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Abstract

using a 4X44K chicken oligo microarray.

include E2F1, BRCAT, SRC, CASP3, and the peroxidases.

Background: When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line
exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle
regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1
CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed

Results: A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706
up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity
Pathways Analysis (IPA, Ingenuity®™ Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially
expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell
cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with
intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by
enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways,
altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions

Conclusions: The global gene expression profiles provide insight into the cellular mechanisms that regulate the
unique characteristics observed in immortal DF-1 CEF cells.

Background

Normal (primary) cultured cells derived from living tis-
sue exhibit a limited life span reaching replicative senes-
cence in a non-dividing state [1]. Each cell division
results in the generation and accumulation of various
cellular genetic alterations, such as telomere shortening
caused by the inability of DNA polymerases to fully
replicate the ends of linear chromosomes [2,3]. This
inability to overcome these alterations ultimately leads
to cellular aging. Most cells are unable to overcome
senescence unless key tumor suppressor pathways are
first altered. Thus, cellular immortalization has been
achieved by genetic alterations which bypass the stages
leading to cellular senescence.
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Spontaneous immortalization is a rare event in human
and avian cells, but occurs much more frequently in
rodent cells [4]. Unlike virally or chemically induced
tumor cell lines, spontaneously induced, non-trans-
formed cell lines lacking endogenous and exogenous
viral genomes are much more useful for studying the
conversion to an immortal state and to evaluate the
effects of viral infection. Traditionally, in the absence of
a suitable avian cell line, primary chicken embryo fibro-
blasts (CEF) have been used in virology and vaccine pro-
duction, although a major disadvantage is the
fluctuation of virus titers from lot to lot. Thus, there are
advantages to using a spontaneously immortalized non-
transformed cell line for vaccine production, which pro-
vides an unlimited supply of identical cells.

The immortal DF-1 CEF cell line was established
spontaneously from Line 0 (endogenous-virus negative;
[5]) embryos and has been widely used for the
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propagation of various avian viruses, including avian sar-
coma leukosis virus [6,7], avian leukosis virus [8], Mar-
ek’s disease virus [9], avian influenza virus [10,11],
infectious bursal disease virus [12], and avian metapneu-
movirus [13,14]. The non-transformed DF-1 CEF cell
line has been continuously grown in culture for more
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than 300 passages and does not harbor any known
endogenous viruses [7,15]. DF-1 cells have enhanced
growth potential compared to their primary CEF coun-
terparts [6,16]. The morphology of DF-1 cells is that of
a typical spindle-shaped fibroblast, but is much smaller
than its primary CEF counterpart (Figure 1; [17]).
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Figure 1 Morphology and cell growth kinetics for DF-1 and primary CEF (passage 4) cells. Cell images for DF-1 (P285) (A) and primary
CEF (P4) (B) cells were obtained by inverted microscopy at 100x magnification. (C) Growth kinetics. Immortal DF-1 and primary CEF cells were
seeded at 1 x 10° cells per 10-cm dish and the accumulated cell numbers were counted at each day for 7 days. Experiments were repeated
three times.
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Various genetic, biochemical, and physiological char-
acteristics of the DF-1 cell line have been reported. At
the chromosomal level, DE-1 cells display different
ploidy lineages and chromosomal rearrangements by
maintaining a complex derivative karyotype which may
be caused by chromosome fusions in homozygous and
heterozygous conditions. In addition the DF-1 cells
contain a greater amount of telomeric sequence
repeats per genome compared to normal chicken cells
and to a telomerase positive transformed lymphoma
cell line [18]. Chromosome rearrangements and differ-
ent ploidy thus may influence structural or dosage-
related alterations in gene expression. Indeed, DF-1
cells retain various genetic alterations of down-regu-
lated p53 function, an up-regulated pRB (retinoblas-
toma protein) and E2F1 pathway, and elongated
telomere length, which are commonly found in immor-
talized cells [19]. Compared to the parent line of pri-
mary CEF cells, DF-1 cells were shown to
transcriptionally increase mitochondrial encoding gene
expression and elevated mitochondrial respiratory
functions, which supports its rapidly dividing cellular
characteristics [16]. Moreover, cellular antioxidant
genes, such as manganese containing superoxide dis-
mutase (MnSOD or SOD2), copper-zinc containing
SOD (CuZnSOD or SOD1), and catalase were deregu-
lated transcriptionally and functionally in the DF-1 cell
line. These deregulated antioxidant functions may be
considered to be responsible for hypersensitivity to
oxidative stress shown in DF-1 cells [20-22].

The DF-1 CEF cell line is a biologically important
spontaneously immortalized cell line that has been uti-
lized by great number of research groups for a host of
research topics. Due to the diverse utility and the poten-
tially unique genetic characteristics, the DF-1 cell line
(along with several other chicken cell lines and chicken
breeds) will be subjected to whole genome sequencing
within the year (personal communication Jerry Dodgson,
Michigan State University).

Biologic, virologic and important genetic alterations in
immortal DF-1 CEF cells have been reported, however
there are no reports concerning genome-wide gene
expression profiling of the DF-1 cells to our knowledge.
Thus, the major goal of this study was to conduct global
gene expression analysis to profile differentially
expressed genes in DF-1 CEF cells compared to their
primary CEF counterpart using a 44K chicken oligo
microarray. The results indicate that DF-1 cells retain
cellular characteristics of enhanced cell cycle progres-
sion and proliferation, down-regulated cell death path-
ways, hyperactive mitochondrial functions, and altered
cellular morphogenesis.
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Results and Discussion

Morphology and growth characteristics of DF-1 CEF cells
Immortal DF-1 CEF cells have been growing continu-
ously in culture for a number of years. DF-1 cells at pas-
sage 285 morphologically showed typical characteristics
of fibroblast cells, but are clearly smaller in size espe-
cially regarding cellular projections compared to primary
passage 4 CEF cells (Figure 1A and 1B). Growth rates of
DF-1 cells showed between 1.0 to 1.2 population dou-
blings per day (PD/d) compared to 0.6 - 0.8 PD/d of pri-
mary CEF cell counterpart (Figure 1C).

