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Abstract

Background: Growth rate is a major determinant of intracellular function. However its effects can only be properly
dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on
Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate.
In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina) that is an industrial protein
production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate
protein production phenotype.

Results: We have used transcriptomics and proteomics to study the effect of growth rate and cell density on
protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and
exact estimation of the extracellular specific protein production rate (SPPR). We find that major biosynthetic
activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins
and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with
SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this
response.

Conclusions: Based on these results it appears that in low growth rate protein production energy is very efficiently
used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more
fundamental determining factor than growth rate for low growth rate protein production and we propose a novel
eukaryotic response to this i.e. the lineage specific response (LSR).

Background
Cell growth, i.e. the increase in cell mass per unit of
time by macromolecular synthesis, is a major determi-
nant of cell physiology. In the yeast Saccharomyces cere-
visiae and likely in eukaryotes in general, transcriptome,
proteome and metabolome are greatly influenced by the
growth rate [1,2]. The small genome of S. cerevisiae [3]
and its recent genome duplication [4] make its genome
exceptional among fungi [5]. In addition, it is a single
cell organism capable of anaerobic growth. In S. cerevi-
siae expression of protein synthesis, essential and con-
served genes is positively correlated with growth rate,
while genes related to signalling, external stimuli and
communication have a negative correlation [1].

In general the transcript levels of genes are regulated
through interplay of transcription factors, chromatin
modifications and RNA degradation rate. The TOR
(Target of Rapamycin) network links intra- and extra
cellular signals to control the growth rate of S. cerevi-
siae. It regulates gene expression through a variety of
transcription factors [1,6]. In parallel, the SNF1 network
is a central regulator of carbon metabolism [6,7]. The
yeast SNF1 protein kinase complex is composed of a
(SNF1), b (GAL83, SIP1 or SIP2) and g (SNF4) subunits.
In particular, it induces glucose repressed genes by
phosphorylating and hence inactivating a repressing
transcription factor, MIG1, and activating other indu-
cing transcription factors such as ADR1 and CAT8. The
TOR1 and SNF1 networks are likely to regulate for
example amino acid, energy and lipid metabolic path-
ways in concert [7], integrating signals of nutritional
and metabolic state. Histone acetylation at promoters by
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histone acetyl transferases (HATs), such as S. cerevisiae
GCN5 and ESA1, or methylation across transcribed
sequence are generally associated with active transcrip-
tion of genes [8]. In particular, the SWI/SNF complex
acts as a chromatin remodelling complex for glucose
regulated genes under the control of SNF1 and enables
their transcription in concert with HATs [9]. Fungal
genomes are a mosaic of chromosomal regions (or
whole supernumary chromosomes [10,11]), where gene
content and order is mostly conserved between closely
related species (syntenic blocks) and regions where it is
not conserved (non-syntenic blocks). In Pezizomycotina
non-syntenic blocks may be enriched in orphan genes
[10,12,13] and in specific protein families [14,15], that
are typical to Pezizomycotina, such as plant biomass
degradation and secondary metabolism related proteins
[5]. Alternatively, the distribution of orphan genes
across a fungal genome can be uniform [16]. Genes in
non-syntenic blocks can be particularly short [15]. Non-
syntenic blocks are often found near telomers [15,17],
where recombination rates can be high [10,16,18] and
secreted, orphan [19] and paralogous genes [16] and sin-
gle nucleotide polymorphisms [10] may be enriched.
Starvation-like conditions can cause general induction

of genes in non-syntenic blocks [20,21]. Similarly, car-
bon limitation and in particular lack of glucose can
induce or derepress plant biomass degradation and sec-
ondary metabolism related genes in filamentous fungi.
In S. cerevisiae, which mostly lacks above mentioned
functions, carbon limitation induces only genes related
to metabolism of storage carbohydrates and use of alter-
native carbon sources [2,6]. In relation to regulation of
gene expression, it is of note that by gene count the
‘DNA binding N-terminal zinc binuclear cluster’
(Zn2Cys6) (for review [22]) transcription factor family is
one of the most variable and abundant protein families
in Ascomycota [5]. On average a Pezizomycotina species
has three times more of Zn2Cys6 genes than a Sacchar-
omycotina species. These often reside beside secondary
metabolism genes clusters in fungi [23] and more gener-
ally in non-syntenic blocks in Trichoderma reesei [14]
and thus are prime candidates as direct regulators of
non-syntenic block genes. However, secondary metabo-
lism gene clusters can be directly activated by manipula-
tion of histone methylation [24] or histone deacetylation
related genes [25] as well as induction of a cluster’s
Zn2Cys6 transcription factor [26]. Furthermore, the
order and timing of transcriptional activation of a sec-
ondary metabolism cluster might be determined by his-
tone acetylation [27].
The Pezizomycotina T. reesei (teleomorph Hypocrea

