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Abstract

Background: Driven essentially by random genetic drift, subfunctionalization has been identified as a possible non-
adaptive mechanism for the retention of duplicate genes in small-population species, where widespread deleterious
mutations are likely to cause complementary loss of subfunctions across gene copies. Through subfunctionalization,
duplicates become indispensable to maintain the functional requirements of the ancestral locus. Yet, gene duplication
produces a dosage imbalance in the encoded proteins and thus, as investigated in this paper, subfunctionalization
must be subject to the selective forces arising from the fitness bottleneck introduced by the duplication event.

Results: We show that, while arising from random drift, subfunctionalization must be inescapably subject to selective

forces, since the diversification of expression patterns across paralogs mitigates duplication-related dosage imbalances in
the concentrations of encoded proteins. Dosage imbalance effects become paramount when proteins rely on obligatory
associations to maintain their structural integrity, and are expected to be weaker when protein complexation is ephemeral
or adventitious. To establish the buffering effect of subfunctionalization on selection pressure, we determine the packing
quality of encoded proteins, an established indicator of dosage sensitivity, and correlate this parameter with the extent of
paralog segregation in humans, using species with larger population -and more efficient selection- as controls.

Conclusions: Recognizing the role of subfunctionalization as a dosage-imbalance buffer in gene duplication events
enabled us to reconcile its mechanistic nonadaptive origin with its adaptive role as an enabler of the evolution of
genetic redundancy. This constructive role was established in this paper by proving the following assertion: If
subfunctionalization is indeed adaptive, its effect on paralog segregation should scale with the dosage sensitivity of the
duplicated genes. Thus, subfunctionalization becomes adaptive in response to the selection forces arising from the

fitness bottleneck imposed by gene duplication.

Background

A shift in understanding the evolutionary forces that
shape the human genome architecture took place when
the retention of duplicate genes, a major factor in foster-
ing genome complexity, was recognized to be primarily
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promoted by random genetic drift [1,2]. Thus, the evolu-
tion of genetic redundancy in human and in other higher
eukaryotes is enabled by subfunctionalization, a preserva-
tion process driven by mildly degenerative mutations that
cause complementary loss of subfunctions in different
gene copies. These typically dissimilar effects promote
the separation of duplicates across cell types or develop-
mental phases, thus making them indispensable to main-
tain the functional requirements of the ancestral locus.
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In subfunctionalization, expression-regulatory elements
are essentially lost through complementary loss-of-func-
tion mutations in paralogs, leading to a partitioning of
the function across tissues or developmental phases.
Thus, this nonadaptive mechanism is essentially con-
structive [3], and is enabled by selection inefficiency,
which is expected given the small size of the human
population [1,3,4].

Yet, as shown in this work, the retention of gene
duplicates through subfunctionalization must also
encompass adaptive elements. This is so because dosage
imbalances arise in the concentrations of the encoded
proteins as a result of gene duplication events and the
deleterious effects of such imbalances can be mitigated
when paralogs are physically separated by subfunctiona-
lization. Dosage imbalances occur when protein concen-
tration levels at specific tissue locations do not fit the
stoichiometry of the complexes in which the proteins
are involved [5,6]. The complexes may be transient or
obligatory with regards to maintaining the structural
integrity of the protein. Therefore, dosage sensitivity,
that is, the fitness impact of dosage imbalance, must be
determined by the extent of functional reliance of the
protein on associations [7].

In this work we hypothesize that duplication of
dosage-sensitive genes imposes a selection pressure on
the fate of the duplicates that is buffered through sub-
functionalization. Thus, although originated in random
drift, subfunctionalization cannot, and in effect does not,
escape the selection forces but rather becomes adaptive
to mitigate the fitness bottleneck imposed by the gene
duplication event. To validate this hypothesis, we iden-
tify a molecular attribute of proteins that is indicative of
their dosage sensitivity, thereby quantifying the impact
of dosage imbalance effects on the evolution of genetic
redundancy. Thus, this work is devoted to prove the fol-
lowing assertion: If subfunctionalization is indeed adap-
tive, its effect on paralog segregation should scale with
the dosage sensitivity of the duplicated genes. As shown
in this work, this is indeed the case, and in this way, the
adaptive nature of subfunctionalization is shown to arise
from the imbalance-buffering nature of the process.

