),

neuronal type (N-cdh, Cdh2) or PB type (cdh22) cadher-
ins, appeared up-regulated in G9 and S9 (Figure 5A),
and Ncam1 and Madcam1 were strongly induced in S9.
PB-Cdh (Cdh22) and NCAM1 (Table 1 and Figure 5A)

A Stem cell markers expressed in SPGa at 9 dpp (G9), compared to G22

B Overlap Hamra et al. 2004
G9 vs G22 64 / 17
S9 vs S22 38 / 10
S22 vs S9 23 / 12
S9 selective 7 / 2
G9 selective 5 / 4
S22 selective 8 / 6
G22 selective 12 / 9
G22 vs G9 25 / 21

pValues 10-40.01 10-6 00.9

attenuated enriched

Overlapping genes of  G9 and SSCs cluster (Hamra et al. 2004);

Cell adhesion (1) Tpbga

Cytoskeleton (5) Epb4.1l3b, Epb4.1l4a*b, Lrch1ab, 
Sept6*ab, Tubb5ab

Cell cycle (2) Cables1*, Ccnd2*
Metabolism (3) Elovl6ab, Perc64, Rexo2
RNA Splicing (2) Rbms1b,Rbpms*ab

Receptors, transporters (5) Cdw92ab, Citrin*ab, F2ra, Ptgfrn, Scarb1b

Signal transduction (10) Arhgef4a, Dusp6ab, Ickb, Igbp1a, Obsl1ab, 
Ptpn14*a, Ptprgab,  Ptprmab, Rab12ab, Ptprdb

Transcription, chromatin (7) Chd7*a, Irf1ab, Klf3a, LOC681300a, Satb1a, 
TAZb, Zfp278ab

Immune response (1) C1qbpb

Others (25) 5 predicted ESTs (1, 2a,2ab) 
20  unknown ESTs (9, 9a,2ab) 

*predicted genes; a common in mouse and rat SSC index list; 
b no change in S9

enriched (12) attenuated (8) expression detected (22)

Dnd1 Plzf(ZFP145) ABCG2(BCRP)
Fut4(SSEA-1) Rbm 5 Bax
Ifitm2

Sohlh1*
Bcl6b

ItgA6
Sox3*

BCl-X
ItgB1

Tacstd1 (Ep-CAM)
CD9

Kitl
TAF4b

CD24

NR0B1(Dax1)

Tex14
Egr2 

undetectable expression (8)

DPPA3(Stella)
DZIP
Lhx1 
Ngn3
Thy-1
TNAP
Tspan8 

RGS10(Tiar)

Egr3 

Sox2*

Etv5(Erm)
GDNF
GFRA1

GPR125

Pog

Rbm9
Ret
Tsx
Zfp148

Probe sets absent on the array (13) : Blimp1, CD133/prominin, DAZL*, Mvh(VASA), Nanog, Nanos2, Nanos3, Oct4/POUF51, 
Piwil1*(Miwi/mili), Rbm*, Sohlh2, Stra8*, Tex18. * predicted genes

Nmyc
Myc
Klf4

Ret
Ifitm3
ItgA5
Kit
Notch1

PUM2

Cdh1 

Figure 4 Identification of SSC genes and markers in pre-pubertal type A spermatogonia. (A) Rat Affymetrix probe set IDs for ES, PGC,
gonocyte and SSC markers were selected and analyzed for expression in the Spga cell fractions at 9 and 22 dpp. Genes up-regulated or down-
regulated at least 2 fold in type A Spga (G9) compared to mitotic germ cells at 22 dpp (G22) are shown in the first two columns. Genes with a
detectable or undetectable expression in the two last columns (defined here as the number of Affymetrix Present/Absent in the replicates after
MAS 5.0 analysis). (B) The 255 rat SSC-specific transcripts identified in a microarray analysis by Hamra et al. [23] were compared to each respective
gene cluster defined in Figure 2B. Left: Shown are the number of transcripts in each cluster (e.g. G9 vs G22) which overlapped with the transcript
list by Hamra et al. [23] as compared to the number of randomly expected transcripts (64/17; i.e. 64 observed versus 17 expected in a random
distribution). The gradual color code bar shows over-representation (red) and under-representation (blue) of SSC specific gene transcripts described
by Hamra et al. [23] in the various clusters defined in this study (Figure 2B). Significance of overlap (p Values) was calculated using a Gaussian
hypergeometric test (Fischer exact probability test). Right: Gene list and functional classification of the genes up-regulated in mitotic Spga type A at
9 dpp overlapping with the rat SSC cluster predicted by Hamra et al [23].
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were reported to be highly expressed in neonatal pups
and down-regulated during early stages of spermatogen-
esis [57,58]. Both factors have been shown to interact
with gonocytes in promoting SSC cell survival [57,58].
Pathways driving the development of somatic tissues

