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The Zea mays mutants opaque-2 and opaque-7
disclose extensive changes in endosperm
metabolism as revealed by protein, amino acid,
and transcriptome-wide analyses
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Abstract

Background: The changes in storage reserve accumulation during maize (Zea mays L.) grain maturation are well
established. However, the key molecular determinants controlling carbon flux to the grain and the partitioning of
carbon to starch and protein are more elusive. The Opaque-2 (O2) gene, one of the best-characterized plant
transcription factors, is a good example of the integration of carbohydrate, amino acid and storage protein
metabolisms in maize endosperm development. Evidence also indicates that the Opaque-7 (O7) gene plays a role
in affecting endosperm metabolism. The focus of this study was to assess the changes induced by the 02 and
07 mutations on maize endosperm metabolism by evaluating protein and amino acid composition and by
transcriptome profiling, in order to investigate the functional interplay between these two genes in single and
double mutants.

Results: We show that the overall amino acid composition of the mutants analyzed appeared similar. Each mutant
had a high Lys and reduced GlIx and Leu content with respect to wild type. Gene expression profiling, based on a
unigene set composed of 7,250 ESTs, allowed us to identify a series of mutant-related down (17.1%) and up-
regulated (3.2%) transcripts. Several differentially expressed ESTs homologous to genes encoding enzymes involved
in amino acid synthesis, carbon metabolism (TCA cycle and glycolysis), in storage protein and starch metabolism, in
gene transcription and translation processes, in signal transduction, and in protein, fatty acid, and lipid synthesis
were identified. Our analyses demonstrate that the mutants investigated are pleiotropic and play a critical role in
several endosperm-related metabolic processes. Pleiotropic effects were less evident in the 0/ mutant, but severe

kernel-expressed genes.

in the 02 and 0207 backgrounds, with large changes in gene expression patterns, affecting a broad range of

Conclusion: Although, by necessity, this paper is descriptive and more work is required to define gene functions
and dissect the complex regulation of gene expression, the genes isolated and characterized to date give us an
intriguing insight into the mechanisms underlying endosperm metabolism.

Background

The developing maize (Zea mays L.) endosperm is a tis-
sue primarily devoted to the accumulation of starch and
proteins which, upon germination, provide nutrients for
the germinating seedling. The investigation of regulatory
constraints on endosperm development and on the
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synthesis of storage products provides an opportunity to
understand the control of gene activity in eukaryotic
cells [1].

Despite the apparent simplicity of the mature tissue,
endosperm development is complex and combines sev-
eral aspects regarding cell cycle regulation, cytokinesis,
and cytoskeletal functions (reviewed by [2]). The first 7-
12 days after pollination (DAP), characteristically involve
cell division, after which the endosperm cells enlarge
and as a result of several metabolic processes acquire
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storage proteins and starch [3]. Although the changes in
storage reserve accumulation during maize grain
maturation are well established, identifying key molecu-
lar determinants controlling carbon (C) flux to the grain
and the partitioning of C to starch and protein remain
elusive [1]. In fact, our understanding of how each path-
way is controlled is complicated by the occurrence of
multi-gene families encoding many of the enzymes in
these biochemical pathways, the interconnectedness of
these, and the strong influence of the environment on
the amount and nature of the starch and protein synthe-
sized [1].

Much of our current knowledge is based on biochem-
ical assays of protein and enzymatic activities of starch
and protein biosynthesis during caryopsis development.
Zeins, the most abundant protein storage component in
developing endosperms, are alcohol-soluble compounds
with a characteristic amino acid composition, being rich
in glutamine, proline, alanine, and leucine, and almost
completely devoid of lysine and tryptophan [3]. Based
on their solubility, genetic properties, and apparent
molecular masses, zeins were classified into a- (19- and
22-kDa), B- (15-kDa), y- (16-, 27-, and 50-kDa), and
d-zeins (10- and 18-kDa) that are encoded by distinct
classes of structural genes [4]. The large a-zein compo-
nent, accounting for > 70% of all zein proteins, is
encoded by multiple active genes clustered in several
chromosomal locations [5].

In this context, the analysis of maize mutants has
facilitated the identification of many genes encoding
starch synthetic enzymes and helped elucidate the pro-
cess of starch formation [6]. Genetics has also played an
important role by discovering a series of opaque endo-
sperm mutants and demonstrating their effects on genes
mediating zein deposition [1,7,8]. For example, the
recessive mutations opaque-2 (02) and opaque-7 (07)
induce a specific decrease in the accumulation of 22-
and 19-kDa a-zeins, respectively.

The 02 mutation has been widely studied at the
genetic, biochemical, and molecular level. O2 encodes a
transcriptional regulator of the basic leucine zipper
(bZIP) class that is specifically expressed in the endo-
sperm activating the expression of 22-kDa o -zein and
15-kDa B-zein genes [9]. O2 also directly or indirectly
regulates a number of other non-storage protein genes,
including »-32, encoding a type I ribosome-inactivating
protein, cyPPDK1, one of the two cytosolic isoforms of
the pyruvate orthophosphate dikinase gene, and b-70,
encoding a heat shock protein 70 analogue, possibly act-
ing as a chaperonin during protein body formation [1].
02, furthermore, regulates the levels of lysine-ketogluta-
rate reductase and aspartate kinasel [10,11]. These
broad effects suggest that O2 plays an important role in

Page 2 of 18

the developing grain as a coordinator of the expression
of genes controlling storage protein, and nitrogen (N)
and C metabolism [1].

Although the molecular basis of the 07 mutation is
yet unknown, it was shown that this mutation, in addi-
tion to repressing the lower molecular weight o-zeins,
drastically affects the development of maize endosperm
due to a reduction in starch content. Moreover, the
high content in 07 endosperms of non-protein N has
suggested the existence in 07 of a block in the syn-
thetic route leading to proteins similar to that observed
for the starch modifying gene shrunken4 (reviewed in
(12)).

To advance our understanding of the nature of the
mutations associated with an opaque phenotype, we
used nearly isogenic inbreds for 02 and o7 mutants, and
for the double mutant combination 0207, and compared
their effects on protein synthesis and amino acid com-
position. In this study, to provide genome-scale informa-
tion about gene expression patterns, we have also
compared the profiles of gene expression in these
mutants by cDNA microarray slides containing unique
cDNAs expressed during kernel development. Microar-
ray analysis provides an opportunity to examine the
extent of changes in gene expression in mutants that
are altered in metabolism. Classifying genes based on
similarities or differences in transcript profiles within
genotypes can confirm existing knowledge, lead to the
dissection and revelation of novel mechanisms deter-
mining nutrient partitioning, and generate new unbiased
hypotheses [13].

Recently, large databases of expressed maize genes
have been made available (http://www.maizegdb.org
genoplante-info.infobiogen.fr; http://www.unicamp.br),
and transcriptome analyses aimed at identifying genes
involved in endosperm development and metabolism
have been published [14,15]. Additionally, this technol-
ogy was recently used to investigate a common mechan-
ism that underlies several opaque-class kernel mutants
[7]. The highly variable gene expression patterns they
obtained made it difficult to identify common pathways
that lead to soft endosperm texture. Our study extends
their analysis by including the o7 mutation and the dou-
ble 0207 mutant, that appear useful in conjunction with
the 02 mutation to i) identify and catalogue in endo-
sperm the changes of genes involved in several meta-
bolic pathways underlying the synthesis of storage
reserves, ii) give new information about the effects of
the O7 gene in endosperm metabolism in order to bet-
ter understand its function in carbohydrate and protein
syntheses, and iii) gain an insight into the complex gene
system that integrates C and N metabolism in the devel-
oping endosperm.
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Results
Effect of 02, 07, and 0207 mutations on protein and
amino acid compositions
To verify whether the mutants analyzed exhibited quali-
tative and quantitative differences in protein composi-
tion compared to wild-type, we evaluated the protein
and amino acid compositions of mature endosperm of
the nearly isogenic A69Ywt, 02, 07, and 0207 inbreds.
Zein samples prepared from mature endosperm of the
previous genotypes were compared in 2D-PAGE. In
agreement with their apparent molecular masses on
SDS-PAGE, 3 polypeptides were classified, based on
their apparent molecular weight as 27-kDa y-zeins, 5 as
22-kDa a-zeins, 6 as 19-kDa a-zeins, 3 as 15-kDa
B-zeins, and 1 as a 16-kDa y-zein (Figure 1). The two
mutations decreased both the number and the accumu-
lation of zein isoforms detected on 2D gels as compared
to wild-type. The 02 mutation has a major effect on the
22-kDa class zeins as a complete reduction of most of
these polypeptides was observed. In agreement with pre-
vious data, we confirm that the 02 mutation can also
influence the accumulation of some members of the 19-
kDa class [12]. Changes in the zein profile in A69Yo7
seeds were less evident. The 07 mutation decreased the
amount of both 22-kDa and 19-kDa a.-zeins as com-
pared to wt. However, unlike previously reported, we
did not find clear evidence of a specific polypeptide sup-
pression mediated by the 07 mutation [16]. Finally, the
zein pattern in the 0207 background was strongly
affected: the 22-kDa zein profile was nearly identical to
the one observed in the 02, whereas polypeptides of the
19-kDa zein class were decreased both in amount and
number. Taken together these data confirm an additive
effect of the 02 and o7 mutations in reducing zein accu-
mulation during endosperm development.