jecorina) is a known producer of native cellulase and
hemicellulase enzymes, but also of recombinant pro-
teins. T. reesei is an important model organism of

lignocellulosic biomass degradation and it can, remark-
ably, produce over 100g = l yields of extracellular pro-
tein in industrial cultivations [28]. In chemostat
cultivations the highest specific extracellulaer protein
production rates for T.reesei have been detected at a
relatively low specific growth rate of D = 0.03 i.e. it
exhibits a low growth rate protein production phenotype
[29-32]. This phenotype has been described in other
Sordariomycetes [33], while high growth rate protein
production has been described in Eurotiomycetes
[34,35].
In T. reesei both inducing and repressing regulators of

cellulase gene expression are known. cre1 [36] is the
orthologue of S. cerevisiae MIG1 i.e. the transcription
factor responsible for carbon catabolite repression.
This repression ensures that in presence of D-glucose,

or other monosaccharides whose catabolism provides a
high yield of ATP, no energy is wasted in production of
cellulases. Suprisingly, for T. reesei, lactose is a carbon
source that induces cellulase expression (for review
[37,38]). Soluble lactose is far easier to handle in liquid
cultivations than the natural inducing carbon sources e.
g. cellulose.
To study the effects of growth rate or to expilicitly

exclude the effect of growth rate from a study one must
be able to control it precisely. A chemostat is a bioreac-
tor cultivation in which some substrate component such
as the main carbon source, e.g. lactose, limits biomass
production and is fed at a constant rate which deter-
mines the specific growth rate of the organism. In addi-
tion, use of bioreactors instead of flask cultivations
allows for a very fine control of growth conditions and
hence more reliable and comparable measurements
[39,40].
In order to study the intracellular effects of the low

growth rate protein production phenotype we carried
out transcriptomic and proteomic profiling on chemo-
stat cultivations. We find a strong co-regulation and
induction of genes related to secondary metabolism and
of secreted proteins, and a general down regulation of
major cellular systems of primary metabolism, protein
synthesis and secretion in condition of high cellulase
production. Our results suggest the existance of eukar-
yotic response to low flux through early glycolysis or
TCA cycle in the form of induction of lineage specific
genes.

Results
Chemostat cultivations
In order to study the correlation of gene and protein
expression with specific extracellular protein production
rate (SPPR) we grew T. reesei in lactose limited chemo-
stats in three conditions: specific constant growth rates
of 0.03 h-1 (D03) and 0.06 h-1 (D06) with 10 g/L of
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lactose and 0.03 h-1 with 40 g/L lactose for higher cell
density (HD). Triplicate cultivations were analysed for
the three conditions. Based on [32], the highest specific
extracellular protein production rate was expected in
D03 and the lowest in D06 cultivations. HD cultivations
enable us to try to separate growth rate effects from
specific extracellular protein production rate effects and
provide valuable data from high density conditions often
used in the protein production industry.

Scatterplots of cultivation parameters are shown in
Figure 1, and all the parameters are shown in Additional
file 1, Table S1. The specific extracellular cellulase pro-
duction rates and the yield of extracellular protein cor-
related strongly with SPPR and the specific sulphate
consumption rate with specific lactose consumption rate
and hence, are not shown in Figure 1.
As expected the highest SPPR, and the accordingly