(e.g. neurogenesis), may also play a role in the SSC
niche (see the S9 gene sets in Figure 3). Such pathways
control cell migration, proliferation or differentiation. In

particular, we found the chemokine receptor CXCR4
up-regulated in G9 and its ligand SDF1/CXCL12 in S9.
The SDF1/CXCL12-CXCR4 pathway is important for
stem cell homing and mobilization in hematopoiesis
[59]. Somatic reticular cells close to vascular endothelial
cells secrete a high amount of SDF1/CXCL12 creating a
vascular HSCs niche in the bone marrow different from
the osteoblast niche [60].

G9
Spermatogonia type A

Gene                                           Function

S9
Immature Sertoli cells 

Function Gene

Integrin 5, 6, 1 Adhesion/
cell-cell contact

ECM/ 
cell contact

Cthrc1, Col4a1, Col4a2 

Ob-Cadherin 
N-Cadherin 

Adhesion Adhesion Ob-cadherin, PB-cadherin
NCAM1, Madcam1

CXCR4 Receptor Ligand SDF-1/CXL12

VEGFC Ligand Receptor KDR

Edn1 Ligand Receptor Endrb

Bdnf Ligand Receptor/
Ligand

Ntrk1  /  Ntf5

A

0

4

8

12

G 9 G 22 S 9 S 22
0

0 .04

0 .08

0 .12

G 9 G 22 S 9 S 22

0

0 .05

0 .10

0 .15

0 .20

G 9 G 22 S 9 S 22

0

0 .5

1 .0

1 .5

G 9 G 22 S 9 S 22
0

0 .04

0 .08

0 .12

G 9 G 22 S 9 S 22

0

0 .05

0 .1

0 .15

0 .2

G 9 G 22 S 9 S 22

vegfc kdr

end1 edrnb

bdnf ntrk1

G9 ligand S9 receptor
vegfc/ps9

bdnf/ps9

edrnb/ps9
end1/ps9

kdr/ps9

ntrk1/ps9

B
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tio
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tio
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tio ra
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Figure 5 Pre-pupertal Spga and Sertoli cells express complementary ligands and receptors known as stem cell and niche markers. (A)
Functional link associated with their gene product with a putative role in the spermatogonia stem cell niche. (B) Expression of vascular epithelial
growth factor C (vegfc 1) and its receptor (kdr), of endothelin 1 (end1) and its receptor (ednrb), and of brain derived neurotrophic factor (bdnf)
and its receptor (ntrk) in pre-pubertal (9 dpp) and pubertal (22 dpp) spermatogonia and Sertoli cells (G9, G22. S9, S22, respectively) was
quantified by real time RT-PCR. Values were normalized to the housekeeping gene ps9; the same pattern was observed when normalizing with
the expression of another housekeeping gene, ubc (not shown). Shown are the mean values (± SEM) from the 3 distinct cell preparations, for
which genome-wide analysis by hybridization to a high density array is shown in Figure 2.
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We found other ligand-receptor couples that have a
physiological role in the vascular niche specifically up-
regulated in G9 and S9, such as VEGFC growth factor
and receptor KDR and Endothelin 1 (End-1) and its
receptor Endrb, and BDNF and NTRK or NTF5 (Figure
5A) [61]. Importantly, the receptors were upregulated in
the stem cell niche S9, and their corresponding ligands
were specifically up-regulated in the stem cell, G9.
VEGFC and End-1 are also known to drive angiogenesis
in epithelial cancers [62]. For three pairs of ligand/
receptor communication we performed real time RT-
PCR to quantify the relative cell type and stage-specific
expression of each factor. While the ligands vegf, end1,
and bdnf were significantly enriched in G9 cells, as com-
pared to Sertoli cells or G22 cells, transcripts coding for
the corresponding receptors were significantly and selec-
tively enriched in S9 cells, as compared to all others
gene sets (Figure 5B). In summary, the examples of
coordinated enrichement of gene transcripts involved in
the communication between SSCs and their niche cor-
roborates the relevance of the SSC and niche-specific
gene sets defined by this study.

