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Abstract

variation in individual genomes.

Background: Integration of genomic variation with phenotypic information is an effective approach for
uncovering genotype-phenotype associations. This requires an accurate identification of the different types of

Results: We report the integration of the whole genome sequence of a single Holstein Friesian bull with data
from single nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) array technologies to
determine a comprehensive spectrum of genomic variation. The performance of resequencing SNP detection was
assessed by combining SNPs that were identified to be either in identity by descent (IBD) or in copy number
variation (CNV) with results from SNP array genotyping. Coding insertions and deletions (indels) were found to be
enriched for size in multiples of 3 and were located near the N- and C-termini of proteins. For larger indels, a
combination of split-read and read-pair approaches proved to be complementary in finding different signatures.
CNVs were identified on the basis of the depth of sequenced reads, and by using SNP and CGH arrays.

Conclusions: Our results provide high resolution mapping of diverse classes of genomic variation in an individual
bovine genome and demonstrate that structural variation surpasses sequence variation as the main component of
genomic variability. Better accuracy of SNP detection was achieved with little loss of sensitivity when algorithms
that implemented mapping quality were used. IBD regions were found to be instrumental for calculating
resequencing SNP accuracy, while SNP detection within CNVs tended to be less reliable. CNV discovery was
affected dramatically by platform resolution and coverage biases. The combined data for this study showed that at
a moderate level of sequencing coverage, an ensemble of platforms and tools can be applied together to
maximize the accurate detection of sequence and structural variants.

Background

The domestic cow (Bos taurus) is a ruminant that
belongs to the Cetartiodactyl order of eutherian mam-
mals. Being phylogenetically distant from primates and
rodents and with a drastically different biology, cattle
serve a significant role as animal model for studies of
evolution, metabolism, reproduction, and disease [1].
The recent publication of the cattle genome assembly
and the insights into sequence and structural variations
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identified in the bovine HapMap project has sparked the
full potential of cattle genomic research, expanding our
knowledge of mammalian evolution and biology [2-5].
Furthermore, the integration of population-wide geno-
type information with phenotypic registrations generated
in the dairy and beef industry provides an important
resource for uncovering genes associated with complex
production traits [6-10].

Despite the fact that SNP genotyping technology has
enabled successful genome-wide association studies
(GWAS) in humans and in livestock species [11-13], it
has known disadvantages. For example, an ascertain-
ment bias derived from the fact that the SNPs used are
chosen to have a minimum “rare” allele frequency as
well as to segregate in multiple breeds is sometimes
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introduced. The identification of rare causal mutations
might be complicated due to failure to detect the dise-
quilibrium between causal mutations and genotyped
SNPs [14,15]. In contrast, whole genome sequencing of
single individuals removes the polymorphism ascertain-
ment bias, detects rare putative functional variants and
also retrieves structural variants [16], an important cate-
gory of genomic variation that only recently has become
fully appreciated [17-24]. Despite their known functional
importance in humans [21,23], so far only a few small-
scale studies have probed the extent of structural var-
iants, mainly copy number variation (CNV), in cattle
[25-30]. The increasing cost efficiency of sequencing
technologies has enabled large scale sequencing of indi-
vidual genomes, which has dramatically increased of the
catalogue of genomic sequences and structural variants
detected and filled some of the earlier gaps in resources
that were biased towards common sequence variants
[24,31-43]. Therefore, cattle research initiatives similar
to the human 1000 Genomes and Personal Genome
projects [24,44] are of paramount importance in order
to obtain a complete catalogue of genomic variation in
this species. This catalogue will help researchers to effi-
ciently associate genomic information with productivity
traits and improve disease resistance to achieve breeding
goals [45]. Two recent studies have reported the analysis
of whole genome sequencing of cattle (Fleckevieh and
Kuchinoshima-Ushi bulls) focussing on SNP discovery
[46,47]. Nonetheless, to work out the links between
DNA sequence and phenotype, efforts to sequence the
genomes of more individuals are intensifying [48,49].

In this study, we have sequenced the genome of a
Holstein-Friesian bull using massive parallel sequencing
obtaining about 15 fold sequencing depth. Significant
sequence and structural variations were found using an
ensemble of variant callers: SNPs were identified using
Mosaik+GigaBayes [50,51] (hereafter giga), CLC Geno-
mics Workbench [52] (hereafter clc), BWA+SAMtools
[53,54] pileup (hereafter bwa) and SMALT+SAMtools
[54,55] pileup (hereafter smalt); intra read indels were
detected with BWA+mpileup and BWA+Dindel; and
inter read indels, inversions, and translocations were
found using Pindel and BreakDancer [53,54,56-59].
Copy number variants were detected using three differ-
ent platforms: sequence read-depth analysis; CGH arrays
by signal intensity variation by comparing two samples;
and SNP arrays by clustered pool references, signal
intensity, and allelic intensity [29,60,61]. Sequence and
structural variants were validated with the BovineHD
and BovineSNP50 BeadChips (Illumina, San Diego, Cali-
fornia, USA), and RT-PCR respectively [62]. The tools
and pipelines applied here demonstrate that whole gen-
ome sequencing at relatively modest coverage levels is
sufficient firstly, to survey sequence and structural
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variations by integrating different variation detection
methods which minimized the false positive rate of poly-
morphism detection, a known problem of deep sequen-
cing [63-66] and secondly, to provide accurate
information across different classes of structural genetic
variants.

Results and Discussion

Data production

Massively parallel DNA sequencing using Illumina
paired-end read chemistry [34] was performed to analyze
sequence and structural genomic variation in a Holstein-
Friesian bull. Two paired-end libraries with a span size of
300 and 500 bases were constructed, and 41 gigabases of
sequence were generated (about 1.2 billion 36 base pair
reads) resulting in a sequencing depth of about 15 fold.
The sequences were aligned to the Bos taurus reference
genome assembly UMD3.1 [67] with BWA [53]. After
mapping on UMD3.1 and removing possible PCR dupli-
cates, an average depth of 14.8 fold coverage was
achieved; 98.3% of the reference genome (including chro-
mosome unknown) was covered and 94.3% of the aligned
bases had a phred-like quality score >20. Over 93.8% and
89.9% of the genome was covered by at least 3 and 4
reads, respectively (Figure 1). Approximately 3% of the
reads were not mapped to the reference assembly, possi-
bly because of a combination of breed or individual
uniqueness, sequencing errors and contamination. All
the sequences were also mapped to the UMD3.1 assem-
bly using the CLC Genomics Workbench [52], Mosaik
[50] and SMALT [55], and used mainly for SNP analysis
comparisons. Figure 1 shows the mapped sequence depth
variation for the different aligners (See also additional file
1). Uncovered bases were included when calculating
depth. There were more uncovered bases (depth 0) with
CLC and Mosaik because of the unique mapping strategy
applied. Mapping onto the assembly Btau4.0 [2] using
Mosaik produced similar results to those for the UMD3.1
assembly (Additional file 2).

SNP detection

First, we identified SNPs and evaluated the performance
of different SNP detection methods.