Gene expression profile of immortal DF-1 CEF cells

To find transcriptional alterations in DF-1 cells, genome-
wide expression profiling was conducted using RNA
from primary and immortal DF-1 CEF samples. Although
the primary CEF counterpart cells used in this study (SPF
embryo origin) were not the original embryonic cells
used for the establishment of DF-1 cells [from Line 0
(endogenous-virus negative) embryo origin], comparison
of transcriptional alterations by microarray analysis was
conducted to understand cellular characteristics of
immortal- and rapidly growing DF-1 CEF cells compared
to early passage of primary CEF cells having limited life-
span and a relatively slow proliferation rate. Of the 44K
probes used in the microarray analysis, a total of 3876
differentially expressed genes were identified in DF-1
CEF cells with a 2 fold level cutoff that included 1706 up-
regulated and 2170 down-regulated genes (Additional file
1). To validate the microarray results, 21 randomly cho-
sen genes from the 3876 differential expression list were
subjected to qPCR along with the GAPDH loading con-
trol gene. Results indicated that increased or decreased
expression levels for all genes tested were well-matched
in assays between microarray and qPCR analysis (Table
1). When 3876 differentially expressed probes were ana-
lyzed using Ingenuity Pathways Analysis (IPA, Ingenuity™
Systems, http://www.ingenuity.com), 902 were classified
as functionally known genes (Additional file 2). A list of
the 10 most up- and down-regulated differentially
expressed genes in the DF-1 cells are provided in Table 2.

The 10 up- and down-regulated genes in DF-1 cells
exhibiting the greatest differential expression

The 10 most up-regulated genes (Table 3) are related to
functions of cell cycle and proliferation, intracellular traf-
ficking, cytoskeletal arrangement, and host-defense
mechanisms against pathogenic infections. In contrast,
the 10 most down-regulated genes in DF-1 cells (Table 3)
are associated with cell cycle arrest and apoptosis, home-
ostasis, cell shape and movement, cellular respiration,
and organ development. Of these, the up-regulation of
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Table 1 Comparison of fold changes between microarray
and qPCR

Accession No. Gene Symbol Microarray qPCR
AB109635 HMGCR -1.03 -0.81
AB196971 APCDD1 475 7.96
AF505881 SCX -3.27 -1.94
AJ131110 TWIST2 461 6.77
BU279212 CBLN2 7.84 8.64
BX929635 NDP -4.26 -1.64
BX931599 VIPR2 -2.90 -11.34
BX932694 MPZL2 551 4.16
BX933478 MXRAS5 -2.69 -7.97
BX933888 CT1QTNF3 -2.53 -2.28
BX935456 EGLN3 -3.04 -4.48
BX936211 TMEM116 4.26 5.94
CK611983 CSTA 449 792
CR385566 CLEC3B -4.46 -3.58

D87992 ANPEP -4.25 -6.29
Me0853 THBS2 -5.15 -5.28
M64990 PTGS2 -6.78 -10.36
M80584 LUM -3.14 -4.59
M87294 NPY -3.73 -7.15
X87609 FST -4.12 -10.04

The gene expression levels of 20 genes from microarray analysis were
confirmed by gPCR. The expression levels were presented by fold changes
values in microarray analysis, while, for qPCR, the values were calculated by 2
AACT method, which were comparable to fold changes in the microarray. All
values are mean values determined by the calculations from three replicate
assays.

OSGIN1, COLEC10, and SOCS1 and the down-regula-
tion of ST3GAL1, PTGS2, and CCK in DF-1 cells appears
initially to be incongruous with the rapid growth poten-
tial that is characteristic of these cells. Although the con-
nections to cellular phenotypes from mRNA expression
data may not be as strong as expected due to the poten-
tial lack of correlation between mRNA expression and
protein abundance (which have been reported previously
in both prokaryotes and eukaryotes [23-27]), the highly
and dramatically differentially expressed genes may
represent correlations between transcripts, protein abun-
dance and the differential abundance of proteins in two
different cell types, respectively. Thus, further study is
needed to reveal the functional roles of these genes in
DEF-1 cells.

Functional groups of differentially expressed genes

The IPA program generated bioinformatics data sets
including functional groups (gene ontology; GO) and
gene networks for differentially expressed genes in
immortal DF-1 CEF cells. Of the biologically functional
groups for 904 differentially expressed genes, the top 15
functional groups are displayed in Figure 2. The greatest
numbers of genes are mainly categorized into function-
alities of cellular growth and proliferation, cell cycle,

Page 4 of 19

cellular movement, cancer, genetic disorders, and cell
death, suggesting that the transcriptional alterations that
occurred in DF-1 cells are closely related and likely
responsible for a great deal of the rapid growth and phe-
notypic changes in this cell line.

Gene networks

Gene network analysis, which represents the intermole-
cular connections among interacting genes based on
functional knowledge inputs, was performed on the dif-
ferentially expressed genes using the IPA program. Of
various assay settings, the simplest settings (35 focus
molecules and 10 networks) were employed to analyze
molecular gene networks in order to facilitate and sum-
marize the connections among the larger number of dif-
ferentially expressed genes (Table 4 and Figures 3, 4, 5,
6, 7). A discussion of the top five gene networks is pro-
vided below and gene information for focus molecules
in each network was listed in Additional file 3.

Network #1 is closely associated with the E2F1 and
BRCA1 (breast cancer 1, early onset) pathways in cell
cycle regulation (Figure 3). Likewise, the top functions
related to network #1 are cell cycle regulation, DNA
replication, recombination, repair, and cellular assembly
and organization. Up-regulation of E2F1 in immortal
CEF cell lines including DF-1, heart derived- and breast
derived CEF cells was reported previously together with
the genetic alterations for cell cycle regulatory genes,
such as the down-regulation of p53, MDM2, p21CIP as
well as the upregulation of pRB, the cyclins (except
cyclin D2), c-Fos, c-Jun, and Bcl2 [19]. These cell cycle
regulatory genes showed a similar expression pattern in
the full differential expression list of 3876 genes. How-
ever, with the exception of E2F1, these genes were not
recognized by the IPA program. This difference might
be the result of the IPA program, which focuses mainly
on mammalian gene information and pathways, and
does not fully cover chicken gene annotations. It sug-
gests that comparing and contrasting data of both the
IPA differential expression list and the manufacturer’s
differential expression list is more helpful for compre-
hensively understanding the differential expression
datasets.