Common signaling pathways between SSC and their
niche and testicular tumors and the tumor environment
Testicular germ cell tumors (TGCTs) originate from a
precursor lesion, known as carcinoma in situ (CIS). CIS
can be considered the neoplastic counterpart of PGCs,
as they share similar morphological features, gene
expression, pattern of genomic imprinting, and markers
of pluripotency [28-30].
How PGCs are transformed into CIS and converted to

invasive TGCT is unknown. Genomic instability of CIS
might be one, but not the only contributing factor
[28,63]. It has been argued that changes in the Spga
microenvironment or stem cell niche could favor neo-
plastic transformation, and thus may lead to CIS [30,63].
Several lines of evidence support this hypothesis: first,
during the formation of CIS gap junctions are disrupted,
the blood-testis barrier is lost and Sertoli cells become
de-differentiated [64-67]; second, the activity of the
canonical SSCs signaling pathway, GDNF/c-ret is
increased in CIS [68].
Our data show that the gene expression profile of pre-

pubertal Sertoli cells is consistent with their presumed
niche function. Consequently, de-differentiation of Ser-
toli cells in adult testis may reactivate this niche poten-
tial and promote SSC proliferation and neoplastic
transformation towards CIS and seminoma.
To test this hypothesis, we compared the Spga (G9;

G22) and the Sertoli cell (S9; S22) gene sets with the
preferentially expressed gene orthologs of type II
TGCTs extracted from the recent literature (Additional
file 1, Table S4; [69-76]).

We compared 1436 ortholog genes, specifically upre-
gulated in testicular cancers, with the gene sets corre-
sponding to two-fold up-regulated transcripts of the
comparisons G9 vs G22 or S9 vs S22. Significantly more
testis cancer related genes, were present in those gene
sets than expected by random distribution (Figure 6A).
In contrast, testis cancer related genes were significantly
depleted in the set of two-fold up-regulated genes in
Spga at 22 dpp versus 9 dpp. These up-regulated genes
were then classified, based on their redundancy in the
different TGCT studies. Respectively, 27 genes of G9 vs
G22 and 30 genes of S9 vs S22 were listed in two or
more TGCT studies, 14 of which were up-regulated in
G9 and in S9 (Figure 6B).
This latter group included CyclinD2, an early marker

of CIS and important for transformation of germ cell
tumors [77,78], and Mycn, a proto-oncogene effector
downstream of GNDF/GRFa1 favoring proliferation of
SSCs [41]. Interestingly, the overlap of the TGCT-speci-
fic genes with S9 comprised a large number of genes
encoding secreted proteins (Ccl2, MMP9, MMP12, Plat)
or ECM proteins (collagen type I, decorin, fibronectin 1,
lumican), which are considered important for the
somatic mammalian stem cell niches [79]. Other factors,
like the matrix Gla protein or Glypican 3, are known to
repress differentiation pathways such as BMP2/4 [80]
and Hedgehog [81].
We confirmed the specific and significant enrichment

of gene transcripts common to G9 and testicular cancer
or to S9 and tumor environment by real time RT-PCR.
Both candidates tested, protein phosphatase 1 regulatory
1A (Ppp1r1a) and midkine (mdk), were more expressed
in G9 cells than in S9 cells and showed very little
expression in G22 and S22 cells (Figure 6B).
These results suggest that the gene expression pro-

grams of SSC and their niches, may be reactivated and
amplified in testicular cancer. Further studies in TGCTs
might validate the candidate genes emerging from this
study as potential prognostic markers and/or targets for
treatment of early TGCT.