SNP detection based on resequencing

The detection of small genetic variations was performed
after mapping using the four aligning tools mentioned
above (Table 1). For the UMD3.1 reference assembly, a
total of 6,239,482 SNPs were called by the four pipelines
combined, 1,774,648 SNPs were called by only one of
the four pipelines, and 2,859,650 of the called SNPs
were at the intersection of all four pipelines (Figure 2).
Functional analysis of SNPs

To exclude most of the false positive predicted SNPs
from the functional analysis, we assessed possible
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Figure 1 Genomic coverage and read depth obtained after mapping. Reads were mapped to the bovine genome assembly UMD3.1 using
four different mapping tools independently. smalt, SMALT alignment tool; bwa, Burrows-Wheeler Alignment Tool; mosaik, Mosaik assembler;
clcbio, CLC Genomics Workbench.

functional effects only for the SNPs that were called by
all four pipelines. Of these SNPs, 1,051,772 SNPs were
located inside genic regions, including 27,722 coding
SNPs of which 11,545 are predicted to cause either
non-synonymous amino acid substitutions in proteins
or to generate gain or loss of 182 stop codons. Eighty-
one SNPs were located inside transcriptional splice
sites, including 46 acceptor sites and 35 donor sites,
and they have the potential to cause alternative splicing

Table 1 SNPs called on the UMD3.1 assembly using
different pipelines

Tools Algorithm SNPs Homozygous Heterozygous
BWA + Bayesian * 4,434,826 2,164,136 2,270,690
SAMtools

CLC Genomics ~ NQS 4,740,179 1,997,225 2,742,954
Workbench

SMALT + Bayesian * 4,077,556 2,144,671 1,932,885
SAMtools

Mosaik + Bayesian 3,993,407 1,732,242 2,261,165
GigaBayes

NQS, Neighbourhood Quality Standard; * pipelines that were implemented
with mapping quality.

transcripts [68-70]. Using SIFT [71,72] and PolyPhen
[72] to predict the effect of missense mutations, we
found 286 homozygous and 530 heterozygous SNPs
that were predicted to be deleterious to protein func-
tion. These missense SNPs correspond to 5% and 9.1%
of the homozygous and heterozygous non-synonymous
SNPs (nsSNPs), respectively; the difference reflecting
the fact that deleterious alleles are less likely to be
homozygous SNPs. However, we observed that the fre-
quency of deleterious SNPs within CNV regions was
3.3-fold higher than the average across the whole gen-
ome (Chi-square test, p = 0.0001). The bias of deleter-
ious SNPs in CNV regions may be explained either by a
sequence duplication resulting in pseudogenes or by
gene duplication where one copy harbours a deleterious
mutation while the other retains the gene function. A
gene set enrichment analysis for genes with nsSNPs
using all bovine genes as background showed an enrich-
ment bias for olfactory transduction and immune
related pathways (p < 0.05). This result is similar to the
result of the enrichment analysis of genes located inside
CNV regions (see the discussion of the CNV regions
below).
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Figure 2 The overlapping of SNPs called by four pipelines and based on the UMD3.1 reference assembly. Left, homozygous; right,
heterozygous. More than six millions unique SNP sites were identified by at least one of the aligners; 45.8% of them are consistent among all
aligners. smalt, SMALT+SAMtools pipeline; bwa, BWA+SAMtools pipeline; clc, CLC Genomics Workbench; giga, Mosaik+GigaBayes pipeline.
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We found that the SNP frequency in the X chromo-
some is about 4.9 times lower than in the autosomes.
Because, while autosomes are diploid, in the sequenced
bull, the X chromosome is haploid; therefore, the
sequencing depth of the X chromosome will be about
half that of the autosomes resulting in the lower SNP
detection rate. However, data in this study and in pre-
vious studies [35] have indicated an almost linear corre-
lation between the SNP detection rate and sequencing
depth in this sequence depth range, suggesting that low
sequencing depth only partially explains the low SNP
frequency found on the X chromosome. The low variant
frequency observed on the X chromosome of the
sequenced animal also suggests that cattle selection
often favours a lower mutation rate on the X chromo-
some compared with on the autosomes because of the
exposure of deleterious recessive mutations on hemizy-
gous chromosomes [73,74].

We also found that the SNP frequency in CpG islands
is approximately half that of the SNP frequency in the
rest of the genome (Chi-square test, p < 0.0001) indicat-
ing that CpG islands are under more stringent selective
pressure. Variants in CpG islands can potentially break
the structure of the CpG dinucleotides thereby affecting
the methylation status of the cytosine residues, possibly
resulting in abnormal epigenetic regulation of gene
expression.

Because of the limited number of imprinted genes that
have been experimentally discovered in the cattle gen-
ome, we applied ortholog mapping of murine and
human imprinted genes to the cattle genome based on
Imprinted Gene Databases [75]. We found 47 cattle
genes that were potentially imprinted and that the fre-
quency of the heterozygous nsSNPs was 3.7 fold lower

in the imprinted genes than in all the other genes in the
genome (Chi-square test, p = 0.0048). This result sug-
gested that the potentially imprinted genes underwent
positive selection and is consistent with the parental
conflict theory [76,77]. However, because the imprint
status of these genes is yet to be determined experimen-
tally in cattle, these results need to be verified by future
studies.

Based on the pedigree information for the sequenced
animal (Additional file 3), the inbreeding coefficient was
calculated by Pedigraph v2.4 to be 0.046875 [78], sug-
gesting that some identical by descent (IBD) regions
exist in the genome. The SNPs detected in this study
also provided a means to survey large IBD regions that
were revealed as runs of homozygosity (ROH) in the
sequenced animal. Here, we defined the ROH regions
by applying a sliding window with size 1 Mb and a step
size 200 Kb, with the ratio of heterozygous and homozy-
gous SNPs set to less than 0.1. Using these criteria, 71
ROH ranging in size from 1 Mb to 92.4 Mb and corre-
sponding to 13.5% of the whole genome in the
sequenced individual, were identified.

Because the length of each IBD run is determined
partly by the number of generations since the common
ancestor, there is a continuum in the length of homozy-
gous segments, depending on the degree of shared par-
ental ancestry and its age. ROH due to recent
inbreeding tend to be longer because there has been lit-
tle opportunity for recombination to break up the IBD
segments. On the other hand, ROH of much older ori-
gin are generally shorter because the chromosomal seg-
ments have been broken down by repeated meioses
[79]. According to pedigree data from this study, the
two largest IBD regions, with sizes of more than 50 Mb,
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were most likely to have been derived from a shared
ancestor three generations ago.

Genotyping with the SNP chips

In addition to whole genome sequencing, the Holstein-
Friesian bull was genotyped using both the Illumina
BovineHD and BovineSNP50 BeadChip arrays. After
quality filtration, the arrays revealed 770,343 and 52,345
effective SNP genotypes, respectively. Of the 47,093
SNPs that were shared on the two SNP arrays, only 26
had different allele calls and they were mostly heterozy-
gous/homozygous disagreement calls. If we assume that
these 26 inconsistent alleles were incorrect genotypes, a
SNP chip error rate of 26/47093 = 0.0552% can be
deduced. Further filtering with unambiguous chromo-
some positions on the UMD3.1 assembly retained
756,243 and 42,603 effective genotypes for the Bovi-
neHD and BovineSNP50 arrays respectively. Excluding
the heterozygous SNPs on the sex chromosomes, which,
in a male genome, can arise either by error or within
the pseudoautosomal region, left 755,397 polymorphic
sites consisting of 207,670 heterozygous and 547,727
homozygous SNPs based on the BovineHD BeadChip
results. After similar filtering, 42,587 SNPs consisting of
11,569 heterozygous and 31,018 homozygous SNPs
remained based on the BovineSNP50 BeadChip results.