Since unicellular organisms lack the buffer of expres-
sion diversification, selection pressure on duplicate
genes is frequently enough to eliminate one of the
duplicates, especially for genes with high dosage sensi-
tivity. Proof of this is the significant decrease in family
size with dosage sensitivity encountered in unicellular
eukaryotes when compared with higher eukaryotes [7].
Thus, gene duplicates in unicellular organisms are sub-
ject to higher purifying selection than their counterparts
in multicellular eukaryotes. The scope of this work is to
show that subfunctionalization is one of the buffering
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mechanisms that enable paralog survival in multicellular
eukaryotes.

To assess the adaptive contribution to subfunctionali-
zation, it becomes essential to introduce a molecular
indicator of dosage sensitivity. As shown in previous
work [7], dosage imbalance effects are quantified by
under-wrapping (v), a measure of the packing quality of
soluble gene products that determines the extent of reli-
ance of the protein on binding partnerships to maintain
its structural integrity [8-12]. Specifically, v defines in a
structure-averaged way the level of hindrance of struc-
ture-disruptive backbone hydration. This parameter can
be determined directly from protein structure by identi-
fying the percentage of backbone hydrogen bonds
(BHBs) that are unburied -the so-called dehydrons- and
hence poorly protected from competing hydration of the
amide and carbonyl [9]. Dehydrons constitute packing
deficiencies since they are incompletely “wrapped” by
the side-chain nonpolar groups that promote exclusion
of surrounding water. Thus, for an individual gene, we
get v = (#dehydrons)/(#BHBs) where the quotient
extends over all gene products or encoded proteins.
Dehydrons are markers of compulsory protein associa-
tions that play a structure-protective role by promoting
their inter-molecular dehydration [9-12]. Upon protein-
protein association, the side-chain nonpolar groups of
the binding partner penetrate the microenvironment of
the dehydron, contributing to improve its wrapping [12].
This dehydration stabilizes the hydrogen bond in -3.9
kJ/mol [10].

In practice, given the dearth of structurally reported
structures when compared with proteome size, dehy-
drons are often identified from protein sequence using
machine-learning methods of inference (Materials and
Methods). The rationale for this approach is that, being
local indicators of structural disruption, dehydrons
belong to a twilight zone between order and disorder
that can be identified using a reliable sequence-based
predictor of disorder propensity such as PONDR [13].

Recent cross-examination of structural and evolution-
ary data revealed that duplicates of genes encoding for
under-wrapped proteins are exposed to higher deleter-
ious pressure than gene duplicates coding for well-
wrapped products. Thus, v serves as a proxy for dosage
sensitivity, as confirmed by a statistically significant
negative correlation between family-averaged v (<v>)
and family size [7].

Paralog survival is dependent on v with P < 107 in
unicellular organisms, P < 10 in fly and worm, but P <
6.7 x 107 in human (Wilcoxon rank test) [7]. This con-
trast between simple and complex organisms is likely to
arise due to the higher complexity of expression regula-
tion in higher eukaryotes. The translation complexity
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may enable a buffer to dosage imbalance not likely to be
found in unicellular organisms. By focusing on evolu-
tion-related dosage imbalances, our results corroborate
this hypothesis.

The validation of the results asserting the adaptive
component of subfunctionalization rests squarely on the
legitimacy of under-wrapping as a proxy for dosage sen-
sitivity. Evidence inversely correlating gene family size
and under-wrapping [7], evidence arising from analysis
of the mechanisms that buffer dosage imbalances in
humans [8], and evidence on the reliance of under-
wrapped proteins on binding partnerships to maintain
their structural integrity [12], all uphold the validity of
under-wrapping as a molecular indicator of dosage sen-
sitivity. Nevertheless, a control becomes essential to vali-
date the conclusions of this study. As it turns out, this is
the same control that serves to validate the molecular
marker adopted [7] and arises from the following ratio-
nale: If a specific gene duplication is actually part of a
macro-scale event of whole genome duplication (WGD),
we expect little or no selection pressure arising from
dosage sensitivity since a WGD does not generate a
dosage imbalance. Hence, the expression divergence
brought about by subfunctionalization of gene duplicates
arising from a WGD should result only from random
genetic drift, with a minor adaptive contribution. This is
indeed the case, as shown in this work.