E2F1 is a member of the E2F family of transcription
factors that play a crucial role in controlling the cell
cycle by association with the tumor suppressor protein,
pRB (retinoblastoma protein). E2F transcription factors
are the effectors of the G1/S transition of the cell cycle.
When bound to DNA, E2F transcription factors exist
either as free E2F/DP (E2F dimerization partner) hetero-
dimers, or are associated in larger complexes containing
members of the retinoblastoma family (pRB, p107, p130)
and members of the cyclin/CDK protein families. CDKs
are comprised of a family of serine/threonine protein
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Table 2 The 10 most up- and down-regulated genes in DF-1 cells as determined by Ingenuity Pathway Analysis

software

The 10 most up-regulated genes

ID Symbol Entrez Gene Name Log Ratio  p-value
AB196971 APCDDI1 adenomatosis polyposis coli down-regulated 1 475 468 x 10®
AJ131110 TWIST2 twist homolog 2 (Drosophila) 461 393 x 107
BX936211 TMEM116  transmembrane protein 116 4.26 9.58 x 10°'°
564689 MYH6 myosin, heavy chain 6, cardiac muscle, alpha 3.52 492 x 10°
AJ851540 CARD11 caspase recruitment domain family, member 11 3.51 166 x 108
BX932923 PLEK2 pleckstrin 2 347 263 x 10°
CR523499  OSGIN1 oxidative stress induced growth inhibitor 1 343 504 x 107
DQ129668  COLEC10  collectin sub-family member 10 (C-type lectin) 3.19 181 x 107
BX933215  SOCS1 suppressor of cytokine signaling 1 3.05 363 x 107
CR407099  VPS13B vacuolar protein sorting 13 homolog B (yeast) 303 344 x 10°
The 10 most down-regulated genes

D Symbol Entrez Gene Name Log Ratio p-value
X59284 NOV nephroblastoma overexpressed gene -840 311 % 107
AJ719388 SLC25A4 solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 4~ -7.69 122 x 1070
Y138247 CDKN2B  cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) -7.68 275 % 1071°
X80503 ST3GAL1 ST3 beta-galactoside alpha-2,3-sialyltransferase 1 -7.26 467 x 107
M64990 PTGS2 prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)  -6.78 111 %107
X935556 CTHRC1 collagen triple helix repeat containing 1 -6.78 320 x 10®
M68514 EPHA3 ephrin receptor A3 -6.73 589 x 107
AJ719946 MANSCI1 MANSC domain containing 1 -6.65 566 x 10°
AJ251273 CCK cholecystokinin -6.63 1.27 x 10-11
Y049705 MAB21L1 mab-21-like 1 (C. elegans) -6.44 226 x 10710

Fold change (FC) values were indicated by log2. The highly differentially expressed genes were sorted. All genes were matched and verified with UniGene

function of NCBI database.

kinases that phosphorylate a number of substrates
mainly implicated in cell cycle progression and tran-
scription. Association of E2Fs with the pRB family facili-
tates active repression through recruitment of histone
deacetylases [28]. Genes directly interacting with E2F1
include factors for DNA replication [e.g. DNA replica-
tion factor C (RFC) 2, 3, 4] [29], DNA recombination
and repair of double strand breaks (e.g. RAD 17, 51, 52,
54B, 54L and FENI; flap structure-specific endonuclease
1) [30,31], and maintenance of genomic stability (e.g.
BRCA1). BRCA1 is a nuclear phosphoprotein that
makes a super complex, denoted as Basc (BRCA1 asso-
ciated genome surveillance complex), which is asso-
ciated with tumor suppressors and DNA damage repair
proteins such as nibrin (NBN) [32]. In network #1,
BRCA1 binding proteins, MED17 (mediator complex
subunit 17), which is a transcription co-factor with
TFIID, RAD51 and BARD1 (BRCA1 associated RING
domain 1) are also up-regulated, suggesting that BRCA1
transcriptional activity may be increased in DF-1 CEF
cells. Also DNA polymerases including POLD3 (poly-
merase-DNA directed-delta 3 subunit) and PRIM2 (pri-
mase 2) were up-regulated in network #1. The up-
regulation of all of these genes and complexes make

‘teleological sense’ with regard to the rapid growth char-
acteristics of DF-1 CEF cells. In addition, ATPase
related factors including ATPB1 (ATPase, Na+/K+
transporting), ABCC6 (ATP binding cassette, sub-family
6), ATP5S (ATP synthase, H+ transporting, mitochon-
drial complex), and KATNA1 (ketanin p60- ATPase
containing subunit A1) were also up-regulated and con-
sistent with the previous report of the hyperactivation of
mitochondrial functions and up-regulation of mitochon-
drial gene expression [16]. These results suggest that
DEF-1 CEF cells may contain cellular systemic alterations
to accelerate metabolic energy expenditure. Moreover,
cellular proliferation inhibitory factors or apoptosis
inducing factors, such as MT2A (metallothionein 2A)
and ARHCEF4 (Rho guanine nucleotide exchange factor
4) were down-regulated in DF-1 CEF cells [33,34] that
again would contribute to the phenotypic expression of
rapid growth rate and resistance to senescence that is
characteristic of DF-1 cells.

Similar to network #1, the top functions of network #2
include DNA replication, recombination and repair, cell
cycle, and cellular assembly and organization (Figure 4).
Central in this network are CASP3 (caspase 3), mole-
cules inducing apoptosis including SFRP1 (secreted
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Table 3 Biological functions of the 10 most up- and down-regulated genes

Up-regulation

Symbol Functions

APCDD1 - Directly regulated by the B-catenin/T-cell factor signaling complex
« Increased expression in colon cancer cells and potential roles in colorectal tumorigenesis [75].