Table 1 provides data concerning the percentage con-
tribution of the main N constituents present in the
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Figure 1 Two-dimensional Analysis of Alpha-Zein Polypeptides.
Genotypes are indicated above each panel. Relative molecular
weights derived from size standards are indicated as kDa values
within each panel.
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Table 1 Protein and amino acid composition of mature
A69Ywt, A69Y02, A69Y07, and A69Y0207 endosperm

Items A69Ywt A69Y02 A69Yo7 A69Y0207
Total protein 12.2° 10.8° 8.8 97"
Albumins + globulins 0.7° 2.0° 1.1° 2.2°
Zeins * 9.0° 3.8° 5.3 3.2°
Glutelins * 2.5° 5.0° 2.5° 43°
Non-protein nitrogen 0.7 0.7 0.6 06
Asparagine/Aspartate 26° 8.4° 6.2° 11.9°
Threonine 16 24 26 30
Serine 23 2.8 2.8 32
Glutamate/Glutamine 41.3° 34.0° 35.4° 24.6°
Glycine 1.3° 2.7° 24° 3.7°
Alanine 64 50 5.1 5.1
Valine 21° 3.1° 3.2° 3.8°
Cysteine 1.0 1.8 1.5 1.9
Methionine 0.6° 0.8° 1.1° 1.0°
Isoleucine 1.7° 2.4° 2.1° 2.5°
Leucine 16.2° 8.7° 9.3° 8.2°
Tyrosine 1.0 14 1.2 1.5
Phenylalanine 2.4 3.0° 2.5° 3.0°
Ornitine 0.0 0.1 0.0 0.1
Lysine 0.9° 2.6° 2.2° 3.4°
Histidine 1.3° 1.9° 23 25°
Arginine 1.4° 3.0° 2.5° 3.8°
Proline 16.0 16.0 179 169

Protein and non-protein compositions are in percent of dry weight. Amino
acid compositions are in percent of protein (w/w). * fractions Z1+Z2 of [49]; ¥
fractions G1+G2 of [51].

@b Numbers followed by the same letters within a row are not significantly
different at P < 0.05 by standard analysis of variance.

mature endosperm of the lines considered. With the
exception of non-protein N, all N traits measured dif-
fered significantly, both in amount and composition,
between wild-type and opaque mutants. The mutant
alleles all reduced accumulation of total protein, although
to varying extents, the effect being most marked in 07
(-28%). From these results it was possible to assess the
importance of lysine-rich non-zeins with accuracy,
because of the quantification of non-protein N and the
exhaustive extractions of zeins. Thus, the ratio of non-
zein content of the endosperm mutants compared with
that of the wild-type varied from 1.1 to 2.2 for the single
mutants, whereas for A69Y0207, a ratio of 2.0 was calcu-
lated. It was also evident that the effect of the 02 is more
pronounced in reducing zein accumulation and increas-
ing the other components than is 07. This behaviour is
also evident in the 0207 mutant, in which zein synthesis
was most reduced, with a concomitant increase in albu-
min-globulins and glutelins, suggesting that in the double
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mutant both alleles are active in reducing zein synthesis
additively.

The overall amino acid compositions of the single
mutants 02 and 07, and of the double mutant combina-
tion 0207, exhibited a rather similar pattern, although
variation was observed of amino acid content in com-
parison to the wild type endosperms. Each of the single
mutants had a high Lys content (>2.5-fold), whereas
0207 had more that 3.5-times the amount present in the
wild type. A similar shift, although less pronounced, was
observed for Asx, and the other essential amino acids
derived from the Asp pathway (i.e. Thr, Met and Ile) as
well as for Gly, Val, His, and Arg. Among the amino
acids reduced in the opaque endosperm mutants were
Glx and Leu, the most abundant amino acids found in
zein proteins. The reduction of these amino acids gener-
ally was inversely related to the increase in Lys, with the
trend being more evident in the double 0207 endosperm
mutant.

Microarray construction

Microarray slides were assembled using clones obtained
from 20-part-normalized cDNA libraries representing
the major events in endosperm development. 22,365
ESTs were sequenced, aligned, assembled into contigs
using a similarity score of 90%, and annotated using
BLASTX software. For each contig, the cDNA contain-
ing the largest transcript was identified. These, together
with all singleton cDNAs (6719) were used to construct
a unigene set of 8,950 sequences. The relative contribu-
tion of each ¢cDNA library to the pool of identified ESTs
is summarized in Table 2. It is notable that the

Table 2 Relative contribution of each cDNA library to the
pool of identified ESTs

cDNA library Contribution
(%)
whole kernel (2 DAP) 53
embryo sac (3-4 DAP) 52
maternal tissue (3-4 DAP) 46
embryo (8 DAP) 43
whole kernel (6-8 DAP) 99
pedicelo-chalazal/basal endosperm transfer cells 7.0
(12 DAP)
meristematic aleurone (12 DAP) 6.8
endosperm (10-28 DAP) 138
pericarp (10 & 21 DAP) 114
embryo (14 & 21 DAP) 104
aleurone (30 DAP) 20
germinated endosperm (20 DAP) 98
germinated aleurone (20 DAP) 97

The different cDNA libraries used and their relative contribution to the Zeastar
unigene EST set are indicated.
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distribution of ESTs across the original cDNA libraries
was not uniform. The highest proportion of the
sequences could be associated with endosperm tissue,
the lowest with 8 days old embryo. EST sequences were
analyzed with the BLAST2GO software (http://www.
blast2go.org). In a first phase, homology searches using
public domain non-redundant databases identified sig-
nificantly homologous sequences for 48.4% of the ESTs
considered. These ESTs represented 3,090 single hit and
1,240 multiple hit sequences.