Results and discussion

Adaptive subfunctionalization

We identified the adaptive component of subfunctionali-
zation by determining the extent of paralog segregation
through dissimilar mRNA expression as a function of
<v>, normalizing for the divergence time of each family.
To support the conjecture of adaptive subfunctionaliza-
tion in human, we generated an exhaustive database
combining genetic, mRNA-expression and wrapping
information on human genes and focused on differences
in partial degradation of regulatory elements for mRNA-
expression across paralogs, a causative of paralog segre-
gation. Only 1957 human gene families from Ensembl
Genome Database NCBI36 [14] and reported expression
information [15] were found to have coding regions
with sustainable ordered structure for free (uncom-
plexed) subunits. Genes with ORFs coding for disor-
dered regions were excluded from analysis since lack of
sustainable structure implies that no wrapping assess-
ment is possible, and structure may only be induced
upon association. No paralog protein subunits forming
intra-family complexes were found in the database,
hence the analysis is free from this confounding factor
since obligatory complexation would force coexpression
of subunits.
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We regarded expression dissimilarities across paralogs
as the means of avoiding competing for binding partners
upon gene duplication. Three attributes of human gene
families were considered: <n>, the mRNA-level expres-
sion diversification averaged over paralogs, <v>, and Ks,
the synonymous nucleotide divergence, a proxy for
divergence time [16]. For the gene families under con-
sideration we obtain Ks < 2, hence we expect minor
saturation effects (cf. [8]). Since paralog divergence is
reflective of divergence time, the selection pressure
quantified by <v> is normalized to Ks <v>, and the buf-
fering effect resulting from subfunctionalization is estab-
lished by plotting Ks <v> versus <n> (Figure 1A).

Paralog diversification <n> was estimated by the Pear-
son coefficient for gene expression vectors correspond-
ing to each paralog pair. For two expression vectors X
and Y, this coefficient is

<X=<X>)(Y-<Y>)>
n(X,Y) =
V<Xl > — < X>2/< Y2 s — <Y>2

where X, Y are generic coordinates of vectors X and Y
respectively, and < > in the equation indicates mean
over cell types.

Expression diversification in human is more pro-
nounced for genes with high dosage sensitivity in conso-
nance with the hypothesis that subfunctionalization,
essentially a nonadaptive process, mitigates dosage
imbalance effects. The results (Figure 1A) reveal a sig-
nificant linear correlation (R* = 0.43), implying that
paralog segregation through subfunctionalization into
non-overlapping mRNA-expression patterns becomes
enhanced in accord with the dosage sensitivity of the
gene duplicates (P < 2.2 x 107°). This segregation is
needed to avoid dosage imbalances whose effects scale
with <v>.

Control analyses were carried out for fly (Drosophila
melanogaster), worm (Caernohabditis elegans) and yeast
(Saccharomyces cerevisiae), for which genetic and
expression data distributed across tissue or developmen-
tal phases is available and may be combined with disor-
der-based estimations of <v> (Materials and methods).
Only 1354, 2137, 1391 non-singleton gene families in
yeast, worm and fly, respectively, were examined as they
have been found to have all coding regions with sustain-
able ordered structure for free subunits (Additional file
1). The data on these species endowed with higher
selection efficiency reveals that paralog segregation
becomes more sensitive and more tightly correlated to
differences in dosage sensitivity and variations in diver-
gence time, as attested by the quadratic dependence in
the Ks <v>-<n> plot (Figures 1B-D, P < 10 for fly and
worm, P < 10 for yeast). To contrast the sensitivity of
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Figure 1 Paralog segregation buffers dosage imbalance effects and hence scales with dosage sensitivity. Paralog segregation within a
gene family is described by expression correlation parameter <n>, while dosage sensitivity is indicated by <v>, the average underwrapping of
gene products in the family. The <n>-<v> interdependence is normalized by the divergence time of the family, indicated by Ks. Plot of Ks <v>
versus <n> for 1957 human families (A), 1391 fly families (B), 2137 worm families (C) and 1354 yeast families (D) with combined genetic,
expression and structural information (Materials and Methods). The correlation coefficient R? was obtained by regression analysis.
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paralog segregation of human relative to control species,
we define the family-associated segregation parameter S
= 1/2(1- <n>) (0 £ S < 1), and plot its Ks-normalized
value versus <v> for all four species, grouping families in
10% <v> -ranges (Figure 2). As expected, paralog-segre-
gation sensitivity increased in the order human < fly ~
worm < yeast, roughly following the species selection
efficiency associated with population size [12].