Comparison of the SNP chip and resequencing results
Detection rate, accuracy and false positive rate (FPR) are
crucial quality indicators that are affected mainly by the
algorithm applied in the analyses pipeline and the depth
of genome sequencing. The SNP detection rate in the
whole genome resequencing data was calculated as the
percentage of SNPs on the BovineHD BeadChip array
that was also discovered in the resequencing data. The
SNP detection accuracy was reported based on genotype
consistency between the resequencing and BovineHD
BeadChip data. A comparison of the results obtained in
this study with the results published by Eck et al [46],
considering only the sequence depth and disregarding
the different pipelines that have been applied, revealed
that an increase in sequence depth from 7.4 to 15.5 fold
significantly improved both the accuracy and sensitivity
of SNP calling. For example, the detection rate of SNP
sites almost doubled from 42.98% to 80.0% and the
accuracy increased from 70.67% to more than 93% (with
slight variations for the different pipelines applied in
this study).

The majority of SNPs were consistently called by both
the BovineHD BeadChip and the resequencing pipelines;
the inconsistent calls were separated into different cate-
gories: 1) heterozygous SNPs under-called as homozy-
gous because of inadequate sequencing depth, or
homozygous SNPs over-called as heterozygous caused
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by incorrectly mapped reads or sequence errors in the
reads; 2) actual indels detected by resequencing but
called as SNPs by the BovineHD BeadChip; and 3) SNPs
called by both the resequencing and BovineHD Bead-
Chip but with inconsistent types possibly caused by
reads being mapped to wrong positions or by sequence
errors either in the reads or in the reference sequences
(Table 2 and 3). SNP discovery performance was calcu-
lated based on the common SNPs called by more than
one pipeline (Figure 3).

The largest IBD region identified in the sequenced
genome with a size of 92.4 Mb (from position 13.2 Mb
to 105.6 Mb) was located on chromosome 9. Because a
large IBD region can only be due to recent inbreeding,
therefore, only few new variants caused by mutations in
this IBD region will be observable as heterozygote. Here,
the largest IBD region provides an opportunity to esti-
mate the rate of false positive heterozygous calls calcu-
lated as the percentage of heterozygous SNPs in this
region. Both, the BWA and SMALT pipelines had low
false positive rates (FPRs) of 2.6% and 2.7%, respectively.
Surprisingly, the CLC and Mosaik pipelines gave much
higher FPRs of 19.2% and 19.3%, respectively. Thus,
most of the heterozygous sites called by the CLC or
Mosaik pipelines in this large IBD region were not iden-
tified as variants by either the BWA or the SMALT
pipelines. False positive variant calls can be introduced
either by sequencing errors or by wrong alignments in
which the reads are mapped to improper genomic posi-
tions. The SNP detection algorithm of the CLC pipeline
is based on Neighbourhood Quality Standard (NQS),
whereas Bayesian models are implemented in the other
three detection pipelines that were used in the present
study. Most of the false SNPs with low-quality discre-
pancies are likely to be the result of sequencing errors
and they can be distinguished by all the algorithms
using base quality values and by applying read depth cri-
teria to cover each allele of the SNP. Resolving false
SNPs that are likely the result of improper alignments
requires a different approach for each of the four pipe-
lines. We used only the reads that were uniquely
mapped to reference assemblies in the CLC and Mosaik
+GigaBayes pipelines to reduce possible mapping errors,
because both these read-mapping and SNP detection
algorithms do not utilize mapping quality information
[80]. Utilizing mapping quality requires that the aligner
considers suboptimal hits and this slows down the align-
ment process. However, applying a unique mapping
strategy does not exclude false alignments as efficiently
as filtering with mapping qualities [81]. A recent bench-
mark test highlighted that filtering using BWA gener-
ated mapping qualities with a stringent threshold
removed more than 80% of the false alignments at the
cost of 1% loss in sensitivity compared with the unique
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Table 2 Comparison of heterozygous SNP calls made from BovineHD BeadChip genotype data and the resequencing

pipelines.

Pipeline Consistent

Heterozygous > homozygous

As indel Inconsistent

BWA + SAMtools 167,758 (93.8%)
CLC Genomics Workbench 175,322 (94.6%)
Mosaik + GigaBayes 158, 564 (97.1%)
SMALT + SAMtools 151,792 (94.1%)

10,590 (5.9%) 30 477
9,589 (5.2%)
4,467 (2.7%)
9,097 (5.6%)

46 438
196 0
31 401

Consistent, the same alleles at the same sites were determined by both the chip and resequencing methods; Heterozygous > homozygous, heterozygotes called
on the chip were under-called as homozygote with one identical allele in the resequencing pipelines; As indels, SNP sites on the chip were called as indels in
resequencing pipelines; Inconsistent, heterozygous calls with the chip and resequencing pipelines but with different alleles.

mapping strategy [80,82]. This indicates that the higher
number of heterozygous FPR calls with the CLC and
Mosaik+GigaBayes pipelines were caused by wrong
alignments. Moreover, using only the uniquely mapped
reads decreased local read depths and caused an artifi-
cial depth bias which affected the detection of both the
SNPs and the copy number variations (CNVs). Most
false variants caused by wrong alignments should appear
as heterozygous rather than homozygous SNPs because
it is unlikely that any genomic region will be exclusively
covered by false alignments with identical sequence
reads. An inspection of the minimum allele percentage
(MAP, percentage of reads covering the allele of a het-
erozygote that has low sequencing depth) of the SNPs
called in the largest IBD region showed that most of the
false positive (FP) heterozygous SNPs called by Giga-
Bayes and CLC had a MAP that was relatively lower
than the MAP of SNPs called by BWA or SMALT, con-
firming that the FP calls were caused by false alignments
(Figure 4). More than 90% of the FP calls were elimi-
nated by filtering with a coverage > 2 and a minimum
variant frequency > 35% for the heterozygous SNPs
identified by CLC. While adding this extra filtering step
after variation detection can reduce FPs caused by false
alignments, it is at the cost of a significant loss in sensi-
tivity, especially when the sequencing depth was moder-
ate. These results show that it is essential to utilize
alignment mapping quality to reduce the FPR caused by
the wrong alignment of short NGS sequences with low
to medium sequencing depth. The several FP heterozy-
gote peaks that were common to all the resequencing
pipelines used are most likely to result from assembly

errors or structure variants rather than from random
errors from the pipelines. Some of the highest common
FP heterozygous peaks were located in the CNV regions
detected by both CNV-seq and the CGH array (Figure
5), indicating a decrease in SNP detection accuracy
within the CNV regions. The density of the small var-
iants, the SNPs and the indels < 12 bp long, that were
detected inside the CNVs by the four pipelines showed
a strong dependence upon whether the CNV was a
duplication or a deletion. The density inside CNV dupli-
cations was much higher than the density that was
observed at the whole genomic level; for CNV deletions
it was the opposite. The density of the small variants
detected by the pipelines that take advantage of map-
ping quality (BWA and SMALT) within CNV duplica-
tions was about 5 times higher than their density within
deletions. For the pipelines that do not use mapping
quality, the ratio of their densities was even higher (Fig-
ure 6). Reads that were derived from CNV duplications
in the target genome and that mapped onto the corre-
sponding reference paralogues resulted in the prediction
of more false small variants because the copies in CNV
regions of these reference sequences do not always have
identical sequences. In contrast, the reads that were
derived from CNV deletions in the target genome and
that were mapped to copies in the reference paralogues
either had reduced mapping quality or were rejected
when a unique mapping criterion was applied. These
results ultimately lead to lower sequence coverage
which, in turn, causes an underestimation of the pre-
dicted variant density in CNV deletions. The algorithms

Table 3 Comparison of homozygous SNP calls made from BovineHD BeadChip genotype data and the resequencing

pipelines.