In a second phase, an attempt was made to associate
biological processes to each of the ESTs showing
sequence homology using the gene ontology (G.O.;
http://www.geneontology.org) and KEGG databases
(http://www.genome.jp/kegg). Approximately 85% of
these unigenes could be assigned a functional annota-
tion, with the remainder (ca. 15%) having an ambiguous
or unknown function. Figure 2 summarizes the assign-
ment of the biological processes and molecular func-
tions. Twenty-four distinct groups were identified to
establish the complex regulatory hierarchies that exist to
orchestrate the dynamic metabolic, transport, and con-
trol processes occurring in developing endosperm. This
classification is consistent with the many functions of
maize endosperm and is comparable with that reported
by other workers [14,15]. It appears that our maize
endosperm gene set is rather comprehensive and pro-
vides a good representation of the entire transcriptome
including genes linked to accumulation of storage pro-
ducts and energy supply. More specifically, a large num-
ber of transcripts appeared to be involved in
carbohydrate metabolism (12.0%), followed by those par-
ticipating in storage protein synthesis (7.9%), translation
(11.2%) and transcription (5.3%), nucleotide metabolism
(2.5%), and RNA processing (2.1%). Among physiologi-
cal processes, those transcripts implicated in protein
turnover (5.6%), energy metabolism (3.1%), electron
transport (1.2%), amino acid metabolism (4.4%), amino
acid and sugar transport (7.8%), the latter being intrinsi-
cally linked to the accumulation of storage protein and
starch, nucleic acid metabolism (2.5%), lipid (2.1%) and
fatty acid metabolism (1.6%), and secondary metabolites
(2.0%) were represented in our EST collection. More-
over, genes encoding for protein involved in cell wall
(2.8%), cytoskeleton (2.8%), and stress and defence
(5.1%) appear related to relevant cellular processes
assigned in the functional classification. Finally, the
assignment of other important classes of transcripts,
such as DNA (1.2%) and protein folding (0.5%), tran-
scription regulators (5.3%; mostly representing transcrip-
tion factors), and signal transducers (13.3%) provides
new perspectives for data mining and for studies of
coordinated gene regulation in developing maize endo-
sperm. Thus, ESTs corresponding to the majority of
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Figure 2 Distribution of maize EST Unigenes amongst functional categories. Gene-ontology categories were assigned to ESTs through
curator-revised categorization. Eight thousand nine hundred and fifty endosperm preferred ESTs were classified. Gene-ontology terms (http://
www.geneontology.org) were assigned based on similarity to known protein sequences in several databases using the BLAST2GO software
(http//www.blast2go.org). The percentage of ESTs in each category is indicated next to the corresponding map sector.

glycan metabolism (0.5%)
protein folding (0.5%)
AA transport (0.3%)

signal transduction (13.3%)

carbohydrate
metabolism (12.0%)

translation (11.2%)

storage protein (8.9%)
transport (7.8%)

genes (or their alleles) are represented in the maize
c¢DNA libraries constructed, and the use of the maize
Zeastar unigene chip to examine endosperm gene
expression appeared feasible.

Effect of 02, 07, and 0207 mutations on gene expression

The development of a Zeastar unigene chip made it pos-
sible to analyze the patterns of gene expression in the
opaque mutants herein investigated. Microarray slides
containing the entire Zeastar unigene set were hybri-
dized with probes derived from endosperm tissue of
normal, 02, 07, and 0207 A69Y inbreds, harvested at 14
DAP, a developmental stage in which the synthesis of
starch and storage protein is known to begin [1]. To
reduce hybridization artefacts, all probes were labelled
both with Cy3 and with Cy5 and used in dye-swapping
experiments on series of three independent slides. The
expression data obtained were assayed for consistency
by performing ANOVA tests. Replicates appeared to be
in general agreement; thus, we are confident that the
alterations of the transcriptomes described here are con-
sistent with the biology of endosperm development.
Moreover, we selected a series of thirty clones, believed
of particular interest and exhibiting distinct patterns of
expression, for detailed analysis, using qRT-PCR to con-
firm the changes in expression levels determined using

the arrays. RNAs isolated from the four genotypes were
used as templates for amplification. The relative expres-
sion levels determined by qRT-PCR showed good
agreement with those determined using microarrays
(r = 0.91; see Materials). This degree of agreement is
consistent to that observed for similar experiments. [e.g.
17]. Therefore, only the results of microarray analyses
will be presented and discussed herein.

Average signal values derived from the four probes
used were plotted using a logarithmic scale. Figure 3
shows plots of wt vs. 02 (3A), 07 (3B), and 0207 (3C)
signal values as well as 02 vs. 07 (3D) readings. Figure
3A clearly shows the prevalence of genes showing dis-
tinct expression patterns in the wt and 02 genotypes.
Conversely, the wt and 07 genotypes show less evident
differences in expression levels (Figure 3B). The 0207
double mutant exhibits differences in expression pat-
terns resembling those obtained for the 02 genotype,
which, considering the low level of difference in expres-
sion level shown for the 07 genotype, is not unexpected.
However, a plot of 02 vs. 07 expression levels, clearly
shows the cumulative effect of both genotypes and
reveals a large number of genes with distinct expression
patterns (Figure 3D).

Among the ESTs considered, 17.1% exhibited a down-
regulated expression profile. The 02 mutation was
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Figure 3 Analysis of differential gene expression in A69Ywt, 02, 07, and 0207 endosperms. Signal correlation plots were used to examine
mutant effects on the EST pool taken into consideration in endosperms at 14 DAP. (A) Signals derived for each EST in wild-type (x-axis) and 02
(y-axis) backgrounds were plotted using a logarithmic scale. Similar graphs were made to compare the expression of (B): wild-type (x-axis) vs. 0/
(y-axis), (Q): wild-type (x-axis) vs. 0207 (y-axis) and (D): 02 (x-axis) vs. 07 (y-axis), respectively.

associated with 649 down-regulated ESTs, 508 down-
regulated ESTs were identified in the 07 background,
whereas 759 ESTs showed a reduced expression pattern
in the 0207 background. Up-regulated expression pro-
files were found for 3.23% of the ESTs considered. One
hundred and thirteen up-regulated ESTs were identified
in the 02 background, 26 in the 07 background, and 86
in an 0207 background. These results are summarized in
Figure 4. Among the ESTs identified, 36.7% exhibited
significant homology with sequences deposited in public
databases and could be unequivocally associated with
known biological processes. A complete list of differen-
tial gene expression detected in the mutant endosperms,
for the various functional classes as described above, in
comparison with wild-type, is available in Additional
file 1, Table S1, while a selection of the most interesting
up- and down-regulated genes is given in Table 3.

Amino acid metabolism

Several ESTs homologous to enzymes involved in amino
acid synthesis were differentially expressed in the 02, 07,
and 0207 endosperms. In particular, ESTs homologous

Figure 4 Differential expression of ESTs in A69Yo02, 07, and
0207 endosperms with respect to A69Ywt endosperm at 14
DAP. Diagrams show the number of down- and up-regulated genes
in the mutant endosperms with respect to wt endosperm.
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Table 3 Selected list of ESTs with significantly (P > 0.05) different mRNA levels

EST ID WT/o2 ratio  WT/o7 ratio = WT/0207 ratio Description Homology
Amino acid metabolism

Zeastar-H39-C10 2.1 tryptophan synthase (EC 4.2.1.20) EAZ38915.1
Zeastar-H10-F10 04 0.7 45 anthranilate phosphoribosyltransferase (EC 2.4.2.18) EAZ03872.1
Zeastar-E16-C09 2.1 16 76 anthranilate synthase (EC 4.1.3.27) EAZ30999.1
Zeastar-N02-C04 30 phosphoglycerate dehydrogenase (EC 1.1.1.95) NP_001059330.1
Zeastar-C09-D04 24 cysteine synthase (EC 2.5.1.47) NP_001105469.1
Zeastar-N17-E09 22 18 585 methionine synthase (EC 2.1.1.14) ABK96186.1
Zeastar-N16-E03 2.7 s-adenosyl--methionine synthetase (EC 2.5.1.6) CAJ45555.1
Zeastar-N10-D09 33 35 33 acetolactate synthase (EC 2.2.1.6) Q41769
Zeastar-B03-C08 22 19 2.1 ketol-acid reductoisomerase (EC 1.1.1.86) ABR25710.1
Zeastar-G05-L07 19 cytosine-specific methyltransferase (EC 2.1.1.37) AAC16389.1
Carbon metabolism and redox processes

Zeastar-N20-E07 17 citrate synthase (EC 2.3.3.1) EAY81201.1
Zeastar-N12-A12 22 NADP-specific isocitrate dehydrogenase (EC 1.1.1.42)  NP_001043749.1
Zeastar-H33-C04 32 2-oxoglutarate dehydrogenase (EC 1.2.4.2) CAH66433.1
Zeastar-E17-F12 22 33 1.8 succinate dehydrogenase (EC 1.3.5.1) EAZ38613.1
Zeastar-B08-C05 23 29 27 malate dehydrogenase (EC 1.1.1.37) AAK58078.1
Zeastar-E09-B12 20 25 28 lipoamide dehydrogenase (EC 1.8.1.4) EAY96621.1
Zeastar-H28-H12 1.8 phosphoglycerate mutase (EC 5.4.2.1) NP_001105584.1
Zeastar-L0O1-E03 2.1 pyruvate dehydrogenase (EC 2.3.1.12) EAY90179.1
Zeastar-E04-FO5 17 pyruvate kinase (EC 2.7.1.40) NP_001065454.1
Zeastar-H27-B10 1.7 fructose-bisphosphate aldolase (EC 4.1.2.13) EAZ10324.1
Zeastar-F02-C14 1.8 18 50.7 enolase (EC 4.2.1.11) NP_001105896.1
Starch metabolism