highest specific cellulase production rate was observed

Figure 1 Scatterplot of cultivation parameters. Diagonal panels contain axes labels. For each scatterplot the × axis label is found on the
diagonal panel above the plot and for the Y axis on the right side. The chemostat cultivations are coded as ‘3’ = D = 0.03 h-1 low cell density
(D03), ‘6’ = D = 0.06 h-1 low cell density (D06) and ‘H’ = D = 0.03 h-1 high cell density (HD).
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in D03 cultivations along with the lowest lactose con-
sumption rate. D06 cultivations had the highest specific
lactose consumption rate and on average the highest
yield of biomass. HD cultivations had the highest dry
weight, the lowest specific extracellular protein produc-
tion rate and on average 0.07 lower yield of biomass
than in D06 cultivations (p <0.005 in Student’s t-test).
Hence, in HD cultivations both the production of bio-
mass and protein was inefficient. Since in the HD culti-
vations the lactose concentration fed to the cultivation
was 4 times higher than in D03 cultivations, accordingly
the dry weight was 3.9 times higher. Residual lactose
was not detected in any of the cultivations.
One of the D03 cultivations, F20, differed from the

other two D03 cultivations (Figure 1). Although, F20
had higher protein production rate than any D06 or HD
cultivation, the yield of biomass was in the range of D06
cultivations, while its specific lactose consumption rate
was lower than that of other D03 cultivations.

Transcriptome analysis
We used oligonucleotide microarray transcriptome pro-
filing to analyse the nine chemostat cultivations. A gen-
eral workflow of the analysis is presented in Additional
file 1, Figure S1. Nine genes relevant for protein produc-
tion were previously analysed in a separate study with
Northern hybridisations in conditions similar to D =
0.03 h-1 low cell density (D03) and D = 0.06 h-1 low cell
density (D06) [32]. In our transcriptome profiling data
the direction of change for all of these genes, except
hac1 (encoding the unfolded protein response transcrip-
tion factor), was the same. However, we found that the
gene model used for design of hac1 microarray probes
was incorrect and moreover hac1 has splice variation
[41] that is not measured by our microarray.
In addition, we verified our microarray analysis with

re-analysis of expression of 31 genes from the same
nine samples with the TRAC method [42]. In order to
correlate TRAC and microarray data we tested various
models and a model that best explained the data based
on Akaike information criteria was selected. We esti-
mated correlation of r2 = 0.986 with a p-value <2.2e -
16 between TRAC and microarray data. The model fits
a gene specific intercept i.e. it shows that the basal sig-
nal values of each gene between TRAC and microarray
signal differ (Additional file 1, Figure S2). However,
some heteroscedasticity, i.e. non-consistency of varia-
tion, can be seen in the ‘Residuals vs Fitted’ panel of
Additional file 1, Figure S2. We then looked for genes
with significant change in expression between the three
conditions with false discovery rate of 5%. We found
that the largest amount of changing genes was detected
between D = 0.03 h-1 low cell density condition (D03)
and D = 0.03 h-1 high cell density condition (HD) (203

higher in D03 and 736 higher in HD), while D = 0.06 h-
1 low cell density condition (D06) versus D = 0.03 h-1

high cell density condition (HD) had less differencies
(97 and 375, respectively) and D03 versus D06 only
minor differences (10 and 30, respectively) (Additional
file 1, Table S2). Genes at a higher expression level in
D03 than D06 included four glycoside hydrolase (endo-
mannanase man1, endoglucanase egl3, alpha-xylosidase
and a putative xylanase) and three transporters of the
MFS family. cbh1 and egl1 genes were detected to have
a higher expression level in D03 cultivations than in
D06 cultivations by microarray, TRAC and previously
by Northern [32], but their differential expression was
not statistically significant with the cut-offs used, possi-
bly due to microarray signal saturation. The annotation
category that was enriched among the genes at higher
expression level in D06 than in D03 was mitochondrial
genes (Additional file 1, Table S3). No function could be
determined for 30% of the genes at higher expression
level in D06 than in D03. Among the genes at higher
expression level in D06 than in HD there was enrich-
ment in genes of unknown function and genes related
to secondary metabolism. In addition, GCN5-related N-
acetyltransferases were enriched. All categories that
were enriched among genes at higher expression level in
HD than in D06 included less than 2% of these genes i.
e. the enriched categories do not reveal general trends
among these genes. Among genes at higher expression
level in D03 than in HD, genes of unknown function,
secreted proteins, secondary metabolism related and
transporters were enriched. Among genes at higher
expression level in HD than in D03, protein synthesis
and energy related genes were particulary enriched.
Notably, genes of the pentose phosphate pathway, TCA
cycle and threonine metabolism were enriched in this
gene set.
Results of the chemostats showed that each of our