TWIST2 « A basic helix-loop-helix transcription factor
- Inhibits both p21WAF1/Cip1 (cyclin dependent kinase inhibitor) and muscle creatinine kinase (MCK)
- Functional association with cellular growth arrest and myogenesis specific expression [76]
- Possibly alternate regulatory factor involved in the lowered expression of p21WAF1/Cip1 in DF-1 cells that in turn would support
the faster growth rate that is characteristic of the DF-1 cell line [19].

TMEM116 « Unknown functions
« A single nucleotide polymorphisms are associated with insulin-dependent diabetes mellitus in human [77]

MYH6 « Alpha subunit of cardiac muscle myosin
- Association cytoskeletal or muscle architecture [78]
« Taken together with MYL10 (myosin light chain 10), which is up-regulated in DF-1 cells (Additional file 2), mutations are
associated with cardiomyopathy or cardiac hypertrophy [79]

CARD11 « Known as Carmal belonging to the membrane-associated guanylate kinase (MAGUK) family that is essential in antigen receptor-
induced nuclear factor kB (NF- kB) activity in T-cell activation [80]

PLEK2 + A membrane associated protein containing PH (pleckstrin homology) motifs that bind polyphosphoinositides
« Roles in orchestrating cytoskeletal structural arrangement [81]

OSGIN1T « Known as BDGI [BMSC (bone marrow stromal cell)- derived growth inhibitor] or OKL38 (pregnancy-induced growth inhibitor)
« Suppression of the growth of MCF7 human breast cancer cell by inducing cell cycle arrest and apoptosis when OSGINT was
ectopically expressed exogenously [82]

COLEC10 « Known as CLL1 (colletin liver 1), a member of the C-lectin family
« Roles in initial host defense by binding sugars on the cell surface of microorganisms through their carbohydrate recognition
domain [83].

« Essential host factor for early replication of influenza virus in cultured cells revealed by genome wide siRNA screening [84]
« Its mRNA down-regulated in human liver hepatocellular carcinoma by microarray analysis [85].

SOCS1 « Suppression of many cytokine-signaling pathways by inhibiting JAK tyrosine kinase activity and functions as antioncogene by
antagonizing tumor cell growth [86].

VPS13B « Known as COH1, involved in intracellular vesicle-mediated sorting and transport of proteins and with Cohen syndrome, which is
an autosomal recessive disorder in human caused by the genetic mutation in COH1 gene [87].

Down-

regulation

Symbol Functions

NOV « Known as CCN3, a member of the secreting insulin like growth factor binding protein family with antiprolifereative effects on
tumor cells [88,89].

SLC25A4 « Known as ANT1 (adenine nucleotide translocator 1)

« Localized to the inner mitochondrial membrane, exchanges cytosolic ADP for mitochondrial ATP, and induces apoptosis by the
mitochondrial recruitment of NF-xB [90].
« Decrease in ANT1 might play in a role in immortalization characteristics by suppressing the induction of apoptosis in DF-1 cells.

CDKN2B - Known as p15INK4B, CDK4/6 inhibitor
« Arrest cell cycle and induce cellular senescence [91].
« The down-regulation in DF-1 cells caused by hyper-methylation
« Functional roles both in the progression of cellular senescence and in brain development were reported previously [92,93].

ST3GAL1 « Type Il membrane protein that catalyzes the transfer of sialic acid from CMP-sialic acid to galactose-containing substrates
« A knock-out mutation increases apoptosis of mouse T lymphocytes expressing the CD8 complex, indicating a homeostatic
function of STGALT in T lymphocyte [94].

PTGS2 « Known as COX2 (cyclooxygenase 2), the key rate-limiting enzyme in prostaglandin biosynthesis with both dioxygenase and
peroxidase activity
- Inhibition of apoptosis by suppressing caspase pathways and the increase of survival mechanisms through Akt activation [95].

CTHRC1 « A secreted protein in injured and diseases arteries that inhibits collagen expression and promotes cell migration [96].

EPHA3 -+ A unique member of the receptor tyrosine kinase family
« Roles in regulating cell shape and cell movement [97].

MANSC1 « A protein containing a MANSC (motif at N terminus with seven cysteines) domain that presents certain membrane- and
extracellular proteins such as LPR11 (low-density lipoprotein receptor-related protein 11) and HAIT (hepatocyte growth factor
activator inhibitor 1) [98]
+ Unknown the functions
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Table 3 Biological functions of the 10 most up- and down-regulated genes (Continued)

CCK - A gastrointestinal and neuronal peptide with important regulatory roles in the digestive tract and nervous system, including both
acute and more chronic trophic effects
- Binding its receptor triggers the activation of multiple signal transduction pathways that relay the mitogenic signal to the nucleus
and promote cell proliferation [99].