Zeastar-E02-E12 1.9 phosphoglucomutase (EC 5.4.2.2) NP_001105703.1
Zeastar-C03-B05 25 granule binding starch synthase Il (EC 2.4.1.11) NP_001106039.1
Zeastar-H42-C03 1.9 24 32 sucrose phosphate synthase (EC 2.4.1.14) NP_001105694.1
Zeastar-H13-H12 20 starch branching enzyme llb (EC 2.4.1.18) ABO25741.1
Zeastar-H26-F08 30 glucosyltransferase (EC 2.4.1.13) EAZ44804.1
Transcription and Translation

Zeastar-106-G05 20 YABBY2-like transcription factor EAY83940.1
Zeastar-B01-G12 0.5 MADS box protein NP_001105332.1
Zeastar-C04-D08 20 MADS box protein CAB85962.1
Zeastar-E06-DO1 20 MADS box protein NP_001105525.1
Zeastar-F04-L17 2.1 8.7 DNA binding protein opaque-2 NP_001105421.1
Zeastar-FO1-L0O5 0.5 JABT protein NP_001054112.1
Signal transduction

Zeastar-F04-M10 19 9.1 auxin-binding protein NP_001105353.1
Zeastar-H14-F07 20 2.1 auxin-binding protein AAA33430.1
ZT-P21-4-F06 0.6 small GTP-binding protein RAB2 ABD59354.1
Zeastar-E02-H05 25 putative ser-thr protein kinase NP_001042688.1
Zeastar-E08-A05 1.8 putative ser-thr protein kinase AAP50960.1
Zeastar-E16-H11 04 D-type cyclin EAZ04741.1

EST codes, WT over opaque expression ratios, EC descriptions, and databank homologies are indicated.
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to phosphoglycerate dehydrogenase (EC 1.1.195),
cysteine synthase (EC 2.5.1.47), methionine synthase (EC
2.1.1.14), S-adenosylmethionine synthetase (EC 2.5.1.6),
and a methyl transferase (EC 2.1.1.37), all enzymes
involved in the Ser, Gly, Cys, and Met pathways were
negatively affected in the 02 endosperm. However,
neither of these showed a significantly altered expression
level in the 07 and 0207 endosperms (Figure 5A).
Finally, the Ile, Val and Leu pathways were affected in
all three lines. ESTs homologous to acetolactate
synthase (EC 2.2.1.6) and ketolacid reductoisomerase
(EC 1.1.1.86), and involved in the biosynthesis of these
amino acids were significantly reduced in expression in
all three backgrounds, while leucine dehydrogenase (EC
1.4.1.9) was significantly different from wt only in the
07 endosperm (Figure 5A).

ESTs homologous to enzymes involved in tryptophan
synthesis were affected in 02 endosperm. Tryptophan
synthase (EC 4.2.1.20) homologues showed a significant
reduction of expression in 02 endosperms, while anthra-
nilate phosphoribosyl transferase (EC 2.4.2.18) and
anthranilate synthase (EC 4.1.3.27) homologous ESTs
were found to be differentially expressed in all three
mutant backgrounds. The former showed a significant
reduction of its expression level, while the latter
appeared up-regulated by 50% (Figure 5B).

Carbon metabolism and redox processes

Maize is an autotrophic organism that only needs
minerals, light, water and air to synthesize organic com-
pounds to grow, however, endosperm is a heterotrophic
organ. A large proportion of its proteins support pri-
mary metabolic processes and synthesis of more or less
complex molecules such as nucleotides, amino acids,
carbohydrates, lipids and secondary compounds.
Accordingly, alterations in the expression levels of sev-
eral genes encoding enzymes involved in these processes
are expected in this study.

A large set of ESTs exhibiting differential expression
amongst the lines analyzed showed sequence homology
with enzymes involved in C metabolism, including the
trichloroacetic (TCA) cycle and glycolysis. In particular,
seven ESTs homologous to TCA cycle related enzymes
were identified all of which were down-regulated. Four
of the ESTs were down-regulated only in the 02 endo-
sperm. These are related with oxaloacetate to citrate
(citrate synthase - EC 2.3.3.1), isocitrate to 2-oxo-gluta-
rate (isocitrate dehydrogenase - EC 1.1.1.42) and 2-oxo-
glutarate to 3-carboxy-1-hydroxypropyl-ThPP and
S-succinyl-dihydrolipoamide (oxo-glutarate dehydrogen-
ase - EC 1.2.4.2) inter-conversions. The remaining ESTs,
which could be associated with succinate to fumarate
(succinate dehydrogenase - EC 1.3.5.1), malate to oxa-
loacetate (malate dehydrogenase - EC 1.1.1.37), and

Page 8 of 18

lipoamide to dihydrolipoamide (dihydrolipoamide
dehydrogenase - EC 1.8.1.4) interconversions, were dif-
ferentially expressed in all three backgrounds (Figure
6A). Furthermore, ESTs associated with nine steps of
glycolysis and exhibiting significant lowered expression
patterns were identified. Phosphoglycerate mutase
(EC 5.4.2.1), pyruvate ferredoxin oxidoreductase (EC
1.2.1.51), and dehydrolipoamide acetyltransferase (EC
2.3.1.12) were found in the 02 background only; pyru-
vate kinase (EC 2.7.1.40) and fructose biphosphate aldo-
lase (EC 4.1.2.13) were found in the 07 endosperm,
while ESTs homologous to dehydrolipoamide dehydro-
genase (EC 1.8.1.4), pyruvate dehydrogenase (EC
1.2.4.1), and enolase (2-phospho-D-glycerate hydratase;
EC 4.2.1.11) exhibited a reduced expression in all three
backgrounds (Figure 6B). Furthermore, several genes
involved in the redox status such as cytochrome C oxi-
dase/reduction, thieredoxin and pyrophosphatase were
strongly negatively affected in the opaque mutations,
while a H-transporting ATPase and a thiosulfate sulfur-
transferase were greatly increased in 02 and 07 endo-
sperms, respectively.

Starch metabolism

Our profiling assays identified six differentially expressed
ESTs exhibiting sequence homology with starch and
sucrose metabolism related enzymes. ESTs homologous
to enzymes catalyzing the inter-conversion from
o-D-glucose-6P into a-D-glucose-1P (phosphogluco
mutase - EC 5.4.2.2), from o-D-glucose-1P into
ADP-glucose (glucose-1P thymidylyl transferase - EC
2.7.7.24), from ADP-glucose into starch (starch synthase
- EC 2.4.1.11) and from amylose into amylopectin (amy-
lase isomerase - EC 2.4.1.18) were down-regulated in
expression in the 02 background only. UDP-glucose to
sucrose conversion (sucrose synthase - EC 2.4.1.13)
appeared down-regulated in the 07 background, while
UDP-glucose to sucrose-6P conversion (sucrose phos-
phate synthase - EC 2.4.1.14) appeared down-regulated
in all three backgrounds (Figure 6C).