conditions had its own distinct SPPR which enabled a
correlation between SPPR and each gene’s expression
values to be calculated. However, as already noted F20
was slightly exceptional among the D = 0.03 h-1 low cell
density (D03) cultivations. In a standard analysis of sig-
nificant change of gene expression between conditions,
as presented above, such an outlier could seriously affect
the results, if the differences in its cultivation para-
meters would be reflected on its transcriptome. In con-
trast, in an analysis of correlation of SPPR and each
gene’s expression, F20 is just one data point on the
regression line correctly positioned by its SPPR. As F20
is not considered as a repeat of other D03 cultivations,
but as an independent data point, F20 is no longer con-
sidered as an outlier. Thus, for each gene we calculated
its correlation with SPPR and after correction for multi-
ple testing, set a cut-off of absolute correlation 0.8,
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which corresponds to a false discovery rate of 3.3%. 490
genes were found to have a negative correlation and 477
a positive correlation with SPPR (Additional file 1, Table
S2). If F20 is excluded from the data set the correlation
of genes to SPPR remains essentially the same, but the
count of genes with absolute correlation above 0.8
increases by 40% (Additional file 1, Figure S3). Hence,
we retained F20 in the data set in order to present a
more conservative analysis.
Given the non-random structure of fungal genomes,

we estimated that the probability of detecting a pair of
adjacent genes on a chromosome which would both
have absolute correlation >0.7 to SPPR and the same
direction of correlation, was p <1e - 5. 187 genes were
found to belong to such a pair with negative correlation
and 224 with positive correlation. However, the above
p-value does not take into account that the co-regula-
tion of the gene pair might be due to a shared promo-
ter. Among gene pairs positively correlated to SPPR, 24
pairs were arranged so that they could share a promoter
and of these in 10 pairs the beginnings of genes were
separated with less than 1000 bases. Among negatively
correlated pairs the respective numbers were 17 and 13
pairs. Hence, the effect of promoter sharing is not large.
General characteristics of genes with differential
correlations with SPPR
Given the characteristic differences of fungal genes in
syntenic blocks and non-syntenic blocks, we analysed
the genes with significant positive (477) or negative (490
genes) correlation with SPPR for their maximum expres-
sion value, absolute fold change, distance to scaffold
end, length and GC% (Table 1 Additional file 1, Figure
S4). We found that genes correlating positively with
SPPR have on average a maximum expression value
which was clearly lower than that of genes correlating
negatively with SPPR. Similary, genes correlating posi-
tively tend to be situated nearer to scaffold ends than
negatively correlated, have lower fold change than nega-
tively correlated and have a lower GC%. No evidence

was found for difference in GC% of negatively correlated
genes and non correlated genes or for differences in
gene length of genes correlating from non correlating
genes. We then verified that the same trends also
applied for pairs of adjacent genes correlating with
SPPR (Additional file 1, Figure S4). Notably, the GC% of
pairs of adjacent correlating genes with a correlation
between 0.7 - 0.8, was even lower (55.6, p <1.7e - 09)
than genes with a correlation above 0.8. Furthermore,
we verified that maximum expression value does not
explain the correlation between gene expression and
SPPR when considering all genes (Additional file 1, Fig-
ure S5).
Distribution of correlation of gene expression to SPPR
In order to understand how the correlation of gene
expression to SPPR varied in different functional cate-
gories, T. reesei genes were mapped to five broad,
mutually exclusive cellular categories: genes of the T.
reesei metabolic model, genes involved in protein secre-
tion, genes of secreted proteins, mitochondrial genes
and genes with no known domain i.e. unknown genes
(Figure 2). For example, the genes of secreted proteins
are genes predicted to be secreted, but not included in
the secretion pathway or any other of the categories.
Furthermore, we divided all genes of the genome in
three categories of lineage specificity based on whether
they are found in sequenced Fungi in general, Pezizomy-
cotina only or only in the genus Trichoderma (i.e.
Hypocrea). Overall, a bimodial distribution was detected.
Genes of protein secretion and the metabolic model had
a negative correlation, while unknown genes and genes
of secreted proteins tended to have a positive correlation
with SPPR. For protein secretion, metabolic model and
unknown genes, this closely parallels their lineage speci-
ficity i.e. genes found in Fungi tended to have negative
correlation while those limited to Trichoderma tended
to have a positive correlation to SPPR.
Mitochondrial genes are divided into two groups,