Pipeline Consistent Homozygous > heterozygous As indel Inconsistent
BWA + SAMtools 253,102 (99.9%) 247 (0.1%) 107 16

CLC Genomics Workbench 254,195 (99.6%) 848 (0.3%) 101 28

Mosaik + GigaBayes 236,261 (97.8%) 3,522 (1.4%) 1,860 (0.8%) 20

SMALT + SAMtools 247,805 (99.8%) 272 (0.1%) 96 19

Consistent, the same alleles at the same sites were determined by both the chip and resequencing methods; Homozygous > heterozygous, homozygous SNPs
called on the chip that were over-called as heterozygous in the resequencing pipelines; As indels, SNP sites on the BovineHD BeadChip that were called as indels
in resequencing pipelines; Inconsistent, homozygous calls with both the BovineHD BeadChip and the resequencing pipelines but with different alleles.



Zhan et al. BMC Genomics 2011, 12:557 Page 7 of 20
http://www.biomedcentral.com/1471-2164/12/557

0.9
0.8+
0.7
0.6

0.5

ol W

—&— All Detection Rate

Rate

0.3 —&— Homozygous Detection Rate
—&— Heterozygous Detetion Rate
0.2 —&— Homozygous FPR
—a&— Heterozygous FPR
—a— AllFPR

be bcl:g bégs b<|:s blg bé]s bls bvlva c§ cgs clc c|s gi_é]a gls srr;alt

Pipeline

Figure 3 Single and combined pipeline performances for SNP detection. FPR denotes false positive rate, bwa denotes BWA+SAMtools, clc
denotes CLC Genomics Workbench, giga denotes Mosaik+GigaBayes, smalt denotes SMALT+SAMtools, bc denotes the combination of bwa and
clc, bes denotes the combination of bwa, clc and smalt, bcgs denotes the combination of bwa, clc, giga and smalt. False positive rate for the
heterozygous SNPs was calculated based on the heterozygous SNPs observed in an identical by descent region (IBD); the false positive rate for
homozygous SNPs was calculated based on the homozygous SNPs observed in an IBD region in which the sequences are identical to the
reference sequences. Pipelines without the implementation of alignment mapping quality parameter resulted in a higher FPR for heterozygous
SNP detection.

bwa &

Position(mb)

Figure 4 Heterozygous SNPs called on chromosome 9. Chromosome 9 contains the largest identical by descent (IBD) region detected in the
genome of the sequenced animal. The lower minimum allele percentage of heterozygous calls in the IBD region by both the Mosaik+GigaBayes
and CLC pipelines, indicates that even a few false alignments can introduce higher false positive rates (FPRs) compared to the FPRs using the
BWA and SMALT pipelines. bwa denotes BWA+SAMtools, clc denotes CLC Genomics Workbench, giga denotes Mosaik+GigaBayes, smalt denotes
SMALT+SAMtools.




Zhan et al. BMC Genomics 2011, 12:557
http://www.biomedcentral.com/1471-2164/12/557

Page 8 of 20

Frequency

100%4 | 1
0%

3384

G766
10152
13536
16920
203044

| uJ\‘thL.gJHlI bl

sl AL

ol

E

E

b

236864

270724

30456+

338404

37224+

&
5

40608
3992{
50760
541444
57526

=
&
=

Position (kb)

609125

642964

B7GA0+——
71064+4=
744484

77992
81216
846004
879844
91368
4752
98135

15204

104904

giga cle bwa CGH Bovine HD Bovine SOK

smalt

Tool

Figure 5 Interaction of SNP detection and CNVs. Bases within CNV (green) and heterozygous SNPs (red) regions called on chromosome 9
which contains the largest identical by descent (IBD) region (from 13.2 Mb to 105.6 Mb) in the bovine genome. Some common false positive
peaks of heterozygous SNPs in this IBD region detected by all resequencing pipelines overlapped with the CNV regions described in this study
and in other literature, indicating a higher FPR for the detection of small size polymorphism inside relatively larger structural variant regions.

Figure 6 Densities of small variants detected within CNV regions by different pipelines. Densities were measured as number of variant
per 10 kb averaged across CNV duplication, CNV deletion and the whole genome. smalt, SMALT+SAMtools pipeline; bwa, BWA+SAMtools

Density (#variants/10kb)

35+

bwa

clc
Tool

pipeline; clc, CLC Genomics Workbench; giga, Mosaik+GigaBayes pipeline.

giga

W CNV deletions

B CNV duplications

Bl Genome

smalt




Zhan et al. BMC Genomics 2011, 12:557
http://www.biomedcentral.com/1471-2164/12/557

that apply mapping quality reduced this kind of bias sig-
nificantly; however, the bias was not completely avoided.
In addition, there were 15 heterozygous SNPs called
by the BovineHD BeadChip in this largest IBD region
which was more than the expected number according to
its calculated error rate. Seven out of the 15 SNPs were
confirmed to be heterozygous with identical alleles
called by all four resequencing pipelines; one of the
SNPs was confirmed by three of the resequencing pipe-
lines and another one was confirmed by two of the rese-
quencing pipelines. These nine heterozygous SNPs
called by both the SNP chip and resequencing pipelines,
appear to have been caused by some systematic error.
When the nine SNPs were checked manually, six of
them were found to be located close to each other in a
119 kb block that gave a much higher density of hetero-
zygous calls than in the flanking areas; an abnormally
high depth of mapped reads were also found upstream
to this block, strongly suggesting either an assembly
error or some structural genomic event in this region.
Two of the remaining three SNPs were also located in a
region that had a relatively higher density of heterozy-
gous calls than its flanking areas, indicating that they
were also caused by either an assembly or mapping
error (Figure 7). The last heterozygous site that was
called by both the BovineHD BeadChip and the four
resequencing pipelines with identical alleles may be a
new mutation that occurred in the IBD region during
the last three generations and that was inherited follow-
ing the common ancestor. In this study, the estimated
BovineHD SNP chip heterozygous detection rate was
0.09 (Additional file 4), giving us a deduced mutation
rate of 1/0.09/2/3/90M = 2e-8 (See also additional file
4), similar to the magnitude seen in other studies [83].

Structural Variation detection

To identify the whole spectrum of genetic variation, the
integration of different methods is a necessary task. In
this section, the analysis and integration of different
structural variant detection methods is described.
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Intra-read indels detection

Although present at lower rates than SNPs, small inser-
tions and deletions (indels) represent a functionally
important type of genomic variation [20,84-87]. The
false positive rate of indel detection is generally higher
than for SNPs because reads bearing indels often align
with multiple mismatches to the reference sequence
rather than leave a gap, and because indels frequently
cannot be uniquely mapped onto the reference, for
example, when the indel is in a homopolymer repeat.
Therefore, to minimize false positives, the intra-read
indels were here identified as those that were called by
both the Dindel and SAMtools variant calling programs
(details in Methods) [54,57]. We identified 197,895
intra-read indels, of which 93,210 were deletions of up
to 12 bases and 104,686 were insertions of up to 10
bases at an average genome density of 7 indels per 100
kb. This indel size distribution is close to a normal dis-
tribution (Additional file 5).