Discussion
Spermatogenesis is a highly organized process initiated
at puberty in mammalian species. Before puberty, a
massive increase of mitotic Spga supports the onset of
spermatogenesis. Newly formed Sertoli cells sustain this
proliferation of Spga, but also maintain the potential of
extending the stem cell niche for dividing SSCs. This
work was based on the hypothesis that in rodents, a lar-
ger fraction of Spga with stem cell potential exists at
pre-puberty than at puberty. Furthermore, we hypothe-
sized that pre-pubertal Sertoli cells might fulfill SSC
niche functions. Indeed, previous studies supported
these hypotheses. First, transplantation studies of donor
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B

13

14

16

S9 vs S22

G9 vs G22

name description Unigene
Redundency 

across 
studies

Ak3 adenylate kinase 3 Rn.60 3
Fgfr1 Fibroblast growth factor receptor 1 Rn.15098 2
Pgk1 phosphoglycerate kinase 1 Rn.10989 2
Ppp1r1a protein phosphatase 1, regulatory sub. 1A Rn.9756 2
Ptpn12 protein tyrosine phosphatase, type 12 Rn.10707 2
Rinzf zinc finger and BTB domain containing 10 Rn.23374 2
Snurf small nuclear ribonucleoprotein N Rn.81238 2
Tpi1 Triosephosphate isomerase (TPI) 1 protein Rn.37838 2
Ywhag Y3-/W5-monooxgenase activation protein, gamma Rn.29936 2

Ccnd2 cyclin D2 Rn.25764 5
Mycn v-myc myelocytomatosis viral related oncogene Rn.81116 4
Bcat1 branched chain aminotransferase 1, cytosolic Rn.8273 3
Emp1 epithelial membrane protein 1 Rn.19723 3
Mdk midkine Rn.17447 3
Bmp2 bone morphogenetic protein 2 Rn.12687 2
Crym crystallin, mu Rn.24561 2
Dusp5 dual specificity phosphatase 5 Rn.10877 2
Gal galanin Rn.8929 2
Gpm6b hypothetical gene supported by NM_138846 Rn.8057 2
Nnat neuronatin Rn.5785 2
Plat plasminogen activator, tissue Rn.1002 2

Apoe apolipoprotein E Rn.32351 3
Cd9 CD9 antigen Rn.2091 3
Col1a2 procollagen, type I, alpha 2 Rn.16629 3
Mgp matrix Gla protein Rn.2379 3
Ccl2 chemokine (C-C motif) ligand 2 Rn.4772 2
Dcn decorin Rn.3819 2
Fn1 fibronectin 1 Rn.1604 2
Gpc3 glypican 3 Rn.9717 2
Hnf3b forkhead box A2 Rn.10948 2
Lum lumican Rn.3087 2
Mmp12 matrix metallopeptidase 12 Rn.33193 2
Mmp9 matrix metallopeptidase 9 Rn.10209 2
Star steroidogenic acute regulatory protein Rn.11399 2
Tead2 TEA domain family member 2 Rn.7120 2

pValues

10-40.01 10-6 01 0.9

attenuated enriched

S9 vs S22 133 / 52
G9 vs G22 204 / 90
S9 selective 26 / 13
G9 selective 31 / 19
S22 selective 33 / 31
S22 vs S9 63 / 67
G22 selective 45 / 48
G22 vs G9 76 / 115
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Figure 6 Comparative analysis of testis cancer-associated genes with genes the pre-pubertal Spga and Sertoli cells- specific gene sets.
(A) Comparative analysis of gene transcripts enriched or attenuated in rat Spga and Sertoli cells at 9 and 22 dpp and of their human orthologs
detected in several microarray studies of type II testicular germ cell tumors (TGCT). The orthologues of transcripts shown by different studies
[69-76] to be enriched in TGCT were identified in the gene clusters defined in Figure 2. of Pairwise comparison between gene clusters reveals
the relative enrichment or attenuation those orthologue transcripts as they are more (red) equally (white) or less (blue) abundant than expected
in a random association. As an example, 133 transcripts orthologuous to genes over-expressed in TGCT[69-76] are enriched in S9 versus S22,
whereas randomly 52 would be expected. The blue to red scale shows the statistical significance of enrichment or attenuation in the various
clusters of genes was calculated using a Gaussian hyper-geometric test (Fischer exact probability test). (B) Genes in (A) detected in at least two
independent TGCT studies, shown as a Venn diagram for the gene sets up-regulated at 9 dpp vs 22 dpp in Spga and Sertoli cells.
(C) Quantitative assessment of pre-pupertal Spga and Sertoli cells gene expression for testis cancer-associated genes. Expression of protein
phosphatase 1 regulatory subunit 1A (ppp1r1A), and of midkine (mdk) in pre-pubertal (9 dpp) and pubertal (22 dpp) spermatogonia and Sertoli
cells (G9, G22, S9, S22, respectively) was quantified by real time RT-PCR. Values shown are normalized to two housekeeping genes ubc (right
hand side) and ps9 (left hand side), respectively. Shown are the mean values (± SEM) from the 3 distinct cell preparations, for which genome-
wide analysis by hybridization to a high density array is shown in Figure 2.
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germ cells in recipient animals show that engraftment of
Spga from pre-pubertal rodents have higher success
rates than Spga from adult animals [16-18]. Similarly,
engrafted donor germ cells develop better in recipient
pups than adults [19,20]. Second, the fraction of mitotic
Spga with the potential of self-renewal is bigger than
adult SSCs population [10,11,13].
Indeed, as Yoshida and colleagues have elegantly