Storage protein synthesis

As expected, storage protein synthesis was greatly
affected in the mutant backgrounds analyzed. In the 02
background, a reduction of the 22-kDa a-zein transcrip-
tion pool was observed, while a concomitant increase of
10-, and 50-kDa y-zein transcripts was seen. The 07
endosperm showed a marked reduction of 19-kDa
o-zein transcription levels, as well as a reduction of 10-,
27-, and 50-kDa y-zeins. The transcription level of the
18-kDa zein class appeared increased in this back-
ground. Finally, the 0207 endosperm showed a reduced
transcription level of the 10-kDa y-, 19- and 22-kDa a-,
and 27- and 50-kDa y zein gene pools.
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Figure 6 Schematic representation of metabolic pathways. The citrate cycle (A), glycolysis (B) and starch (C) metabolisms are represented.
Steps associated with enzymes exhibiting an altered expression profile in the mutant endosperms analyzed with respect to the wt endosperm
are marked. ESTs revealing an altered expression profile in A69Yo2 (1), A69Yo7 (2) endosperm, and both the A69Yo2 and A69Yo/ endosperms (3)

Transcription and translation

A series of ESTs homologous to genes involved in gene
transcription and translation processes showed variation
in the expression patterns analyzed. In particular, three
putative MADS-box domain transcription factors (TFs)

were identified in the 02 background as well as two

G-box binding factors and a YABBY2 factor, a member
of the YABBY family of TFs, were down-regulated in 02.
The 07 endosperm showed differential expression of
a putative MADS-box gene, a putative MYB family
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transcription factor and a homologue of the OCL5
DNA-binding homeobox protein. It was interesting to
note that in the 07 endosperm mutant the expression of
the transcriptional regulator O2 is significantly down-
regulated. Additionally, ESTs homologous to the JAB1
protein (a putative JUN activation domain binding pro-
tein) and to a putative G-box binding factor showed
altered expression in the 0207 background. All ESTs
mentioned showed down-regulation. It was also evident
from our data that ESTs encoding proteins such as his-
tone H2A, H2B and H3, H4, which are involved in
chromatin function, were down-regulated.

Signal transduction

In the endosperm mutants, particularly in 02 and 0207,
the amounts of several transcripts involved in signalling
by phosphorylation/dephosphorylation were reduced.
The repressed genes encoded putative receptor kinases,
protein-kinase-like proteins, Ser/Thr protein phospha-
tases, and auxin-binding proteins. It is known that these
proteins play pivotal roles in regulating and coordinating
aspects of metabolism, cell growth, cell differentiation,
and cell division (review in [18]). The switching on and
off of these genes is crucial for their correct function.
Our results also indicate that in the 02 endosperms the
level of transcript encoding a protein phosphatase and a
small GTP binding protein RAB2 were increased. Simi-
larly, in the 07 and in 0207 endosperms we noted an
increase in a D-type-cyclin and in a putative nitrogen-
activated protein kinase, respectively.

Protein synthesis, turnover, and destination
The protein synthesis machinery plays an important role
in endosperm development and its biosynthesis entails
the co-expression of a number of specific proteins. In
the protein synthesis categories, mainly the ESTs encod-
ing putative ribosomal proteins, translation initiation
and elongation factors showed, to various extents, a
reduced transcription level in the mutant endosperms
compared to wild-type endosperm. For example, ESTs
homologous to translation initiation factors 1B, 3a., 4a.,
and 5a and to elongation factor 1B were reduced in
expression in all endosperm mutants considered.
Potentially also very interesting is the fact that several
genes involved in protein degradation (ubiquitin path-
way, a range of proteases, and heat shock protein genes)
appeared repressed in the mutant endosperms, with the
exception of some ESTs (pre-pro-cysteine proteinase,
26S proteosome regulatory subunit, particle-triple-A
ATPase subunit 3, and serine peptidase) that are acti-
vated in the 02 and 0207 endosperms. Protein degrada-
tion can be part of the normal protein turnover process,
but can also play an important role in the control of
endosperm development or can be part of an ubiquitin
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ligase complex involved in signalling via protein
degradation.

Fatty acids, lipid, cell wall and cytoskeleton synthesis

The expression of some genes annotated as involved in
fatty acid biosynthesis and oil storage were repressed in
all the endosperm mutants. Among the secondary com-
pound category involved in cell wall lignification or cell
wall polysaccharide synthesis, a range of genes encoding
enzymes involved in cell wall growth (e.g. encoding an
endo-1,4-B-glucanase Celll; a cellulose synthase; a
hydroxyproline rich glycoprotein) involved in the synth-
esis of cellulose are poorly expressed in the endosperm
of the mutants. Considering the cytoskeleton, in both
endosperm mutants the down regulation of genes
involved in tubulin and actin biosynthesis were
observed.

Transport and stress

The transcript levels of several genes involved in amino
acid, lipid, protein and membrane transport were down-
regulated in the opaque mutants. Furthermore, down-
regulation of the various transcripts encoding tempera-
ture-stress, inducible proteins, and pathogenesis related
proteins were noted in the mutant endosperms. In 02
endosperm a putative low-temperature and salt respon-
sive protein and putative Pi starvation-induced proteins
were significantly induced, while a heat shock protein
HSP101 and a wound-induced protease inhibitor were
increased.

Discussion

As highlighted before, endosperm growth and develop-
ment is a complex phenomenon that may be driven
by the coordinate expression of numerous genes.
Approaches using spontaneous and induced mutants
allow the characterization of the complex underlying
gene expression system integrating carbohydrate, amino
acid, and storage protein metabolisms, and operating
during endosperm growth and development. The current
work confirms other studies carried out on the 02 and 07
mutations (reviewed in [1]), in revealing considerable
qualitative and quantitative differences between the
endosperm protein assets of these genotypes. The mutant
alleles at these loci are both recessive, and when homozy-
gous, repress mainly the higher and lower molecular
weight a-zein subunits, respectively, with an accumula-
tion of albumins, globulins, and glutelins. The major shift
in expression from zein to non-zein genes is consistent
with changes in the patterns of protein synthesis in the
endosperm. Moreover, in the 0207 double mutant, the
alleles act additively and possibly independently on zein
synthesis. It is very likely that the different genetic back-
grounds used in the various experiments may have an
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impact on storage protein synthesis by considering the
exceptional haplotype variability in maize genomic
regions containing zein genes (see e.g. [5,13]). Our data
confirm previous findings that the 02 and 07 mutations
nearly double the Lys content in maize endosperm and,
thereby, significantly improve the nutritive quality of the
grain ( [19], and references therein). Furthermore, we
found evidence in the opaque mutants herein investi-
gated for high levels of other essential amino acids
derived from the Asp pathway (i.e. Thr, Met and Ile-
Leu), as well as for Arg and Gly.

To better clarify the role that O2 and O7 play in
endosperm gene expression and to investigate their pos-
sible interactions, we have mRNA profiled wild-type, 02,
07, and 0207 mutant endosperms. The ability to concur-
rently profile the expression of many genes in a tissue
provides a powerful tool for comparing endosperm
mutants with their wild-type counterparts to understand
their functional role in metabolic processes. Although
changes in gene expression (mRNA level) do not neces-
sarily lead to changes in protein levels or to changes in
developmental processes, the importance of transcrip-
tion as a control point in development is well estab-
lished for both plant and animal systems [20].

In this study, the profiling of endosperm transcripts
was obtained with the Zeastar unigene set, based on the
sequence information of >7,200 maize genes, mainly
derived from maize endosperm and covering a wide
range of metabolic pathways and cellular and physiologi-
cal processes. The number of genes identified in our
study was consistent with other reports suggesting that
at least 5,000 and 4,500 to 8,000 different genes could
be expressed, respectively in maize and wheat endo-
sperms cDNA libraries [14,21]. These numbers were
also considered a minimal estimate in a similar investi-
gation previously reported in maize [15]. To validate the
observed alterations in developing endosperms, we have
used qRT-PCR, which confirmed that the observations
regarding transcript accumulation were accurate and
consistent with the findings of other laboratories under-
taking similar studies (for an overview see [22]). They
also take into account sources of variation inherent to
microarray experiments [23]. Thus, we are confident
that the alterations of the transcriptomes described here
are consistent with the biology of endosperm develop-
ment and are both real and significant.

In agreement with previous results regarding the ana-
lysis of a range of opaque mutants (including 02 but not
07) with an Affimetrix GeneChip, our transcriptomic
analyses demonstrate that the 02 and 07 mutants here
investigated are very pleiotropic and influence several
metabolic processes occurring in the developing endo-
sperm [7]. The degree of the pleiotropic effect varied
among the mutants: 07 has the smallest effect on global
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patterns of gene expression, consistent with the rela-
tively small differences in protein and amino acid com-
position in this mutant compared to the wild type. By
contrast, the large changes in protein and amino acid
synthesis in 02, replicated also in the 0207 double
mutant, are associated with large changes in the patterns
of gene expression.