depending on whether they are known mitochondrial

Table 1 General characteristics of genes with differential correlations to SPPR

General gene
characteristic

Non-
correlated
genes

Genes with significant
negative correlation with
SPPR (-C08)

p-value of difference
of -C08 to non-
correlated

Genes with significant
positive correlation with
SPPR (C08)

p-value of difference
of C08 to non-
correlated

Maximum
expression

8.8 10.0 0.0001 8.4 2E-16

Log2 fold
change

1.2 1.6 2E-16 1.3 3.6E-15

GC
percentage

58.2 58.5 - 57.5 0.001

Distance to
scaffold end

194603.8 220703.5 0.05 154861.6 0.0006

Length 1306.5 1271.9 - 1357.9 -

For each gene characteristic an average value in three gene groups (non-correlated, negatively correlated and positively correlated) and a p-value for the
difference of the average of a correlated group versus the non-correlated group is given.
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genes found in Fungi (negative correlation with SPPR)
or genes found in Trichoderma with little other infor-
mation than the predicted location (positive correlation
with SPPR). Of mitochondrial genes with correlation to
SPPR above 0.6 only 31% have a known domain.
Genes of secreted proteins had a positive correlation

to SPPR regardless of their lineage specificity. Of genes
of secreted proteins, with correlation to SPPR above 0.6,
61% of those found in Fungi, 9% of those only in Pezi-
zomycotina and 4% of those only in Trichoderma were
CAZymes.
Overall 19% of all glycoside hydrolases were found to

have a positive correlation above 0.7 with SPPR and
12% of them a correlation below -0.7. Of multi gene gly-
coside hydrolase families in T.reesei, families 1 (beta-glu-
cosidases) and 37 (trehalases) had an average correlation
to SPPR below -0.6 and 89 (alpha-N-acetylglucosamini-
dases), 75 (chitosanase), 11 (xylanases) and 79 (beta-glu-
curonidase) above 0.6. Given these trends, exceptions to
them are of special interest. Of the 22 genes in meta-
bolic model with a correlation to SPPR above 0.7, 9 are
possibly related to secondary metabolism and one is a
chitin synthase. Eight have a broad substrate range mak-
ing their functional assingment difficult. Four genes
with orthologues in S. cerevisiae do not belong to the
above mentioned categories. Of these GLY1, HIS6 and
DAL1 are related to amino acid metabolism and PNC1
is a longevity gene [43].
In protein secretion 16 genes have a correlation to

SPPR above 0.7. 9 are related to glycosylation including
dpm2 [44] and orthologues of S. cerevisiae DIE2, ALG12
and YEA4. Other genes with orthologues of S. cerevisiae
include ERO1, SEC6, and pdi1 [45].
Enrichment of functional categories in genes with
significant correlation to SPPR
To further understand the correlations of genes to SPPR
we carried out enrichment tests for genes with correlation
above 0.8 (’C08’) or below -0.8 (’-C08’) and respectively for
adjacent gene pairs of absolute correlation above 0.7 and
of the same direction of correlation (’C07wN’, ‘-C07wN’,
Table 2). Although sets of genes changing significantly
between the three conditions, discussed above, never over-
lap with genes with significant correlation to SPPR by
more than 57%, the functional categories are very similar
in both gene sets. For ‘C08’ secreted, transporters and sec-
ondary metabolism related categories are enriched. In con-
trast in ‘C07wN’ no transporters are enriched, but protein
degradation related genes are enriched. In ‘-C08’ protein
synthesis, cytoskeleton and protein degradation related
genes are mainly detected. In contrast in ‘-C07wN’ no pro-
tein degradation or cytoskeleton related genes are
enriched, but more regulation related genes are enriched.