Figure 2 incorporates a control analysis of paralog segre-
gation in a scenario where duplicate genes arise from a
whole-genome duplication (WGD) event in yeast [17].
This control is relevant since a WGD does not create a
dosage imbalance and hence duplicates arising from a
WGD are expected to be subject to little or no selection
pressure arising from dosage sensitivity. If our hypoth-
esis is correct as the previous analysis suggests, the
expression divergence of duplicates resulting from
WGD and brought about by subfunctionalization should
result only from random genetic drift, with a minor
adaptive contribution. This implies that S should be
approximately proportional to the divergence time and

independent of <v>, or S/Ks should remain approxi-
mately constant and low relative to the level of segrega-
tion experienced by duplications that generate dosage
imbalances. This is indeed the case, as shown in Figure
2, leading to the conclusion that in the absence of
dosage-related selection pressure, subfunctionalization is
indeed the result of random genetic drift (P < 4 x 10,
as postulated by Lynch and co-workers [1].

Conclusions
The preservative role of subfunctionalization in humans
and other higher eukaryotes is the result of mildly
degenerative mutations likely to cause a differentiating
degradation of expression-regulatory elements in gene
duplicates. As shown in this work, this process, mechan-
istically nonadaptive, is subject to the forces of selection
and thus develops an adaptive component. This observa-
tion motivates the present analysis of the contradictory
aspects of constructive neutrality.

Subfunctionalization is nonadaptive insofar as mildly
deleterious mutations arise and are fixed in the species
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Figure 2 Paralog segregation sensitivity S as function of dosage sensitivity <v>. The results are normalized by divergence-time parameter
Ks. Gene families for all four species are grouped by 10% <v> -ranges and the S/Ks values are averaged over each bin for each species.

population through the vagaries of random genetic drift,
and adaptive since subfunctionalization becomes also a
buffer of the dosage imbalances that arise from gene
duplication. When compared with species with higher
selection efficiency, paralog segregation in human is not
nearly as complete or efficient for families with high
dosage sensitivity. Yet, the results from Figures 1A and 2
reveal a significant adaptive role of human subfunctiona-
lization when regarded as a buffer of the effects of dosage
imbalance quantified by the gene dosage sensitivity.
Thus, the statistical analysis presented in this work unra-
vels the fact that a process that is mechanistically nona-
daptive when viewed as enabler of duplicate retention
may have adaptive consequences since it also serves to
mitigate the selection pressure arising from duplication
events.

This picture is further validated by examining a scenario
in which gene duplications do not generate dosage imbal-
ances. Such is the case with whole genome duplication
(WGD) [17]. In this case, we expect and corroborate that
the dominant evolutionary force leading to paralog segre-
gation through subfunctionalization is random genetic
drift.

The mechanistic effects of population size on the effi-
cacy of subfunctionalization were emphasized by Lynch
[1], and are clearly confirmed in our study (Figures 1,
2). To further test this dependence, it would be desir-
able to contrast paralog segregation in endosymbionts
versus the segregation undergone by the orthologs of
these paralogs in the free species. However, the expres-
sion of genes in an endosymbiont is highly coordinated
and correlated with gene expression in the host [18],

thereby masking the effects of population size on para-
log segregation.