We found 417 indels (0.21%) in the coding sequences
of 368 genes and observed that these coding indels were
enriched for sizes that are multiples of three (3 n). The
enrichment of 3 n coding indels compared to 3 n gen-
ome-wide indels may be explained by purifying selection
against frameshifts in coding regions (Figure 8a). A sig-
nificant under-representation of indels in coding regions
was also detected. Whereas the genome-wide SNP:indel
ratio is 15:1, the SNP:indel ratio for coding regions is
67:1, as would be expected because of the more deleter-
ious effect of indels in protein-coding regions [87].

Next, we investigated the location of the coding indels
in the respective proteins and found that the indels
were enriched near the N and C-termini of the proteins
with a slightly higher frequency at the C-termini (Figure
8b). This distribution of coding indels is consistent with
observations from previous studies [43,87], and can be
explained by the fact that a C-terminal indel would have
a lower likelihood of affecting protein function because
the major part of the protein would already have been
translated before the indel is encountered. A coding

were caused by some systematic errors instead of random errors.
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Figure 7 False heterozygous SNPs called within identical by descent (IBD) regions. Some false heterozygous SNPs called inside the IBD
region on chromosome 9 by both the BovineHD BeadChip and resequencing pipelines were clustered close to each other, suggesting that they
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Indel size (bp)

Figure 8 Indels in coding regions of the genome. (a) Indel size distribution in the coding regions. The indels called by all methods
demonstrate strongest purifying selection against frameshifts (non 3 n) indels in coding regions. (b) Relative protein location of coding indels.
The relative position of the indel in the protein was calculated by dividing the position of the indel by the total protein length.
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indel at the N-terminus may also be less critical because
a possible alternative downstream start codon may be
present. Thus, indels at the N- and C-termini of pro-
teins may be less functionally constrained than indels at
other protein locations. We also analyzed the possible
functional importance of coding indels in genes that are
known to be involved in disease (OMIM database [70]).
Of the 24 indels found in 20 disease genes, 18 of the
indels were not multiples of 3 n, which would induce
frame shifts in these genes (Additional file 6). Further,
in the present study, a significant genome-wide correla-
tion of SNP-indel density was discovered (Additional file
7, Pearson correlation R* = 0.4, p < 0.05). This correla-
tion was previously reported in human and other pri-
mate genome studies and seems to be a general
phenomenon [88-91].

Because, in this study, an indel was called by at least a
4x sequence coverage, we accept that this prevents at
least 10% of the genome being reachable to indel detec-
tion (Figure 1). Furthermore, indels are seriously under-
estimated in regions of local repetitive and
homopolymeric sequences.

Indels, inversions and translocations found by split-read
and mate-pair approaches

Although small intra-read indels can be detected by
SAMtools and Dindel variant callers, to detect larger
structural variants other tools have to be used. Here we
applied Pindel that uses a split-read approach to exam-
ine unmapped reads spanning breakpoints, and Break-
Dancer that examines discordantly mapped read pairs
having improper orientation relationships or span sizes

[58,59]. Both tools detect insertions and deletions as
well as inversions and translocations (Figure 9).

Using the BreakDancer tool we detected a total of
8,768 structural variants (SVs). Of these, 6,156 were
deletions (ranging in size from 47 bp to 127 kb), 2,125
were insertions (241 bp to 397 bp), 412 were inversions
(3 bp to 89 kb), and 120 were intra- and 18 inter-chro-
mosomal translocations. In total, the SVs overlapped
2,529 genes. Inversions, intra- and inter-chromosomal
translocations were later filtered and kept only if their
positions could be located within the same chromo-
somes in both cow assemblies (Btau4.0 and UMD3.1).
This reduced the total number of these variants by 28%,
with inversions decreasing from 412 to 297, intra-chro-
mosomal translocations from 120 to 86, and inter-chro-
mosomal translocations from 18 to 13 (Additional file
8). Using the Pindel split-read approach, 1,416 SVs,
including 1,332 deletions (13 bp to 855 kb), 79 inser-
tions (15 bp to 31 bp) and 5 inversions (7 bp to 28 bp)
(Additional file 9) were detected. In total, these SVs
overlap nine genes.

Pindel and BreakDancer are largely complementary
in that they identify SVs with different signatures. Pin-
del produces base-pair resolution for SV boundaries
and consequently can detect significantly smaller SVs
than BreakDancer. Both tools identified more deletions
than insertions, probably due to a bias against detec-
tion of insertions longer than our paired-end library
span size. Nevertheless, we cannot rule out the possibi-
lity that deletions are more common, as hypothesized
recently [88]. We also noted that the number of SVs
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decreased rapidly with increasing size, except for two
peaks corresponding to short and long interspersed
nuclear elements (SINEs and LINEs) around 200 bp
and 2000 bp, respectively (Figure 10). This result is
consistent with previous studies that reported the pre-
sence and distribution of these repeat elements
[24,34,36,37].

Copy number variation

Three platforms were used for the detection of copy
number variation (CNV); by sequencing, and by SNP
and CGH arrays.

Array based variation

A high density custom Nimblegen comparative genomic
hybridization (CGH) array with 6.3 M probes and the



Zhan et al. BMC Genomics 2011, 12:557
http://www.biomedcentral.com/1471-2164/12/557

Page 12 of 20

[1763]
16004
14004
12004
10004

8004

Count

6004

4004

2004

0 [12][7] 1 (2] B[] o] 2 (6 2121 3]
clolclelolololelelololo clolelolelolecloloclelolclolelelolalolx
RS R T = A = B = I = = A = =1 [=RE=R =A==t === = =T I = s I = T = = = = )
Viov v ow— N O T DO~ ® e eSS E 2222 4
M Y Y A IR IR -~ N ®IFIHOoO~DHOESOSSSSSSS DB
Vv v v X X % X ® X x % MWV M Vv v v w0 ;e =

SRR R s s ok ow o e s x s MMM MM wMov v S
BF8R8coocoocosoas A A I o B A A

[ === = == =] o o0 o0 o oCo ¥Y VYV Y VYV VoY

- N & F O o~ [=3E=J== === = = R = =R = B = R =R = = R =

Do o oo o o o Qo O o o o O o o O 9

At S I S0 B S T2 B (S R v e R e = = = e e I

[ = =A== =N = I~

— N M S D O M~ W

S|

Deletion size (bp)

Figure 10 Size distribution of deletions detected by BreakDancer and Pindel. With increasing deletion size,
exponentially. The exceptions are for the bars (green) that correspond to SINE and LINE elements.

the frequency decreases

[lumina BovineHD BeadChip with 770 K probes were
used to identify relative copy number variants in the
bull sequenced in this study. The CGH array data was
available from a previous study in which the bull was
hybridized to two other animals using a dye swap design
[29]. From the CGH array set we called 196 CNVs (6.11
Mb) that had an average length of 31.2 kb and ranged
in size from 1.4 to 595.7 kb (Additional file 10). We
used the BovineHD BeadChip array to detect CNVs in
our bull when compared with a reference population of
Holsteins that were also tested in-house. Details of the
calling procedure are described in the Methods section.
Briefly, we used the PennCNV tool to detect the CNVs
and after visual plot inspection we identified 30 CNVs
(2.57 Mb) with an average length of 85.8 kb, that ranged
in size from 8 to 555.3 kb (Additional file 11). This
result reflects the lower resolution of the BovineHD
BeadChip compared to CGH array which makes it less
efficient in detecting short CNVs.