Figure 2 Distribution of correlation of gene expression with
SPPR. Genes of T. reesei genome are divided in three plots based
on their taxonomic specificity, either found in general in Fungi, only
in Pezizomycotina and only in Trichoderma. Each plot shows a
distribution for all genes in it and in four different mutually
exclusive cellular categories. The Y axis shows the percentage of
genes of all genes in the category contained in each bin. The × axis
shows the correlation and borders of bins. Plus signs indicate mid
values of bins and lines connect them. Cellular categories with at
least 50 genes are shown.
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Of genes related to protein degradation, proteasome com-
ponents are enriched among genes with negative correla-
tions while peptidases are enriched among genes with
positive correlations.
Pathway analysis of the metabolic network
In order to specifically understand the metabolism
underlying the transcriptomic responses the

transcriptome profiling data was studied in the context
of the metabolic network of T. reesei with the ‘Reporter
metabolite’ [46] and ‘Enriched Molecular Path detection’
(EMPath) [47] methods. A draft metabolic network for
T. reesei was constructed by computationally transfering
the Aspergillus niger [48] network through sequence
homology detection (Additional file 2).

Table 2 Enriched functional categories of genes correlating with specific extracellular protein production rate

ID Description Expression % of ex-pressed % of annotated p-value Intepretation

IPR000639 Epoxide hydrolase-like C07wN 2.2 26.7 0.000 Various

IPR006163 Phosphopantetheine-binding C07wN 2.7 18.5 0.000 2ndary metabolism?

IPR000873 AMP-dependent synthetase/ligase C07wN 2.7 12.8 0.001 2ndary metabolism?

IPR001579 Glycoside hydrolase, chitinase active site C07wN 1.6 27.3 0.001 Secreted

IPR002938 Monooxygenase, FAD-binding C07wN 1.6 23.1 0.002 2ndary metabolism?

IPR000209 Peptidase S8/S53, subtilisin/kexin/sedolisin C07wN 2.2 14.8 0.003 Protein degradation

IPR001223 Glycoside hydrolase, family 18, catalytic domain C07wN 1.6 18.8 0.005 Secreted

IPR000073 Alpha/beta hydrolase fold-1 C07wN 2.2 10.3 0.010 2ndary metabolism?

IPR011701 Major facilitator superfamily MFS-1 C07wN 4.4 5.3 0.017 Transporter

IPR003663 Sugar/inositol transporter C07wN 2.2 8.3 0.020 Transporter

IPR000217 Tubulin -C07wN 1.6 60.0 0.000 Cytoskeleton

IPR001353 Proteasome, subunit alpha/beta -C07wN 2.2 28.6 0.000 Protein degradation

IPR000504 RNA recognition motif, RNP-1 -C07wN 2.7 8.8 0.008 Protein synthesis

IPR000719 Protein kinase, catalytic domain -C07wN 3.8 5.8 0.016 Regulation

12.04 translation -C07wN 3.6 14.0 0.017 Protein synthesis

12.04.01 translation initiation -C07wN 2.3 18.5 0.018 Protein synthesis

IPR000623 Shikimate kinase C08 0.7 60.0 0.001 Various

IPR011701 Major facilitator superfamily MFS-1 C08 3.9 10.5 0.003 Transporter

IPR003819 Taurine catabolism dioxygenase TauD/TfdA C08 0.7 42.9 0.003 Sulphur metabolism

IPR006094 FAD linked oxidase, N-terminal C08 1.2 19.2 0.007 2ndary metabolism?

IPR003663 Sugar/inositol transporter C08 1.7 14.6 0.008 Transporter

IPR006163 Phosphopantetheine-binding C08 1.2 18.5 0.009 2ndary metabolism?

IPR002403 Cytochrome P450, E-class, group IV C08 1.0 22.2 0.010 2ndary metabolism?

IPR004841 Amino acid permease domain C08 1.2 15.6 0.018 Transporter

IPR000254 Cellulose-binding domain, fungal C08 0.7 23.1 0.023 Secreted

IPR002018 Carboxylesterase, type B C08 0.7 21.4 0.028 Secreted

IPR002085 Alcohol dehydrogenase superfamily, zinc-containing C08 1.5 11.8 0.036 2ndary metabolism?