Methods
Gene information was obtained from the following
sources: Saccharomyces cerevisiae (strain S288C), Sacchar-
omyces Genome Database http://www.yeastgenome.org/
(SGD1.01); Caenorhabditis elegans, WormBase http://
www.wormbase.org/ (WB170); Drosophila melanogaster,
Berkeley Drosophila Genome Project http://www fruitfly.
org/ (BDGP 4.3); Homo sapiens, Ensembl Genome Data-
base (NCBI36). Using the Ensembl gene family annotation
[14], 6,024 yeast genes were grouped into 4,661 families,
20,173 worm genes were grouped into 11,503 families,
14,116 fly genes were grouped into 9,477 families, and
22,357 human genes were grouped into 12,394 families.
Gene expression data for different species were
obtained from different sources: Novartis Gene Expres-
sion Atlas [15] for human, FlyAtlas for fly [19], PUMAdb
for worm [20], Saccharomyces Genome Database for
yeast [21]. For human, the gene expression dataset con-
tains expression levels across a panel of 73 normal
human tissues (samples of the 6 cancer-related tissues
were not included). The PUMAdb dataset contains gene
expression levels for worm at 6 different developmental
time points (egg, L1, L2, L3, L4, and young adult) in two
different strains (N2 and CB4856). The Saccharomyces
Genome Database contains yeast mRNA expression
levels during the 5 metabolic adaptation phases repre-
senting the transition from glucose-fermentative to gly-
cerol-based respiratory growth. Paralogous genes arising
from yeast WGD were obtained from Kellis et al. [22].
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Synonymous nucleotide divergence, Ks, across paralog
pairs was determined using the PAML package [23]. Its
relevance as a surrogate for divergence time in a gene
family is clearly delineated in [16].

The wrapping of a backbone hydrogen bond, ¢, was
computed directly from PDB structural coordinates for
gene products whenever available [8,11]. This local para-
meter is computed by determining the number of side-
chain nonpolar groups contained within a desolvation
domain around the bond. This domain was defined as
two intersecting spheres of fixed radius (~thickness of
three water layers) centered at the o.-carbons of the resi-
dues paired by the hydrogen bond. In structures of solu-
ble proteins, backbone hydrogen bonds are protected on
average by { = 26.6 = 7.5 nonpolar groups for a desolva-
tion sphere radius 6A. Dehydrons lie in the tails of the
distribution, i.e. their microenvironment contains 19 or
fewer nonpolar groups ({ < 19), so their {-value is below
the mean minus one standard deviation.

The parameter v can be determined from protein
sequence, an imperative given the scarcity of structural
information relative to proteome sizes. Since they repre-
sent structural vulnerabilities, dehydrons belong to a
twilight zone between order and disorder [12]. This char-
acterization is suggested by a strong correlation between
two local parameters: wrapping ({), giving the number of
protective nonpolar groups around the BHB, and propen-
sity for structural disorder (f4) [11,12]. The correlation
reflects the fact that the propensity for backbone hydration
is indicative of a propensity for structure disruption. The
parameter fy is a sequence-based score generated by the
program PONDR-VLXT [24], a predictor of native disor-
der that takes into account residue attributes and their dis-
tribution within the window interrogated [13]. The
disorder score (0 < fy < 1) is assigned to each residue
within a sliding window, representing the predicted pro-
pensity of the residue to be in a disordered region (fy = 1,
certainty of disorder; f4 = 0, certainty of order). The strong
correlation between the disorder score of a residue and
wrapping of the hydrogen bond engaging the residue (if
any) provides a sequence-based method of inference of
dehydrons and supports the picture that such bonds
belong to an order-disorder twilight zone. Thus, dehy-
drons can be inferred in regions where the disorder score
lies in the range 0.35 < f4 < 0.95, which corresponds to a
marginal BHB wrapping with 7 < { < 19.

Additional material

Additional file 1: Non-singleton gene families in yeast, worm, fly
and human with coding regions able to sustain free subunits with
ordered structure.
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