MAB21L1 - A knock-out mutation led to the defects in eye and perputial gland formation [100]
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Table 4 Associated network functions
ID Associated network functions Score Focus Molecules
1 Cell Cycle, DNA Replication, Recombination, and Repair, Cellular Assembly and Organization 33 28
2 DNA Replication, Recombination, and Repair, Cell Cycle, Cellular Assembly and Organization 31 27
3 Cancer, Cardiovascular System Development and Function, Organismal Development 30 26
4 Molecular Transport, Tissue Morphology, Cell Cycle 29 27
5 Cellular Assembly and Organization, Developmental Disorder, Skeletal and Muscular Disorders 28 25
Functions associated with 10 networks are listed. Score means the number of network eligible molecules out of differentially expressed genes.
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frizzled-related protein 1) and TRIB2 (tribbles homolog  SFRP1 acts as soluble modulators of Wnt (hybrid of
2) which were all down-regulated. The Caspase family  wingless and integration 1) signaling and suppresses
are cysteine-aspartic acid proteases which play major  tumor cell growth through the Wnt signaling pathway
roles in the execution phase of cell apoptosis [35,36].  [37]. ‘However, functional roles of SFRP1 in apoptosis
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related to CASP3 expression depends on the cell type
[38]. TRIB2, which is an atypical protein serine-threo-
nine kinase, is known to coordinate cell proliferation,
migration, and morphogenesis during the development
of Drosophila and Xenopus embryos and is involved in
apoptosis in mammalian cell lines [39]. Also, AATF
(apoptosis antagonizing transcription factor), which sup-
presses apoptosis induced by oxidation [40], was up-
regulated in DF-1 CEF cells. These results generally sug-
gest cell death pathways are suppressed in DF-1 cells
that, in turn, support the immortal and hyperprolifera-
tive capability of DF-1 cells. Moreover, in human,
GMNN (geminin), which negatively regulates DNA
replication ‘licensing’ (the one time initiation of replica-
tion in a single cell cycle) by preventing the formation
of the pre-replicative complex on origins of replication
through the physical association with the ‘licensing’ fac-
tor Cdtl [41,42], was cleaved by CASP3 during apopto-
sis [43]. The suppression of GMNN by siRNA
knockdown can selectively kill cancer cells [44] and
GMNN directly interacts (binds to) MCM6 (minichro-
mosome maintenance complex component 6), which is
an essential factor for the initiation of eukaryotic gen-
ome replication [45] in addition to other MCM mole-
cules including MCM2, 3, 5 [46,47] in network #2,
indicating that GMNN may have an important role in
expediting DNA replication. Other E2F-1 transcription
targets including TYMS (thymidylate synthetase), NASP
(nuclear autoantigenic sperm protein-histone binding),
ORCIL (origin recognition complex-subunit 1-like), and
TPX2 (microtubule-associated, homolog) are up-regu-
lated in DF-1 cells [48,49]. Furthermore, direct interac-
tions among highly expressed ORC1L, ORC6L, ORC2L
and MCM families, which are components protein com-
plex essential for the initiation of the DNA replication
in eukaryotic cells, were found in network #2 [50,51].
Up-regulation of PLK1 (polo like kinasel), KIF23 (kine-
sin family member 23), and PRC1 (protein regulator of
cytokinesis 1) through the direct interactions among
those molecules may facilitate mitosis and cytokinesis at
the late phase of the cell cycle in DF-1 cells [52-54].
Molecules in network #3 are involved in cancer, cardi-
ovascular system development and function, and orga-
nismal development (Figure 5). Glutathione peroxidases
(GPX7 and 8) and glutathione S transferases (GST-A4,
-T1, and -Z1) were downregulated except for GST-O1.
This result is consistent with the previous report of
higher levels of reactive oxygen species that were pro-
duced and accumulated in DF-1 CEF cells possibly due
to higher respiratory rates, higher superoxide dismutase
and lowered catalase activity, resulting in hypersensitiv-
ity to oxidative damage [22]. Taken together, lower
levels of GPXs and GSTs may be responsible for higher
levels of intracellular oxidative stress and susceptibility
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to oxidative damage in DF-1 cells. In contrast to the
down-regulation of CASP3 in network #2, initiator cas-
pases (CASP) 2 and 8 were up-regulated in DF-1 cells
implicating a more active induction of apoptosis when
DF-1 cells encounter cell damage, such as oxidative
stress or pathogenic infections. DF-1 cells have been uti-
lized as an excellent substrate for the propagation of
various viruses, since the cells support high virus titers
and generate clear cytopathic effects, such as syncytium
formation (nuclear aggregation during virus replication)
[6,7,9,10]. Virus infections usually induce apoptosis dur-
ing lytic propagation stages. Therefore, the up-regulation
of apoptosis initiator caspases may play a role during
virus infection in DF-1 cells. In addition, prion protein
(PRRN) and its interacting proteins including NTM
(neurotrimin), LSAMP (limbic system-associated mem-
brane protein), and CLSTN1 (calsyntenin 1) were down-
regulated in DF-1 cells. Normally, functional cellular
PRRN is known to promote G1/S cell cycle processing,
and has resulted in increasing proliferation of human
gastric cancer cells [55], but the higher proliferation
capability of DF-1 cells may not be stimulated by prions
and their interacting molecules.

Network #4 contains molecules involved in molecular
transport, tissue morphology, and the cell cycle (Figure
6). In network #4, three subunits of the NDC (nuclear
division cycle) 80 complex, which is a homolog of Yeast
kinetochore complex component containing NDC80, (a.
k. a. HEC1 in mammalian species), SPC (spindle pole
component) 24, SPC25, and NUF2, and mediates attach-
ment of chromosomes to microtubules, were differen-
tially expressed showing up-regulation of NDC80 and
SPC25 and down-regulation of NUF2. The NDC80 com-
plex is evolutionarily conserved and contains four subu-
nits SPC24, SPC25, NUF2 and NDC80. In budding
yeast, the NDC80 complex plays a critical role in estab-
lishing the stable kinetochore-microtubule interactions
required for chromosome segregation in mitosis [56,57].
Of the NDC80 subunits, chicken SPC24 has not been
characterized to date. The unbalanced expression of the
components in the NDC80 complex in DF-1 cells may
lead unstable chromosome segregation, resulting in dif-
ferent ploidy and a complex derivative karyotype caused
by chromosomal rearrangements during rapid prolifera-
tion cycles [18]. Several secreting proteins, including
IL16 (interleukin 16), FGFBP1 (fibroblast growth factor
binding protein 1), SERPINE2 (serpine peptidase inhibi-
tor), VIP (vasoactive intestinal peptide), and NRG1
(neuregulin 1) are found in network #4. VIP and NRG1
were up-regulated, while FGFBP1, IL16 and SERPINE2
were down-regulated. VIP is known to increase cyclin
D1 expression and cell proliferation [58], and NRG1,
which is a ligand for epidermal growth factor and its
receptor, causes constitutive activation of several
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Figure 5 Gene network #3. Molecular interaction, symbols, and color schemes are the same as the description in Figure 3.

signaling pathways, such as the Erk1/2, Erk5, and Akt expression of the IL16 prodomain in tumor cell lines
routes, which have been linked to cell proliferation [59].  has triggered growth arrest and apoptosisis [61]. With
SERPINE2, a.k.a thrombin inhibitor protease nexin 1, the exception of FGFBP3, differentially expressed
has negative effects on myofibroblastic cell growth by  secreted proteins in DF-1 CEF cells were closely related
regulating PI3 kinase-Akt pathway [60]. The ectopic  to growth promoting activity. Factors involving tissue
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_

morphology in network #4 include EGLN3 (egl nine
homolg 3), EGR1 (early growth response 1), FOXM1
(forkhead box M1), HESI (hairy and enhancer of split 1,
Drosophila), MEOX2 (mesenchyme homeobox 2),
NFIL3 (nuclear factor, interleukin 3), NRG1, PTGS2
(prostaglandin-endoperoxide synthase 2), VIP, and

VIPR2 (VIP receptor 2). The specific functional roles of
differentially expressed genes in the morphogenesis of
DEF-1 cells are being further investigated.