shown, transiently amplifying Spga are able to function
as stem cells upon transplantation, provided that they
enter an appropriate SSC niche [11,13]. Thus mammals,
in contrast to e.g. Drosophila, can compensate for the
loss of germ stem cells that may occur during the repro-
ductive life. The downside of this plasticity is that the
inappropriate favoring of stem-ness, due to the expres-
sion of relevant factors by Spga or Sertoli cells, may lead
to testis cancer. To understand the mechanisms of SSC
maintenance, it is essential to investigate the interac-
tions between Spga and Sertoli cells. Here we report a
first approach towards this goal, based on differential
gene expression profiles for pre-pubertal and pubertal
Spga and Sertoli cells, and defined transcript sets that
characterize stem-ness and niche properties.
Our approach was corroborated by the fact that the

pre-pubertal gene sets included, as expected, known gen-
eral stem cell markers, SSC markers, as well as known
niche markers (Figure 4). Importantly, genes coding for
products that mediate cell to cell communication were
predominantly upregulated in SSCs and the niche. The
pre-pubertal gene sets also showed a highly significant
overlap with genes over-expressed in testis cancer. And
again, these overlapping gene lists highlighted the impor-
tance of stem cell to niche communication.
Mammals maintain differentiated stem cell reservoirs

throughout life. Location, cell number and replication of
these reservoirs are strictly controlled. Stem cells are
confined to their respective niches by a system of “checks
and balances” established between stem cells and niche
cells. This system appears to be based upon reciprocal
activation of intracellular signaling cascades involving
secreted factors and their receptors, ion channels, trans-
porters, protein kinases and phosphatases, transcription
factors, and cell cycle control elements. Given the large
number of genes coding for such elements, each specific
stem cell niche ensemble is controlled by common as
well as distinct elements. In this study we defined gene
sets for SSCs and their niche. The most likely candidates
of the extra-cellular elements contributing to such con-
trol are those listed in Figure 5A.
It further appears that the system is refined to assure

proper localization of stem cell niches. Very elegant
work by Yoshida and co-workers demonstrated the SSC
niche within the vasculature [82], which is most likely

based upon the inclusion of endothelial derived growth
factors in the system controlling SSCs.
To further validate the relevance of specific genes as

coding for stem cell niche factors or differentiation fac-
tors in spermatogenesis, RNAi-based gene silencing in
Spga and Sertoli cells co-cultures may be a first
approach. Transplantation of genetically modified
donor-derived germ cells in recipient testes could later
definitively confirm the stem cell activity of the specific
candidate genes.
Uncontrolled SSCs have the potential to develop into

testis cancer. Testicular germ cell tumours (TGCTs)
typically occur in adolescents and adults. These tumors
are the most frequently diagnosed cancer in Caucasian
adolescents and young adults. The precursor of type II
GCTs (the most frequent one) originates from a PGC/
gonocyte, i.e. an embryonic cell [28-30]. The highly sig-
nificant overlap between gene expression of pre-pubertal
Spga and Sertoli cells with gene expression in testis can-
cer (Figure 6) supports evidence that stem cell niche
interactions are maintained in testis cancer. Indeed, the
large majority of the genes over-expressed in pre-
pubertal Spga and Sertoli cells, orthologs of which have
also elevated expression level in testis cancer, code for
the proteins involved in cell to cell communication.
Cell to cell communication is obviously an important

feature and is deregulated in most cancers. However, we
find factors that are likely to be important for stem cell
to niche communication which are also upregulated in
cancers that are likely to have derived from deregulated
stem cells.
The replication of expression patterns that characterize

stem cell-niche interactions in the tumor and surround-
ing stroma suggests that the concept of mutual gene
programming through extensive communication is
important for the understanding of tumorigenesis. This
concept is in line with and provides an explanation for
field effects, i.e. the fact that testis and other cancers pro-
gresse in a specific “permissive” tissue environment [83].