Sequence based variation

We also used a sequence based approach, called CNV-
seq [60], in which the sequencing depth of coverage of
our bull was compared with the sequencing depth of
coverage of another bull sequenced in another study
[46]. Assuming a uniform sequencing process, the

number of reads that map to a particular region should
be Poisson distributed and proportional to the copy
number of the reads. Despite this theoretical assump-
tion, this and previous studies have reported a sequen-
cing Poisson overdispersion [34,89]. This overdispersion
is probably due to the known sequencing bias of the
second generation sequencing technologies that causes
certain regions of the genome to be over or under
sampled; GC-rich regions and homopolymeric tracts are
the best known causes of this bias [63-65]. To minimize
the bias, the detection of CNVs in our bull was done by
comparing it to another bull sequenced on the same
sequencing platform with the same read length and the
same aligner. Here, based on the depth of coverage sig-
nature, we were able to detect 520 autosomal CNVs
(3.63 Mb) with an average length of 6.9 kb ranging in
size from 3.2 to 129.9 kb (Additional file 12).
Cross-platform CNV comparison

Notwithstanding the large differences in the numbers of
CNVs identified by the three platforms, the CNV gen-
ome coverage was similar; 0.10% for the BovineHD
BeadChip, 0.14% for CNV-seq, and 0.24% for the CGH
array. To compare the CNV datasets from the three
platforms, a CNV was described as overlapping another
CNV if there was an overlap of at least 1 bp. About 14%
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of the CNVs detected by CNV-seq, nearly 23% of the
CNVs detected by the CGH array, and 23% of the
CNVs detected by BovineHD BeadChip overlapped
CNVs detected by at least one of the other platforms.
Figure 11 shows an overall comparison between the dif-
ferent platforms.

The apparently low overlap of CNVs detected by the
different platforms might have several different causes.
First, each platform has different advantages and disad-
vantages in terms of resolution and size distribution for
confident CNV calls (Figure 11). Second, coverage bias
also affects the CNVs called; the coverage range at
which CNV-seq can detect CNV is much higher than
for the array platforms because of microarray signal
saturation at high copy levels (Figure 11). Array cover-
age putatively correlates with copy number status of the
region. Third, the CNVs discovered by each platform
are relative to the animals that are probed against.
Hence, while for the CGH array two samples were
hybridized against our bull, a different population was
used as the reference population for calling CNVs using
the SNP platform and again, for CNV-seq, a different
animal was tested against our bull. Therefore, some of
the relative CNVs that we found may not have
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originated from our sequenced bull but may have come
from the animals that we tested the CNVs against.

CNV validation by quantitative PCR

To verify whether any of the three reasons listed above
are valid, a subset of 28 CNVs was selected for testing
using quantitative RT-PCR. Five CNVs unique to each
of the platforms, nine CNVs found by two platforms
and four CNVs detected in all platforms formed the
subset. We used a DNA sample of the bull sequenced
here, samples from the two animals hybridized to the
bull in the CGH array experiment and DNA from four
of the animals used as our reference population in the
BovineHD BeadChip array. The primers did not work in
six of the 28 possible RT-PCR experiments. Of the
remaining 22 CNVs, 19 (86%) worked and gave positive
results, meaning that a CNV was detected in at least
one of the animals tested (Additional file 13). Despite
the fact that the CNVs tested by RT-PCR were a small
subset of the total number of CNVs found by all plat-
forms, the results gave us an estimate of the real reasons
behind the lack of CNV overlap. Thus, for the CNVs
tested by RT-PCR that were unique to the CGH and
SNP arrays, the majority were detected in other animals
and not in our bull. The CNVs that were detected in
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ranges; the line plot represents the mean coverage of CNVs found in each size range.
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our bull were in regions of low sequence coverage which
can affect the calling procedure of the CNV-seq method
(Figure 11, t-test p < 0.05 for CNV-seq which can detect
significant CNVs with higher coverage than the array
based methods). The RT-PCR results provided confi-
dence that, for the genome-wide scan, the false positive
rate was low in CNV regions; however, the penalty was
a relatively high false negative rate when a single
method was used alone.

Functional analysis of CNVs

To test for the putative functional significance of our
CNVs, we restricted our analysis to the CNVs found by
at least two platforms; this should reduce the false posi-
tives and the risk that the CNVs are not found in our
animal but only in others. From 46 CNV regions that
were detected using at least two platforms, 27 (59%)
were overlapped by 84 genes giving a gene enrichment
of 2.6 fold in comparison with putative CNVs distribu-
ted at random locations. Similar to our results for the
SNPs, this gene enrichment is biased for functions
related to olfactory transduction, and signalling path-
ways including immune response (Additional file 14)
and is consistent with previous bovine and human CNV
studies [19-22,27-30,92]. This commonplace enrichment
involves the genes that encode proteins that interface
with the external environment and its selective pressures
(natural or artificial). These pressures results in differen-
tial adaptation to different metabolic and immune con-
ditions (particularly important in the rumen micro-
biome and mucosal surfaces), to herd environment, and
to the artificial genetic selection that has significantly
impacted bovine genome evolution. However, to support
an argument for their potential evolutionary contribu-
tions to cattle domestication, breed formation and adap-
tation, the genomic variations reported here need to be
queried in a larger sample size and with breeds other
than Holstein. Comparisons to other farm animal spe-
cies could also provide additional insights into the evo-
lutionary mechanisms of genomic variation in livestock
research. CNV regions are also enriched in segmental
duplications which are known substrates of copy num-
ber formation [21]. We found no enrichment of CNVs
at evolutionary breakpoints when cattle-specific and
artiodactyl-specific evolutionary breakpoints [93] were
examined, in agreement with a previous study [92]. It is
interesting that our most stringent set of 46 CNVs
included 35 (76%) CNVs that overlapped with common
(frequency > 2.5%) cattle CNVs reported in previous
studies [27-30] (Additional file 15).

The high-confidence CNV dataset for the individual
bull sequenced here contains CNVs that were identified
by at least two platforms. This dataset could be used as
a reference control sample in future array CGH experi-
ments. It would help alleviate doubts of whether a
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particular CNV is a gain or a loss in the investigated
sample because the absolute copy number status of the
reference animal is known. This strategy is similar to
one that is already used in human studies [91,94].

The detected genetic variation present in the bull’s
genome

After calling both the sequence and structural variations,
we generated an overview of the genetic variation found
in the Holstein-Friesian bull sequenced here. For the
overview we used the SNPs called by all four methods
(Mosaik+GigaBayes, CLC Genomics Workbench,
SMALT+SAMtools and BWA+SAMtools), the intra-
read indels called by SAMtools and Dindel, indels,
inversions and translocations predicted by Pindel and
BreakDancer, and finally the CNVs called by at least
two of the platforms (CNV-seq, CGH and SNP HD
arrays). While there were 2,859,650 bases of sequence
variation, the structurally variable part of the genome
comprised 11,672,807 bases, a finding supported by pre-
vious studies claiming that structural variation sur-
mounts sequence variation as the main form of genetic
variability, measured as the number of basepairs
affected, in an individual genome [20,95]. A summary of
the different analyses that were performed is shown in
Table 4.