Although, the type of microarray analysis discussed in
this paper does not distinguish between direct and indir-
ect effects, making it difficult to conclude whether and
how a TF interacts with a potential target gene, the ana-
lyses of the changes in the transcription profiles of the
02 and o7 mutants allow us to formulate predictions
regarding the biological role of these loci in endosperm
metabolism. First, our findings are consistent with the
role of O2 as a transcriptional activator. In fact, the O2
protein is known to regulate the expression of genes
that encode the 22-kDa a-zein gene family [24]. More-
over, it controls the expression of other non-storage
protein genes (e.g. [7,8] and additional files online). Sec-
ond, one of the pathways affected by O2 activity is
amino acid biosynthesis. It has been shown that O2 reg-
ulates the levels of lysine-ketoglutamate reductase,
aspartate kinase, acetohydroxyacid synthase, an enzyme
catalyzing the first common step in the synthesis of
branched chain amino acids (BCAA), and cyPPDKI, a
key regulator of the glycolytic pathway, linked to C and
amino acid metabolism and to the starch-protein bal-
ance [10,11,25-27]. This associated with its structural
and functional similarity to GCN4, a general transcrip-
tion factor regulating amino acid biosynthesis in yeast
(Saccharomices cerevisiae;), reinforces the hypothesis
that O2 may be indeed involved in general amino acid
control in maize endosperm [28,29]. In the current
study, the transcription levels of various genes encoding
key enzymes involved in amino acids were significantly
affected in the 02 mutant. O7 also influences the expres-
sion of some genes of the amino acids biosynthesis, but
only in few cases the mRNAs affected are the same that
are up- or down-regulated in the 02 mutant, suggesting
that the O2 and O7 factors act on specific target genes.
Among the pathways affected by 02 and o7 mutants are
those leading to the synthesis of the aromatic (Phe, Trp,
and Tyr), Asp-derived, and BCAA aminoacids. These
pathways are deeply interconnected both in terms of C
precursor supply and of allosteric interactions [30].
A complex interplay of regulators controls the metabolic
flow through the aromatic, Asp and BCAA-pathways,
which includes feedback inhibitors of regulatory
enzymes [31,32]. Moreover, alterations in enzymes
affecting amino acid metabolism have been shown to
have pleiotropic effects on free amino acid levels in
plant tissues. For example, Frankard et al. found that a
mutation in a key enzyme in the Asp-pathway, a
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feedback-insensitive aspartate kinase mutant in tobacco,
not only has a higher level of amino acids derived from
the Asp pathway, but other pathways as well [33]. Guil-
let et al. reported that the alteration of Trp and Tyr
levels in transgenic tobacco leaves affects the level of
Trp, as well as the aliphatic amino acids Met, Val, and
Leu [34]. Furthermore, there is evidence indicating that
glutamate is an allosteric regulator of phosphoenolpyru-
vate carboxilase (PEPC) and pyruvate kinase (PK) gener-
ating, respectively, oxalacetate and pyruvate, that, in
addition to PEP, are intermediate metabolites that play a
central role in plant primary and secondary metabo-
lisms, including amino acids biosynthesis [35].

Our results further indicate that 02 and o7 alter gene
expression in a number of enzymatic steps in the TCA
cycle and glycolysis pathway that are of central impor-
tance for the amino acid metabolism in developing
seeds. Therefore, both O2 and O7 are expected to
induce multiple effects on endosperm metabolism by
modulating the glycolytic and TCA pathways. An altera-
tion in the expression patterns of glycolytic and TCA
enzymes in developing endosperm is related to the mul-
tiple pathways and demands on central enzymes of
intermediary metabolism. In addition, during endosperm
development, the active use of C precursors and energy
from glycolysis is required for rapid cell division, and in
the accumulation phase these resources may simply be
redirected to storage compound syntheses. Regarding
glycolysis, evidence indicates that both regulatory and
structural genes influence the glycolytic pathway [36].
Because regulators of glycolysis have not been mapped
in maize, it is also of interest to compare the activity of
several key enzymes in this pathway. However, a sys-
tematic characterization of such enzymes will be neces-
sary before any inferences are warranted.

In this context a further interesting observation result-
ing from this study regards the altered expression of
several enzyme encoding genes, e.g. PK, pyruvate dehy-
drogenase, and enolase, involved in pyruvate metabo-
lism, suggesting that O2 and O7 are, likely indirectly,
implied in the regulation of this metabolite. Recent
results, obtained by constitutive over-expression of the
maize TF Dof, a member of the Dof (DNA-binding with
one finger) TFs unique to plants, in transgenic Arabi-
dopsis was directly associated with the PEPC gene
expression, leading to a marked increase in acid con-
tents, and a reduction of glucose [37]. In addition, trans-
genic expression in potato of a PEPC insensitive to
feedback inhibition by malate resulted in a shift of C
flux from soluble carbohydrates and starch to organic
acids and amino acids [38], implying the ultimate link
between C and N metabolism. Thus, the 02 and 07
mutation may lead to an increased level of pyruvate by
down-regulating genes encoding enzymes involved in
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the pyruvate metabolism providing a link between
C and N partitioning.

A further outcome from our work concerns the down
regulation observed in the 0207 double endosperm
mutant, in comparison to wild-type, of genes encoding
auxin-binding proteins. The phytohormone auxin regu-
lates a wide variety of plant developmental programs
through various regulatory mechanisms, including
auxin-binding proteins [39]. For example, in maize the
synthesis of a number of seed storage proteins has been
shown to be subjected to regulation by phytohormones
[40]. Moreover, recent evidence indicates that a reduced
accumulation of auxins in the maize defective endo-
sperm*-B18 mutant, due to down regulation of Pin-
formedl, a member of the PINFORM family of auxin
efflux carriers, leads to a reduction in dry matter accu-
mulation in the seed [41]. Similarly, the cell wall inver-
tase-deficient miniaturel (mnl) mutant exhibits several
pleitropic changes, including a reduction in kernel mass
and a detrimental effect on auxin levels throughout ker-
nel development, indicating that developing seeds may
modulate growth by altering tryptophan-dependent
auxin biosynthesis in response to sugar concentration
[42]. This has suggested a potential cross talk between
sugar and auxin pathways. It is tempting to speculate,
on the basis of the present and previous studies on the
02 and o7 mutants, indicating a reduction in kernel
mass and an altered sugar metabolism, that a drastic
imbalance of the sugar metabolism in the 0207 endo-
sperm mutant may be the cause of the observed down
regulation of enolase and auxin-bindin protein gene
expression [1]. However, further research on these ver-
satile signaling switches will be needed to clarify this
point.

A close examination of the expression patterns of
genes involved in sugar and starch metabolism shows
that both the 02 and 07 mutations create perturbations
in the hexose/sucrose metabolism. It has been reported
that sugars, such as glucose and sucrose, can act as sig-
nals to trigger changes in the expression of a broad
range of genes, including genes associated with C and N
metabolism, signal transduction, and post-transcriptional
modification of proteins [43-45]. In addition, Price et al.
found that a large number of stress-responsive genes
were also induced by glucose, indicating a role of this
sugar in the environmental response [44]. Moreover,
one group of genes consistently affected in the opaque
mutants, has been implicated routinely in stress
responses. Hunter et al. (and references therein),
reported that the opaque mutations disrupt the organi-
zation of a.- and y-zeins in the protein body and lead to
the increased expression of cellular stress response
genes, such as those encoding molecular chaperones,
cell wall proteins, and wound- and pathogen-activated
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proteins [7]. In this respect, Segal et al. found that
RNAi-mediated silencing of the genes encoding the 22-
kDa o-zeins caused the mature endosperm to become
starchy, indicating that the reduced synthesis of 22-kDa
a-zeins is sufficient to create the opaque 02 phenotype
[46]. Although further research is needed to provide
direct evidence of these relationships, the up-regulation
of these genes is a strong indicator of the deleterious
nature of the opaque mutations and their perturbation
of endosperm cell functions.