Conclusions
The present study provides a large list of candidate
genes, the expression of which characterizes the specific
cellular interactions occurring between Spga and Sertoli
cells, which reciprocally control their proliferation and
differentiation during puberty. Specifically, SSCs and
pre-pubertal Sertoli cells which establish the SSC niche
were shown to express complementary factors and
receptors for their communication. These same factors
and the corresponding signaling pathways most likely
have their significance in the development of testicular
cancer, and notably in the communication between
tumor cells and their micro-environment.

Ryser et al. BMC Genomics 2011, 12:29
http://www.biomedcentral.com/1471-2164/12/29

Page 12 of 16



Methods
Cell and RNA purification
To isolate Spga and Sertoli cells, testes of 45 rats at
9 dpp and 20 rats at 22 dpp were excised and decapsu-
lated. The procedure of cell purification is depicted in
Additional file 2, Figure S2 and was adapted from pre-
vious publications [84-86]. Seminiferous tubules were
first isolated from surrounding interstitial cells by col-
lagenase dispase treatement. After three sedimentation
steps, the tubules were separated in two fractions. To
purify Spga, a fraction of seminiferous tubules was trea-
ted with trypsin, then subjected to centrifugal elutriation
to collect the diploid cells. The diploid cells were then
resuspended in a minimal medium (15 mM Hepes buf-
fered F12/DMEM supplemented with 20 μg/ml gental-
lin, 20 U/ml nystatin, 1.2 g/L sodium bicarbonate,
10 μg/ml insulin, 10 μg/ml human transferrin, 0.2%
serum) and subjected to differential plating for 15
hours. Floating Spga cells were collected by centrifuga-
tion and directly frozen in liquid nitrogen. To purify the
somatic supporting cells, half the fraction of tubules was
treated with collagenase dispase, then, differential plat-
ing was directly performed to collect the corresponding
adherent Sertoli cells. In the germ cell fractions, 78 ±
2% of the cells were vimentin negative and their viability
was 93 ± 1%. In the Sertoli cell fraction, 76.5 ± 3.0% of
the cells were stained positive with an antibody against
vimentin [87-89]; their viability was 82 ± 5%.
Total RNA was isolated from frozen cells using Trizol

(Invitrogen), then, a subsequent purification step was
performed using the RNAeasy kit (Qiagen; Hombrechti-
kon, CH). The purity of the total RNA was analyzed
using an Agilent Bioanalyzer RNA Chip (Agilent Inc.
Paolo Alto, CA).

Immunohistochemistry
Immuno-histochemistry was performed following estab-
lished procedures [90,91] on sections of rat testis from
9 dpp and 22 dpp using antibodies to PCNA (DAKO).

Microarray probe labelling and hybridization
A small-scale protocol from Affymetrix (High
Wycombe, UK) was used to reproducibly amplify and
label total RNA. 100 ng total RNA were converted into
double-stranded cDNA using a cDNA synthesis kit
(Superscript; Invitrogen Corp., Carlsbad, CA) with a spe-
cial oligo(dT)_24 primer containing a T7 RNA promoter
site. After the first cRNA amplification by in vitro tran-
scription using the Ambion MEGAscript T7 kit
(Ambion, Austin, TX), 400 ng cRNA were once more
reverse transcribed, and biotinylated cRNAs were gener-
ated from double-strand cDNAs using an in vitro tran-
scription labeling kit from Affymetrix. For each probe,

20 μg of the second amplification biotinylated cRNA
were fragmented and hybridized to Affimetrix rat
expression array 230 2.0 (Affymetrix; Santa Clara, CA)
following standard protocols. Three independent sets of
total RNA were extracted from purified cells prepared
on different days on distinct pools of animals. For each
condition, the three independent sets of total RNA were
purified and used as template for probe generation.
These triplicates preparations were performed to define
biological variability between the samples. GeneChips
were incubated at 45°C for 16 h with biotin-labeled
cRNAs probes, and then washed and stained using a
streptavidin- phycoerythrin conjugate with antibody
amplification as described in the protocol from Affyme-
trix, using Affymetrix GeneChip Fluidics Station 450.
GeneChips were scanned on a GCS3000 scanner (Affy-
metrix, Santa Clara, CA).