Conclusions

This study presents an in-depth analysis of the genomic
variation in the genome of a single bull at a comprehen-
sive scale and resolution for Bos taurus species. Genetic
variations comprising SNPs, indels and large size struc-
tural variants like CNVs were explored using several
complementary technological platforms and analysis
software. We demonstrated that all the platforms were
powerful tools for the identification of sequence and
structural variations and that the various technologies
complemented each other. For instance, CNV discovery
by sequencing enabled the efficient detection of small,
highly variable CNV regions, while the CGH and SNP
platforms were better at detecting larger CNVs with
smaller copy number differences (Figure 11) [95]. The
large number of platform-specific CNVs and smaller
number of false positives (as shown by RT-PCR valida-
tion) indicated how all these platforms complement
each other in CNV discovery. Here, we propose that a
genome-wide picture of false positive and false negative
rates can be improved using sequencing trios.

For SNP detection with strict alignment criteria, the
inclusion or exclusion of non-uniquely mapped reads
did not significantly change the accuracy or rate of
detection; however, using only uniquely mapped reads
may reduce the number of detectable small insertions
and deletions. The SNP detection algorithms
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Table 4 Genetic variation detected by different methods (size in base pairs).

Method Type Number Min. Median Max Length
Mosaik+GigaBayes+CLC+BWA+SMALT+SAMtools SNP 2,859,650 2,859,650
SAMtools+Dindel indel 197,895 1 1 12 349,248

BreakDancer (mate-pair) indel, inv, transl 8,596 42 122 127,536 6,286,578

Pindel (split-read) indel, inv 1,416 13 22 855,018 1,147,264
CNV-seg+Nimblegen6.3M+lllumina770 k CNV 46 3,170 25,812 595,739 3,889,717

Total 3,067,603 1 855,018 14,532,457

inv denotes inversion, transl denotes translocation.

implemented in the Mosaik+GigaBayes and CLC Geno-
mics Workbench pipelines are Bayesian and Neighbour-
hood Quality Standard respectively, but neither of them
includes alignment mapping quality in the model. This
leads to a relative higher false positive rate in heterozy-
gous variants compared to the other Bayesian based
approaches, the BWA+SAMtools and SMALT+SAM-
tools pipelines, with mapping quality implemented.
Proper filter setting with minimum allele percentage for
heterozygous sites was essential to minimize the false
positive calls in the detection pipelines without mapping
quality; however, this filtering causes a serious loss in
detection sensitivity. This study also clearly documents
that applying more than one algorithm/tool to call com-
mon variants increased detection accuracy at the
expense of sensitivity. If multiple analyses using various
algorithms/tools are hard to achieve, the BWA+SAM-
tools pipeline could be considered to be a good balanced
choice. The detection of small variants located inside
large structural variants like CNV regions can be proble-
matic for all algorithms, mainly because short reads
from different but highly similar structural sequence ele-
ments inevitably map and cluster together on the refer-
ence genome. Genetic variants inside and near to those
structural components should always be critically
evaluated.

In summary, we found that structural variation sur-
passed sequence variation as the main component of
genomic variability. This emphasizes the need to con-
sider all types of variants when fine-mapping causal var-
iants within trait-associated intervals. Furthermore, our
results suggest that, at the level of resolution and
sequencing coverage found in the present study, an
ensemble of platforms and tools can be used to maxi-
mize the detection of SV; however, the false positive
rates should be controlled by applying threshold settings
and performing subset validation experiments.

The methodology used in this study has a number of
limitations that should be addressed in future work.
One limitation relates to calling variants embedded in
repetitive regions which requires longer sequencing read
lengths for complete characterization [96,97]. De novo
local assembly could also help to resolve and validate

the breakpoints of structural variants [98,99], but the
present sequencing coverage prevented us from investi-
gating this approach. Using paired-end sequencing of
additional libraries of different sizes will also help
resolve complex variants. With sequencing costs
decreasing rapidly, simply increasing the depth of
sequencing and using different mapping procedures
would increase the confidence and accuracy of the
results [100].

It could be argued that the relatively low read-depth
achieved here compared to other personal genome stu-
dies [34-39] may affect the accuracy of variant classifica-
tion (whether by under- or overcalling) [101]. However,
we clearly demonstrated that platform integration can
mitigate such problems for structural variation detec-
tion, especially if the interest is in gaining a broader
understanding of the genomic characteristics of a breed
or population group and is not primarily focussed on
understanding the detailed genomic architecture of a
specific animal. Thus, we suggest that it would be more
prudent to sequence many individuals with lower depth
rather than a limited number of individuals with high
depth. The integrative methodology and resources gen-
erated for this study may be used as a template for
future genome sequencing studies on larger data sets.

Methods

Sequencing

Genomic DNA from a Holstein-Friesian bull was
extracted and purified from blood according to standard
protocols and as previously described [102]. Sample pre-
paration, cluster generation and sequencing were per-
formed according to the manufacture’s protocols with
minor modifications (Illumina paired-end cluster gen-
eration kit GA II v1, 36-cycle sequencing kit v1.2 and
v1.3). Briefly, two paired-end libraries were prepared
and sequenced using a Genome Analyzer II (Illumina,
San Diego, California, USA). Genomic DNA was sheared
by nebulization, ligated with Illumina’s PE adaptors, and
fragments approximately 300 and 500 bases in length
were gel purified followed by PCR amplification and col-
umn purification. Purity and yield were checked using
the 2100 Bioanalyzer (Agilent Technologies, Santa Clara,



Zhan et al. BMC Genomics 2011, 12:557
http://www.biomedcentral.com/1471-2164/12/557

California, USA) and yields were additionally measured
using the QuBit (Invitrogen, Carlsbad, California, USA).
To extract intensity measurements for each cluster and
sequencing cycle, image analysis was performed with the
Illumina Firecrest program as implemented in Illumina’s
pipeline version 1.3. Illumina’s Bustard program was
used for base calling on the extracted intensities; with
purity filtering was applied to discriminate between
good and bad reads. The quality score for each base was
used as an indicator of base call uncertainty.

Reference genome assemblies

We used the Btau4.0 [103] assembly from The Bovine
Genome Sequencing and Analysis Consortium and the
UMD3.1 assembly [104] from the Center for Bioinfor-
matics and Computational Biology at the University of
Maryland as two independent references for mapping
and assembling the whole genome shotgun Illumina
reads [2,67].

SNP detection by sequencing

Short read alignment, consensus assembly and variant
calling were performed using the BWA v0.5.8 and
Mosaik v1.0 software packages, SAMtools v0.1.12a,
GigaBayes v0.4.1, and the CLC Genomics Workbench
v4. We used the default parameters for the BWA align-
ment. The SAMtools pileup command was used for var-
iant detection in BWA pipeline with default parameters
but for filtering, a minimal mapping quality of 20 was
used. Options -n 8, -j 50, and -i 650 were used for the
SMALT alignments. The SAMtools pileup command
was used for variant detection in SMALT pipelines with
default parameters but for filtering a minimal mapping
quality of 20 was used. Parameters -hs 15 -mm 2 -a all
-m unique -mhp 100 -act 20 were applied for Mosaik
mapping in the Giga pipeline. GigaBayes was run in the
Giga pipeline for variant detection with the following
parameters: —indel —sample single —ploidy diploid (hap-
loid for the sex chromosomes) —CRL 2 —CRU 60 (30
for the sex chromosomes) —QRL 20 —PSL 0.9 —anchor
-0 3. CLC Genomics Workbench was used for map-
ping reads with parameters set as: -p fb se 150 650. The
following CLC parameters were applied for variant
detection: Maximum coverage = 60 (30 for the sex chro-
mosomes); Maximum expected variations (ploidy) = 2 (1
for the sex chromosomes); Maximum gap and mismatch
count = 2; Minimum average quality = 15; Minimum
central quality = 20; Minimum coverage = 2; Minimum
paired coverage = 0; required variant count threshold =
1; and the Sufficient variant count threshold = 2.