Finally, molecules in network #5 are involved in the
cellular assembly and organization, developmental disor-
ders, and skeletal and muscular disorders (Figure 7).
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Network #5 was mainly centered around up-regulated
SRC (v-src homolog - avian) and down-regulated actin
related factors. SRC, the cellular homolog of the Rous
sarcoma virus v-src, is a protooncogene and may play a
role in cell growth in addition to embryonic

development. SRC is a tyrosine kinase whose enzymatic
activity is necessary to induce oncogenic transformation
[62]. The SRC interactive molecules including CAV2
(caveolin 2; [63]), MTMR2 (myotubularin related pro-
tein 2; [64]), ZP2 (zona pellucida glycoprotein 2; [65]),
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RALGAPB (Ral GTPase activating protein-beta subunit;
[65]), AFAP1 (actin filament associated protein 1;[66]),
and TRPC1 (transient receptor potential cation channel-
subfamily C; [67]) are phosphorylated by SRC and are
considered to improve cellular proliferation, suggesting
that differentially expressed SRC and SRC-interacting
molecules may play important roles for the rapid prolif-
eration of DF-1 cells. Cellular structural proteins such
as actinin, cadherin, and catenin, and their interacting
molecules including CSRP (cystein and glycine-rich pro-
tein) 1, CSRP2, CDH11 (cadherin 11), MARCKSL1
(MARCKS like 1; muscle LIM protein, MLP), CTNNA2
(catenin alpha 2), and TJP2 (tight junction protein 2)
were down-regulated in DF-1 cells, suggesting that these
factors may be involved in the distinct morphology of
DF-1 cells compared to primary CEF cells. Factors
involved in cellular assembly and organization in net-
work #5 include AGRN (agrin), MAP2 (microtubule-
associated protein 2), SGCB (sarcoglycan beta), SGCD
(sarcoglycan delta), and SRC. Proteins functioning in
skeletal and muscular disorders in network #5 include
CDH11, CSRP2, CTNNA2, MAP2, ROR1 (receptor tyr-
osine kinase like orphan receptor 1), SEPN1 (selenopro-
tein 1), SGCB, SGCD, and SRC and factors related to
developmental disorder are MARCKSL1, SGCB, SGCD,
SRC, and TRPC1. Specific roles of each of these factors
need further investigation.

In summary, global gene expression analysis in this
study provides insight into the entire genome-wide
alterations in immortal DF-1 CEF cells. Bioinformatic
analyses suggested that DF-1 cells are characterized by
enhanced molecular mechanisms for cell cycle progres-
sion and proliferation, suppressing cell death pathways,
altered cellular morphogenesis, and accelerated capacity
for molecule transport. In addition to previously known
potential genetic alterations, such as elongation of telo-
mere length and deregulation of cell cycle regulatory
factors including p53, E2F1, the CDKs, and cyclins,
which could possibly allow DF-1 cells to become
immortal, one of the new potential regulatory factors
suggested in this study is the cellular SRC (c-SRC)
molecule, which is a cellular counter part of viral SRC
(v-SRC) oncoprotein found in Rous sarcoma virus. The
c-SRC is generally known as a protooncogene involved
in regulating cellular proliferation and the mutant ver-
sion of ¢-SRC will induce transformation. Though it is
not known whether the ¢-SRC gene in DF-1 cells is
mutated or not, the increased expression of ¢-SRC in
DE-1 CEF cells suggests a contribution to the immorta-
lization of the cell by prolonged activation of growth
signal and the anti-apoptotic activity. Indeed, we per-
formed functional analysis using small interfering
(siRNA) to target E2F1, BRCA1, and SRC, three highly
up-regulated and potentially meaningful genes for the
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rapid growth of DF-1 cells. As shown in Additional file
4 A-D, siRNA against E2F1 (A) marginally reduced DEF-
1 cell growth [2.16 fold increase in the number of cells
at 3 day post transfection (dpt) compared to the number
of cells at 1dpt] compared to the negative control siRNA
transfection (2.49 fold increase), siRNA against BRCA1
(B) and SRC (C) showed only 1.68- and 1.56 fold
increases of DF-1 cell population at 3 dpt, respectively.
The marginal effect of siE2F-1 may be due to a possible
compensatory effect that other E2F family genes may
have on cell proliferation such as shown by E2F3 in
mouse fibroloblastic cells [68]. Knock-down approaches
for BRCA1 and SRC showed more significant effects on
growth inhibition in DF-1 cells, similar to the result of
the positive control siRNA against beta-actin (D). Addi-
tional file 5 A shows the induction of CDKN2B (known
as p15INK4B) by a demethylation chemical (5-aza-2’-
deoxycytidine). Additional file 5 B and C reveal the
growth inhibitory effects of inducing p15INK4B on
rapidly proliferating DF-1 cells compared to control
groups. Further cellular, molecular, biochemical charac-
terization of specific factors to modulate cellular charac-
teristics for DF-1 cells remains for future studies.

Conclusions

In this study, we have demonstrated changes in genome-
wide gene expression for the immortal DF-1 CEF cell
line showing rapid growth potential and chromosomal
rearrangement. Taken together, the DF-1 genome
sequence, which will be announced in the near future,
and the differentially expressed genes characterized here
provide transcriptional insights into the regulatory
mechanisms for the unique characteristics observed in
immortal DF-1 CEF cells.