The regulation of gene expression is central to a myr-
iad of biological processes at the molecular level and is
mainly controlled by transcription factors and signal
transducers. These are of special interest since they are
capable of coordinating the expression of several down-
stream target genes active in metabolic and develop-
mental pathways and may provide new perspectives for
data mining and for studies of coordinated gene regula-
tion in developing maize endosperm. Additionally, TFs
might be a powerful tool for the modification of meta-
bolism and hence the generation of crops having super-
ior characteristics because a single TF frequently
regulates coordinated expression of a set of key genes
involved in metabolic pathways. Although different reg-
ulatory mechanisms involving O2 have been suggested
earlier on the basis of protein-protein interactions, we
have identified, in addition to O2, other TFs that may
be useful for clarifying the interaction between O2 and
other putative TFs, such as MAD-box, Myc, and YABBY
[9,46-49]. This last small plant-specific TF family con-
tain TF family contains seven to eight members in rice
and six in Arabidopsis, where they were shown to be
involved in establishing abaxial-adaxial polarity in lateral
organs and in restricting meristem nutrition and growth
[50]. Characterization of these genes in monocots is less
advanced, but mutational and expression analysis sug-
gest that their functions have diverged between mono-
cots and dicots, with the monocot TFs lacking a central
role in specifying abaxial-adaxial cell fate [50]. They may
represent candidates for genes primarily or secondarily
involved in the control of metabolic networks, and their
analysis can help to elucidate endosperm metabolism.
Furthermore, O2 is able to recruit the maize co-activa-
tors GCN5 and ADA2 to modulate transcription of chi-
merical genes, showing that O2 is able to interact with
proteins other than the bZIP type in heterologous sys-
tems. It is worth to mention that in the current study
we have observed a sizeable reduction in the 07 endo-
sperm of the transcription level of O2 and VSFI (vascu-
lar specificity factor 1), another bZIP transcriptional
activator, identified in tomato and involved in vascular
development [51,52]. Whether O7 affects directly or
indirectly expression of other TFs remains to be clari-
fied. However, it is clear that the down-regulation of O2
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noted in the 07 mutant is not sufficient to induce an
02-like phenotype, because changes in the transcriptome
of the two mutants are different and appear to some
extent additive. Therefore, it is likely that O7 is one of
the components that may cooperate with other factor(s)
in regulating O2 expression via direct or indirect
mechanisms. Finally, our results indicate alterations in
the expression profile of genes encoding protein phos-
phatases and kinases; these proteins, in turn, provide the
means to transduce internal (e.g., hormones) and exter-
nal (e.g. temperature) signals into transcriptional and/or
chemical responses in cells. Almost no protein phospha-
tases and kinases from seeds have been analyzed in the
opaque mutants in detail, although evidence has shown
that at the post-translational level phosphorylation of
02 protein modulates its DNA-binding affinity [53]. In
fact, these last authors have found that O2 proteins
exist in the endosperm cells as a pool of differentially
phosphorylated forms varying in their relative abun-
dance and in the extent of phosphorylation.

Conclusions

In summary, our analyses reveal that O2 and O7 are
very pleiotropic regulatory factors, affecting the expres-
sion of a broad range of endosperm-expressed genes
involved in several metabolic pathways. Here, the use of
microarrays based on ¢cDNA libraries of biological sam-
ples enriched in endosperm tissue allowed us to identify
with a good level of confidence a large collection of
genes differentially expressed in endosperm mutants
that were not previously identified through traditional
analyses and in a similar study as reported previously
[7]. The number of genes to be affected by O2 and O7
suggests that these, and in particular O2, represent an
evolutionary ancient factor responsible for modeling
intermediary metabolism, which has been subsequently
recruited for boosting the expression of o-zeins storage
products. Although, by necessity this paper is descriptive
and more work is necessary to define gene function and
dissect the complex regulation of gene expression, the
genes isolated and characterized to date give us an intri-
guing insight into the mechanisms underlying endo-
sperm metabolism.

Methods

Plant material

The normal maize inbred A69Y(wt) and the endosperm
mutant genotypes 02, 07, and 0207, in a near-isogenic
A69Y background were grown in adjacent plots in the
genetic nursery of the Maize Research Unit in Bergamo
(Italy), during summer 2006. The 02 mutant line con-
tained 02m(r), a null expression O2 allele, while the 07
mutant was obtained from the Maize Genetics Stock
Centre at the University of Illinois (Urbana-Champaign)



Hartings et al. BMC Genomics 2011, 12:41
http://www.biomedcentral.com/1471-2164/12/41

[54]. All endosperm mutants’ genotypes were converted
to the A69Y background through six backcrossing
cycles, following by several rounds of self-pollination;
they are phenotypically uniform and appear genetically
homogeneous as expected, because after six backcross
generations the mutant inbred lines should share, on
average, ~99% of the recurrent parent genome. The
homozygous 0207 double mutant was obtained by cross-
ing the above-mentioned 02 and 07 A69Y lines, and
selecting for the homozygous double mutant kernels.

A minimum of 8 well-filled ears for each genotype
were sampled at 14 days after pollination (DAP), a stage
where storage protein and starch syntheses commence,
and frozen immediately in liquid nitrogen. Kernels were
taken from the centre of each ear; the endosperm was
dissected from the embryo and pericarp and stored
at -80°C.

Mature kernels were harvested after physiological
maturity and dried in a forced-air oven. To minimize
the effect of biological variation between ears on gene
expression, equal numbers of dissected endosperms
from 4 ears were pooled and treated as one sample;
thus a minimum of three replicated samples was used
for each experiment.

Total Nitrogen, protein and amino acid analysis

Protein analyses were performed with endosperm from
mature kernels. Samples were freeze-dried, ground in a
mortar, and analyzed for total nitrogen (N) content on
an automated N analyzer (NA1500, Carlo Erba) follow-
ing the method of Dumas. Total endosperm proteins
were extracted in duplicate, from 10-20 endosperms and
fractionated as previously described by [55]. The percen-
tage of total protein (N*6.25) was calculated by subtract-
ing the value of non-protein N evaluated from the value
obtained for total N content [56].

Amino acids analysis (after Performic acid oxidation)
was performed at the analytical facility of the University
of Milan (Italy). Measurements were made with pooled
samples of 15 kernels for each genotype; the data pre-
sented are the means of four independent assays.

2-D SDS-PAGE

Isoelectric focusing (IEF) was performed with a Multi-
phor II System (Pharmacia LKB Biotechnology AB,
Uppsala, Sweden). 0.5 mm thick IEF gels containing 3.3%
acrylamide/bis (A/B 28.8% AC 1.2% bis), 0.04% ammo-
nium persulfate, 0.07% TEMED, Ampholine carrier
ampholytes (Sigma, Dorset, UK): pH 3.5-10 (2.96%); pH
4-6 (0.52%); pH 5-7 (0.52%); pH 7-9 (0.52%); pH 8-10.5
(0.52%), and 6 M urea, were cast onto a gel-support med-
ium (gel Bond PAG Film/FML Bio Products). Electrodes
were placed at a distance of 13 cm. Wicks were soaked in
0.5 M H3PO, (+) and 0.5 M NaOH (-). Sample wells
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(silicon 7 mm x 1 mm) were placed 1 cm from the anode
and loaded with protein samples dissolved in IEF resus-
pension buffer (6 M urea, 50 mM K,CO3, 2% v/v 2-mer-
captoethanol) [57] and with 10 pl pI markers (IEF mix
3.5-9.3, Sigma). IEF was performed at 8 W for 2 h. After
IEF separation, one gel strip per well was cut out and
equilibrated for 30 min. in 1.12 M glycerol, 75mM Tris-
HCI pH 6.8, 2.4% (v/v) SDS and 2.5% 2-mercaptoethanol.
For the second dimension, a 15% Laemmli gel with a
2 cm stacking gel was cast without slot former and the
IEF strip was then mounted at the cathodic end. After
SDS-PAGE, gels were stained and dried.