Selection of differentially expressed genes
To identify differentially expressed transcripts, pairwise
comparison analyses were carried out with Affymetrix
GCOS 1.2. Each of the experimental samples (n = 3)
was compared with each of the reference samples
(n = 3), resulting in nine pairwise comparisons. This
approach, which is based on the Mann-Whitney pair-
wise comparison test, allows the ranking of results by
concordance, as well as the calculation of significance
(P value) of each identified change in gene expression
[92]. Genes for which the concordance in the pairwise
comparisons exceeded a threshold (e.g., 60%) were con-
sidered to be statistically significant. A 77% cutoff in
consistency of change (at least 7 of 9 comparisons were
either increased or decreased) was then applied to iden-
tify potential dimorphic-regulated genes. Only genes
that satisfied the pairwise comparison test and displayed
two-fold change in expression were selected for further
study. This conservative analytical approach was used to
limit the number of false-positives. Regulated genes
were organized and visualized using the GeneSpring
software (Agilent Inc., Paolo Alto, CA).

Cluster and Gene Ontology (GO) analysis
Category enrichment or depletion was performed by
collecting the observed number of transcripts and
respective hypergeometric P-values for each category
using Genespring. The expected number of transcripts
was calculated based on the total number of annotated
RAE230 transcripts in the Gene ontology consortium
(5727), the number of annotated transcripts in the cor-
responding gene ontology category, and the fraction of
transcripts in the cluster present in the category. GO
category enrichment or depletion were displayed as in
Chalmel et al [21] for each respective cluster. A GO
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category was considered as enriched in a group of tran-
scripts if the P value was <0.001 and the number of
observed transcripts in the cluster was >3. P values
close to 0 indicate significant enrichment whereas
P values close to 1 represent significant depletion.
All gene expression array data are avaible at Gene

Expression Omnibus (GEO; http://www.ncbi.nlm.nih.
gov/projects/geo/).
Real time RT-PCR
Quantification of gene expression was obtained by real-
time RT-PCR performed essentially as described earlier
[93,94] using SYBR green and the following forward (F)
and reverse (R) primer pairs: plk2 (NM031821) F:
GGGCAAGGGTGGATTTG R: GCGTAGACTTTGTT
GTTTGTCAGATC, for bdnf (NM012513) F: ACTG
TCCTGCTACCGCAGTTG R: GGGTCGCAGAAC
CGCTAAA, gap43 (NM017195) F: TGCAGAAAG-
CAGCCAAGCT R: CGGGCACTTTCCTTAGGTTTG,
ntrk1 (NM021589) F:ACGGAGCTCTATGTGGAAA
ACC R: CCCTGCAGGTCCTCAAACTC, pap3 (L20869)
F:GGCTCCTATTGCTATGCCTTGT R: CAGGCCA-
GATCTGCATCAAA, ppp1r1a (NM022676) F:CCAG-
CACAGAGGACCTTTCAG R:TCAGACCAAGCTGG
CTCCTT, vegfc (NM053653) F:GCGAGGTCAAGG
GTTTCGA R: TGAGCTCATCTACACTGGACACA
GA, mdk (NM030859) F:GCGCATCCATTGCAA
GGT R: TGCAGTCGGCTCCAAACTC, kdr (U93307) F:
TTCCGTCCGGACTCTTACGT R: GCAAGCTGCGT
CATTTCCTT, and house-keeping genes endothelin 1
(NM012548) F:GATTATTTTCCCGTGATCTTCTCTCT
R: TGCTCCCAAGACAGCTGTTTC, ubc (NM017314)
F:TCGTACCTTTCTCACCACAGTATCTAG R: GAAA
ACTAAGACACCTCCCCATCA, edrnb (X57764) F:
GGTATGCAGATTGCCTTGAATG R: GCAGAA-
TACTGTCTTGGCCACTT, and mrps9 (NM001100549)
F:TGATGTTCCCTTTCCACTTCCT R: TCCCTCCC
CCGGAGACT.

Additional material

Additional file 1: Methods and validation of cell purification. Figures
S1 and S2 and explanations of Tables S1-S4.

Additional file 2: Updated gene lists Description: Tables S1-S4.
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