Methods

Cell culture

Cell culture reagents were purchased from Invitrogen
Life Technologies (Carlsbad, CA). Primary chicken CEF
cells were isolated from 10 day old specific-pathogen
free (SPF) chicken embryos (Charles River Laboratories,
North Franklin, CT). Whole embryos were dissociated
into single cell populations using 0.25% trypsin/1 mM
EDTA. Cells dissociated from embryos were suspended
in a Dulbecco’s Modified Eagle’s Medium (DMEM,
0.45% glucose) plus 10% fetal bovine serum (FBS), 100
units/ml penicillin, 100 pg/ml streptomycin, and 2 mM
L-glutamine in 10 c¢m tissue culture dishes (Sarstedt
Inc., Newton, NC). Cultured cells were grown at 39°C in
a 5% CO, incubator until cells reached confluent mono-
layers (2 to 4 days) and primary CEF cells were passaged
every 3-4 days and frozen stocks of cells were prepared
from each passage at a density of 3 x 10° cells and
stored in liquid nitrogen. Cell freezing medium was
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prepared by the addition of 40% FBS to growth media
supplemented with 10% DMSO. The immortal DF-1
CEF cell line was grown using the same conditions as
for primary CEF cells. All procedures of handling
chicken embryos, cell cultures, and DNA/RNA were
approved by Institutional Biosafety Committee (IBC:
protocol number: 10007) of University of Arkansas.

Total RNA extraction

Total RNA was extracted from primary (passage 4) and
DF-1 (passage 285) CEF cells using TRIzol reagent (Invi-
trogen Life Technologies, Carlsbad, CA) following the
manufacturer’s instructions. Total RNA was treated with
DNase I (New England BioLabs Inc., Ipswich, MA), and
RNA was re-purified by TRIzol reagent. The quality of
RNA was checked by agarose gel electrophoresis fractio-
nation (data not shown).

Probe labeling and microarray hybridization

A two color labeling microarray system was used to
compare mRNA expression between primary and DF-
1 CEF cells. Fluorescently labeled complementary
RNA (cRNA) probes were generated by using the Two
Color Microarray Quick Labeling kit (Agilent Tech-
nologies, Palo Alto, CA) following the manufacturer’s
instructions. RNA Spike-in controls were used to
adjust possible dye effects following the manufac-
turer’s instructions. The Spike-in controls represent
two sets of ten synthesized RNA mixtures derived
from the Adenovirus E1A transcriptome with different
concentrations in each set [69,70]. These Spike-in sets
were mixed with either primary or DF-1 CEF samples
and co-hybridized to the arrays. Briefly, 2 ug of total
RNA was mixed with Spike-in controls and converted
to cDNA using reverse transcriptase and oligo dT pri-
mers in which T7 promoter sequences were added. T7
RNA polymerase was used for the synthesis and label-
ing of cRNA with either Cy3 dye for the primary CEF
control or Cy5 dye for DF-1 CEF samples. The fluor-
escently labeled cRNA probes were purified using the
Qiagen RNeasy Mini Kit (Qiagen Inc., Valencia, CA),
and the concentration, fluorescent intensities, and
quality of labeled cRNA probes were determined using
a Nano-drop spectrophotometer (Thermo Scientific,
Wilmington, DE). An equal amount (825 ng) of Cy3
and Cy5 labeled cRNA probes were hybridized on a 4
x 44K Agilent chicken oligo microarray (array ID:
015068). The hybridized slide was washed using a
commercial kit package (Agilent Technologies, Palo
Alto, CA) and then scanned using a Genepix 4000B
scanner (Molecular Devices Corporation, Sunnyvale,
CA) with the tolerance of saturation setting of 0.005%.
Four biological replicates for each cell line were
conducted.
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Microarray data collection and analysis
Background-corrected red and green intensities were
normalized by the local polynomial regression (loess)
method. The average values of the resulting normal-
ized expression in replicate hybridization sets were
considered in the subsequent analysis. In order to
identify differentially expressed genes, moderated t-sta-
tistic and its corresponding p-value based on empirical
Bayes methods [71] for each gene were computed. The
genes with both a p-value below 0.05 and fold change
over + 2 fold were considered as statistically different
between two groups and identified as differentially
expressed genes. Results were deposited into Gene
Expression Omnibus (GEO; accession number:
GSE29257). All analyses were implanted in Microsoft
Excel and JMP Genomics (SAS Institute, Cary, NC),
which is licensed to Cell and Molecular Biology Pro-
gram of University of Arkansas.

Quantitative reverse transcription-polymerase chain
reaction (qPCR)

Reverse transcription was performed with 3 pg of total
RNA using Superscript II reverse transcriptase and oligo
dT15 15 primers (Invitrogen Life Technologies, Carlsbad,
CA) following the manufacturer’s instructions. The
reverse-transcribed cDNA was diluted by 1:10 ratio and
a portion (1 pl) was subjected to qPCR under the fol-
lowing conditions: 40 cycles of 95°C for 30 s, gene-spe-
cific annealing temperature (58 - 65°C) for 1 min,
extension for 30 s at 72°C, and a final extension at 72°C
for 10 min. A non-template control and endogenous
loading control (chicken GAPDH) were used for the
relative quantification. The differential expression in
DEF-1 CEF cells were calculated by the -AACT method,
which is comparable to log, value of differentially
expressed genes, against the primary CEF counterpart
[72]. Primers for qPCR were designed using Primer3
software http://frodo.wi.mit.edu/cgi-bin/primer3/pri-
mer3.cgi and were synthesized by Integrated DNA
Technologies (Coralville, IA). Primer information is
listed in Table 5. All gPCR reactions were performed
three times.