Structural variation detection by sequencing
Structural variants (excluding CNVs) were detected by
using the BWA mapping result on the UMD3.1
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assembly. Intra-read indels were detected by the inter-
section of Dindel v1.0 and SAMtools mpileup variant
callers with default parameters. After merging the two
indel sets, post-filtering was applied. Indels were kept if:
(1) the non-reference allele was covered by at least one
read for each strand; (2) the minimum base quality was
20; (3) the coefficient for downgrading mapping quality
for reads containing excessive mismatches was 50; (4)
the minimum read depth was 4; (5) the maximum read
depth was 30, and (6) the indels did not overlap Ns in
the assembly. For indels and inversions found by split-
read, Pindel v0.2.0 was used with default parameters.
Post-filtering was applied to remove structural variants
not seen in both strands and variants having read depth
< 4. For indels, inversions and translocations found by
mate-pair approach, BreakDancer v1.1 was used with
default parameters, except that the minimum alternative
mapping quality was set to 20, the minimum number of
read pairs required to establish a connection was 4, and
the maximum threshold of haploid sequence coverage
for regions to be ignored was 50.

For CNV detection, CNV-seq was used with reads
mapped to assembly Btau4.0. Btau4.0 was chosen
because our previous array CGH study was designed for
this assembly and to compare the CNV detection plat-
forms, the reads all had to be mapped to the same
assembly. Maq v0.7.1 [80] was used to map the reads
from our sequenced bull and another bull sequenced
elsewhere [46], while CNV-seq was used to compare the
normalized read-depth differences between the two ani-
mals in a sliding windows across the autosomes. A CNV
was kept if the |log2ratio| of the counts of reads per
sliding window was bigger than 1, and if the CNVs were
called by at least 5 consecutive windows.

Array based SNP chip genotyping

The sequenced animal was genotyped with BovineHD
and BovineSNP50 BeadChips (Illumina, San Diego, Cali-
fornia, USA). To accurately detect chromosomal posi-
tions of the SNP sites, Tera-Blast (Timelogic, USA) was
used for mapping the flanking SNP sequences against
both the UMD3.1 and Btau4.0 genome assemblies
[80,81]. Only those SNPs with unique perfect hits were
used. GenomeStudio v1.7.4 software (Illumina, San
Diego, California, USA) was used to detect the SNPs for
both chips and both assemblies. The BovineHD Bead-
Chip was also used to detect CNVs in Btau4.0. Briefly,
signal intensity (log R ratio, LRR) and allelic intensity (B
allele frequency, BAF) values were extracted, and used
by PennCNV to detect CNVs in our bull by comparing
with a reference population of 138 other Holstein bulls
that have been genotyped (data not shown) [61]. Only
high quality samples that had a call rate > 99.9%, stan-
dard deviation of log R ratio (LRR) below 0.3, BAF <
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0.01 and wave adjusted values < 0.05 were used. A CNV
was detected if 5 consecutive SNPs showed the same
CNV pattern and if this pattern was confirmed by
visually inspection of signal intensity plots.

Array CGH

The array CGH experiment has been described elsewhere
[29]. Briefly, a custom 6.3 million probe array was pro-
duced by Nimblegen (Roche Nimblegen, Madison, Wis-
consin, USA) to cover the Btau4.0 genome assembly at
301 bp median probe spacing. Twenty-one animals were
tested for CNVs and the data from three of them (the
bull sequenced for the present study and the two animals
that were hybridized with it) were used for this study.

Functional analysis software

Variant effects were analysed based on both the UMD3.1
and Btau4 genome annotations [67,105] using customized
perl scripts. The functional effects of non-synonymous
SNPs on the coded protein were predicted by SIFT and
PolyPhen [71,72]. Gene set enrichment analysis was per-
formed with the DAVID bioinformatics resources v6.7
(with medium stringency) [106]. BEDtools and liftover uti-
lities were used for data extraction, variant manipulation
and overlap of genome annotations [107,108].

Quantitative Real Time PCR

Validation of the subset of CNV regions discovered by
sequencing, CGH and SNP arrays was performed as pre-
viously described [29]. Briefly, assays were run on an
Applied Biosystems 7900 HT Sequence Detection Sys-
tem and downstream analysis was done with the SDS
2.2 software following the guidelines of the manufac-
turer (Applied Biosystems). Primers and probes (Univer-
sal ProbeLibrary Probes, Roche Applied Science) were
designed using the ProbeFinder software from Roche
Applied Science (Additional file 13). In total, seven ani-
mal samples were assayed (samples from our sequenced
bull, 2 animals from the array CGH [29] and 4 from the
SNP array were used) using the sequenced bull as the
reference sample. For each target, the relative quantifica-
tion analysis with the reference sample was done to cal-
culate estimated copy numbers for each sample.

Data access

All purity filtered read data from the sequenced bull is
available at EBI sequence read archive, accession num-
ber: ERP0O00712.

Additional material

Additional file 1: Summary of short sequence read mapping
methods and results. The data is listed in a table that displays different
mapping methods and corresponding results.
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Additional file 2: Read depth plot. The read depth mapped on
assembly Btau4.0 by Mosaik mapping tool.

Additional file 3: Graph of pedigree. The pedigree of the sequenced
bull traced back five generations.

Additional file 4: Calculating description. A description of the
methods used to calculate the BovineHD BeadChip detection rate and
the mutation rate of the sequenced animal.

Additional file 5: Indel sizes. The intra-read indel size distribution
detected by Dindel and SAMtools mpileup.

Additional file 6: Disease gene list. The genes affected by coding
indels that are known to be involved in disease (OMIM database).
Additional file 7: SNP-indel density correlation. The correlation of
SNP-indel densities in chromosome 1 at 20 kb intervals.

Additional file 8: Structural variant list. The structural variants
detected by the BreakDancer tool (UMD3.1 coordinates).

Additional file 9: Structural variant list. The structural variants
detected by the Pindel tool (UMD3.1 coordinates).

Additional file 10: CGH CNVs. The CNV data from the array CGH
(Btau4.0 coordinates).

Additional file 11: BovineHD BeadChip CNVs. The CNV data from the
BovineHD BeadChip (Btau4.0 coordinates).

Additional file 12: CNV-seq CNVs. The CNV data from read-depth of
sequencing using CNV-seq (Btau4.0 coordinates).

Additional file 13: Validation of CNVs. CNV validation result using RT-
PCR.

Additional file 14: Result of gene enrichment analysis. Gene and
pathway enrichment for CNVs found using at least two platforms (DAVID
database).

Additional file 15: Reported CNVs. Common (frequency > 2.5%) cattle
CNVs that overlap with CNVs from previous studies.
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