cDNA cloning and microarray construction

Microarrays were assembled using clones obtained dur-
ing the EC “Zeastar” project (http://www.cerealsdb.uk.
net/zeastar.htm). Briefly, 20 part-normalized cDNA
libraries were prepared from 3-28 DAP endosperm and
kernel development tissues covering the 5 key stages
(i.e. cenocytic, cellularization, differentiation, reserve
synthesis, and maturation [2]. 22,365 ESTs were
sequenced, aligned, assembled into contigs using a simi-
larity score of 90%, and annotated using BLASTX (96%
id/75 bp) software. For each contig, the cDNA contain-
ing the largest transcript was identified. These, together
with all singleton cDNAs (6719) were used to construct
a Unigene set of 8,950 sequences. ESTs were stored as
cloned fragments in glycerol stocks in 384-well microti-
ter plates at -80°C. Before spotting, 2 pl of each EST
sample were added to 50 ul PCR amplifications using:
2 ul of T3 primer at 15 pmol/pl; 2 pl of T7 primer at 15
pmol/pl; 5 pl of 2 mM dANTP mix; 1.5 pl of 50 mM
MgCl,; 5 pl of Invitrogen 10x PCR reaction buffer; 0.2
ul of Invitrogen Taq DNA polymerase recombinant
(5 U/ul). Amplified products were purified with the
Wizard MagneSil PCR Clean Up System (Promega,
Madison, WI). Aliquots were then tested on 0.8% agar-
ose gels in order to verify insert integrity and concentra-
tion. Finally, selected amplification products were air-
dried and resuspended in 15 pl of 3x printing buffer
(150 mM of NaH,PO,, 150 mM Na,HPO,, pH 8.5).

mRNA isolation and slide hybridization
Total RNA was prepared from 100g frozen, ground
endosperm tissue using Trizol Reagent (Invitrogen,
Carlsbad, CA) following the manufacturer’s instructions.
polyA™ RNA was purified using the PolyA Tract mRNA
System Kit IV (Promega, Madison, WI) following two
cycles of oligo(dT) column purification to ensure a high
purity of polyA™ RNA. The purified RNA was quantified
by measuring its absorbance at 260 nm and diluted to a
final concentration of 1 pg/ul

For each mRNA probe, 1 pg of purified polyA" RNA
was labelled by reverse transcription in the presence of
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Cy3- and Cy5- dCTP using the Amersham CyScribe-
First Strand cDNA Labelling kit (Amersham Biosciences,
Piscataway, NJ) following manufacturer’s indications.
Microarray slides were placed in a rack and incubated
as follows: 1) 15-30 min at 50°C in pre-warmed pre-
hybridization solution 1 (3x SSC, 0.1% SDS 0.1 mg/ml
BSA); 2) two rapid washes in distilled water; 3) 20-40
min at 50°C in pre-warmed pre-hybridization solution 2
(4x SSC, 0.1% SDS); 4) 2 min in distilled water at 94°C
for sample denaturation; 5) two washes at RT in distilled
water. Subsequently, slides were centrifuged at 1,500
rpm for 3 min at RT. Labelled cDNA mixes (Cy3 and
Cy5) were added to 15 pl of formamide and 7.5 pl of
Amersham 5x microarray hybridization buffer (Amer-
sham Biosciences, Piscataway, NJ). The mixture was dis-
pensed onto the microarray slides, covered with a
Hybri-Slip cover slip (Sigma, Dorset, UK) and incubated
in the dark at 42°C overnight in a hybridization chamber
(GeneMachines, San Carlos, CA) containing 120 pl of
sterile distilled water to maintain humidity. Hybridized
slides were washed as follows: 1) 5 min at 42°C with 2x
SSC, 0.1% SDS; 2) 5 min at 42°C with 1x SSC, 0.1%
SDS; 3) 5 min at RT in 0.2x SSC; 4) 5 min at RT in
0.1x SSC; 5) 5 min at RT in distilled water. Finally, the
slides were centrifuged at 1,500 rpm for 3 min to
remove remaining liquid.

Microarray data analysis

All microarray experiments were performed in triplicate
using dye swapping, hence giving rise to 12 independent
measurements for each EST, considering the presence
of duplicate spots on each slide. Raw measurements of
spot fluorescence intensities were collected from hybri-
dized slides using a Genepix 4100A scanner and Gene-
pix Pro4 software (Axon Instruments, Union, CA).
Subsequently and with the use of the TM4 software
suite [58], the obtained spot values were corrected for
background fluorescence and inconsistent hybridization
results across dye-swap replicates. The data were log,
transformed and LOWESS normalized correcting for
pin-induced spot intensity biases. To verify reproducibil-
ity between spots across slides, F-tests were performed
applying a 95% confidence threshold and allowing
removal of inconsistent hybridization results. A mixed
model ANOVA was used to assess the significance of
the difference in expression of each gene among geno-
types using a false-discovery rate significance threshold
of 0.05 [59,60]. With the multiple steps required to
carry out a successful microarray experiment, it is not
unusual to have “noisy” data. To extract reliable infor-
mation from the data, non-biologically significant
sources of signal variation were identified and their
effects removed. The following gene model was used to
identify genes that were differentially expressed:
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Yijklm = u + Array; + Dye it Treatment,,

+ BioRep; + (Dye * Treatment) j,
+(BioRep * Treatment);, + (BioRep * Dye)

+ Ejjkim

Y. denotes the transformed intensity for a gene, u
denotes the average intensity and ey, captures the ran-
dom errors. The variation due to microarray slide used
(Array) was designated as random effect, whereas, varia-
tions due to RNA fluorescent labeling (Dye), biological
sample RNA (BioRep) and endosperm genotype (Treat-
ment) were treated as fixed effects. Only the main
effects interacting with Treatment were included in the
model.

Quantitative Real-Time PCR

1 pg of mRNA was reverse transcribed by mixing with 1
ul of oligo-dTyg (2 pg/pl), 1 pl of ANTP mix (10 mM), 4
ul of first strand buffer (Invitrogen, Carlsbad, CA), 2 ul
of 0.1 M DTT, 1 pl (200 U/ul) of M-MLV Reverse
Transcriptase (Invitrogen, Carlsbad, CA), and 13 pl of
distilled sterile water. After reverse transcription at 37°C
for 1 hour, the cDNAs were tested on a 0.8% agarose
gel and diluted to a final volume of 500 pl with distilled
sterile water. PCR reaction mixtures were assembled
combining: 2 yul of diluted cDNA; 2 pl of gene-specific
forward primer (15 pmol/ul), 2 ul of gene-specific
reverse primer (15 pmol/ul), 5 pl of 10x reaction buffer
(Invitrogen, Carlsbad, CA), 2 pl of 50 mM MgCl,, 2.5 pl
of 2 mM dNTP mix, 5 pl of diluted (5,000 fold) SYBR
Green, 0.5 fluorescein, 0.2 pl of Platinum Taq DNA
polymerase (5 U/ul, Invitrogen, Carlsbad, CA). Real-
Time amplification was performed using an iCycler
(BioRad, Hercules, CA) using the following thermal
cycling profile: 95°C for 5 min followed by 50 cycles of
95°C - 30 sec; 55°C - 30 sec; 72°C - 30 sec. All reactions
were performed in triplicate. The obtained threshold
cycles (Ct) were averaged across replicates and sample
errors computed. Ratios of Ct values were computed
and used to corroborate the observed hybridization pat-
terns. Linear regression analyses showed a strong corre-
lation between measurements of gene expression
assessed by microarrays and by qRT-PCR, with correla-
tion coefficient r> = 0.83 (n= 120, r = 0.91; data not
shown). Gene-specific primers were selected and
designed from sequences near the 3’ end of the gene
using the Zeastar Unigene sequence database. An 18S
rRNA was selected as a control.

Sequence confirmation of clones
To confirm the fidelity of differentially expressed genes,
corresponding clones were sequenced from the 5’ end
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using a universal reverse primer on an automatic DNA
sequencer (CEQ 8000, Beckman-Coulter, Fullerton, CA).

Additional material

Additional file 1: Table S1 - differently expressed genes identified.
Complete list of genes whose mRNA levels differed significantly (P >
0.05) between wild-type (WT) and opaque (02, 07, 0207) endosperm
mutants as identified in this paper.
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