Bioinformatics

Functional interpretation of differentially expressed
genes was analyzed in the context of gene ontology
and molecular networks using the Ingenuity Pathways
Analysis (IPA; Ingenuity Systems™ http://www.ingenu-
ity.com). Since IPA is based on human and mouse
bioinformatics, functionalities for differentially
expressed genes in the chicken were interpreted based
primarily on mammalian biological mechanisms. The
differentially expressed genes were compared to
genetic categories in the IPA database, and ranked
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Table 5 Primers used for qRT-PCR
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Additional material

Accession # Forward Primer (5' — 3') Gene Symbol
Reverse Primer (5" — 3') Additional file 1: List of entire 3876 DE genes before sorting by IPA.
AB109635 GGCACCAACTTGCTACCACA HMGCR The values indicate Log, fold changes. The Agilent ID, gene symbol,
GCTGCAAGAGCTGCCATTAG gene name, GenBank accession numbers, chromosomal region,
cytoband, GO ID, and oligo sequence on the array were provided.
ABT6971 é$g-|G-rAgg$GGCiGCiACé%iG£TGT APCDDI Additional file 2: List of 902 DE genes identified by IPA database.
The values indicate Log, fold changes. The gene symbol, gene name,
AF505881 CCAGCTACATCTCCCACCTG SCX GenBank accession numbers, cellular locations, and molecule types were
TCTGTTTGGGCTGGGAGTTC provided.
AJ131110 GTGGATAGCTTGGGGACCAG TWIST2 Additional file 3: List of focus molecules in gene networks. Gene
AAGACTGGGAGCTGGGACTG symbols and GenBank accession numbers were displayed for the
BU2Z79212 GGCAACCATITIGATCITGCT CBLN2 cected 35 cHfrentily oxpressed gunes from mictcarey andlyas ncude
CCCCTGCAAAAGCTGAAATC ) ; ) '
GenBank accession numbers, while accession numbers for reference
BX929635 TCTCGCTCCTGGCAATGATA NDP molecules were not shown in the table.
CCAGCAGCACCATCTTTGAG Additional file 4: DF-1 cell growth responding to siRNA for E2F-1,
BX931599 CTGTTTCCTGACCGCAGTTC VIPR2 BRCA1, and SRC. Each of four small siRNAs to target chE2F1 (A),
AGCACAAACTCCGCCATTTT chBRCAT1 (B), chSRC (0), and chBeta-actin (D), in addition to a negative
control siRNA were synthesized by Integrated DNA Technology Inc.
BX932694 GGCCCCTTACTGGIGGTCTT MPZL2 (Coralville, 1A). One million DF-1 cells were transfected with 300 pmole of
AGACGGGCTTTGGATAGCAA each siRNA using Lipofectamine reagent (Invitrogen Life Technologies,
BX933478 CCTGTGCAAGGTGTCCAGTG MXRAS5 Carlsbad, CA). Transfected cells were collected at 1 and 3 days post
CCCAATGGCCATACAGTTCA transfection (dpt), total cell numbers were counted, and the growth rates
BX033888 CTGGGATCCCTCCAGAGCTA C1OTNF3 \W/vdere determined by ratio of cell numbers at 3dpt and cell numbers at
CCATTCACTGGAGCACCAAA pt. .Resu.\ts were compared to a negauve control. Resu\ts of the most
effective siRNA for each target were displayed. The siRNA for chBeta-
BX935456 CGAGGCCATCAACTTCCTTC EGLN3 actin was used as positive control to suppress DF-1 cell growth.
TCCACATGACGCACATACCC Additional file 5: DF-1 cell growth responding to 5-aza-2'-
BX936211 CCAGCTGTCCTCCTTGGAAT TMEM116 deoxycytidine treatment for the induction of p15INK4B. A 2 uM
AGGGAGAGGAAGACGTGCTG concentration of 5-aza-2-deoxycytidine (5-aza), which is a demethylation
chemical, was used to treat 1 million DF-1 cells, cells which were
CK611983 ATGATGACTGGGGGCITGTC CSTA collected at 1, 2, 3, and 4 days post treatment. The mRNA expression of
GCAACCACTTGAGTCCGGTA p15INK4B was determined by gRT-PCR at designated time points (A); cell
CR385566 CGCGCTCTACGACTACATGC CLEC3B morphology was visualized by phase-contrast microscopy (400 X; B); and
CTGGGTGGTGATCTCGGTCT cell numbers were counted to determine growth rates (C).
D87992 TGCAGCACTGAGACCTGGAT ANPEP
CAGTTGCTGCGGATGAAGTC
M60853 TTTTGGCTACCAGTCCAGCA THBS2 Acknowledgements
TTCGCAAGTGTTCCCCAGTA This work was supported by Arkansas Bioscience Institute and, in part, by
M64990 TGCTCCCCTGAGTACTGGAA PTGS2 Arkansas Agricultural Experimental Station.
GCCTCTGTGGGTTCAGGATT
Author details
M80584 TCCCACTGAGCAGCTTCTGTA LUM 'Department of Poultry Science, Center of Excellence for Poultry Science,
CCAGAGAGATATCCGCAGCA University of Arkansas, Fayetteville, Arkansas 72701, USA. 2Departmem of
M87294 GGTGCTGACTTTCGCCTTGT NPY Chemistry, Purdue University, West Lafayette, IN 47907, USA. *Department of
GCCTGGTGATGAGGTTGATG Animal Science, University of Minnesota, St. Paul, MN 55108, USA.
X87609 CCACCTGAGAAAAGCGACCT FST Authors’ contributions
ACATCGACCTCTGCCAACCT BWK and JYL designed the experiments, performed the experiments,
NM_204305 GGCACTGTCAAGGCTGAGAA chGAPDH analyzed the data, and wrote the manuscript. WB and KL contributed to the
TGCATCTGCCCATTTGATGT interpretation of the bioinformatics analysis and manuscript editing. JL

The first column indicates the NCBI accession number for designated genes,
and the second column shows sequences for the forward and reverse
primers. The gene symbols are provided in the third column.

according to p-values [73]. Since the size of the created
gene network could potentially be enormous, the num-
ber of molecules in the network was set to the limit of
35, leaving only the most important ones based on the
number of connections for each focus gene (focus
genes = a subset of uploaded significant genes having
direct interactions with other genes in the database) to
other significant genes [74].

analyzed the gPCR assay and DNF prepared DF-1 cells and edited the
manuscript preparation. All authors read and approved the final manuscript.
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