IPR001452 Src homology-3 domain -C08 1.6 28.0 0.000 Cytoskeleton

IPR001353 Proteasome, subunit alpha/beta -C08 1.1 35.7 0.001 Protein degradation

IPR002423 Chaperonin Cpn60/TCP-1 -C08 0.9 40.0 0.001 Cytoskeleton

IPR002108 Actin-binding, cofilin/tropomyosin type -C08 0.7 60.0 0.001 Cytoskeleton

IPR005937 26S proteasome subunit P45 -C08 0.7 50.0 0.003 Protein degradation

IPR000717 Proteasome component (PCI) domain -C08 0.9 30.8 0.004 Protein degradation

IPR004827 Basic-leucine zipper (bZIP) transcription factor -C08 1.1 22.7 0.005 Regulation

IPR000594 UBA/THIF-type NAD/FAD binding fold -C08 0.7 37.5 0.007 Protein degradation

12.04 translation -C08 2.9 24.6 0.012 Protein synthesis

12.04.01 translation initiation -C08 1.6 29.6 0.017 Protein synthesis

IPR001199 Cytochrome b5 -C08 0.9 19.0 0.024 Energy

IPR003593 ATPase, AAA+ type, core -C08 2.2 9.8 0.046 Various

’ID’ is InterPro or Funcat identifier. ‘Description’ is short name for the category. ‘Expression’ is type of expression behaviour the genes have. ‘C07wN’ genes
belong to a pair of adjacent genes that both have correlation to specific protein production rate (SPPR) above 0.7, ‘-C07wN’ is the opposite case, ‘C08’ genes
have correlation to SPPR above 0.8 and ‘-C08’ is again the opposite. ‘% of expressed’ is the percentage of genes among the group of genes with same
expression that belong to the annotation category. ‘% of annotated’ is the percentage of genes among all genes that belong to the annotation category. ‘p-
value’ is for the significance of enrichment. ‘Intepretation’ is a biological consept to which the genes relate to as intepreted by the authors.
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We then applied the ‘Reporter metabolite’ -method to
find metabolites that participate to reactions by enzymes
whose gene expression had the highest correlations
(positive or negative) to SPPR. In parallel, we used
‘EMPath’ to detect paths of metabolic enzymes whose
gene expression had the highest (positive or negative)
correlations to SPPR (Figure 3, Additional file 1, Table
S4 and S5). Neither of these methods requires prede-
fined pathways, instead they explore the structure of the
network freely. Of the metabolites detected by ‘Reporter
metabolite’ using a cut-off of p <0.05 and with more
than one adjacent gene and enzyme in the metabolic
network, glucose 6-phosphate in upper glycolysis, alpha-
ketoglutarate in TCA cycle, 5, 10-methenyltetrahydrofo-
late and tetrahydrofolate related to folate metabolism, 3-
(4-hydroxyphenyl)pyruvate related to secondary and
amino acid metabolism and D-glucosamine related to
chitin biosynthesis were detected. In addition we
detected two sets of genes by ‘EMPath’ using a cut-off

of p <0.025: genes of the TCA cycle and a set of con-
nected genes from glucose 6-phosphate to amino acid
biosynthesis. However, the second set is not likely to
truly transfer atoms. One chitin synthase had the only
significant positive correlation of gene expression to
SPPR among the genes detected by pathway analysis.
Other significantly correlated genes, including another
chitin synthase, had negative correlations. Given the
emphasis on the TCA cycle and upper glycolysis in the
pathway analysis results, we further annotated genes of
central carbon metabolism to detect paralogs and ortho-
logs in particular in relation to S. cerevisiae. We found
11 cases where T. reesei has a paralog, i.e. an isoenzyme,
not found in S. cerevisiae. In 7 of those pairs the two
paralogs have an absolute correlation to the SPPR above
0.5, but with opposite direction of correlation (Figure 3).
Chromosomal clusters
As secondary metabolism genes are known to occur in
chromosomal clusters and were enriched in genes with

Figure 3 Correlations of genes in central carbon metabolism with SPPR. Metabolic network of metabolites and genes (rectangles). Genes
are colored according to correlation to SPPR. Gene names are as in S. cerevisiae, except that paralogs not found in yeast are distinguished by
additional letters (a,b,...) and genes corresponding to many genes in S. cerevisiae have names extended with ‘-’. T. reesei gene names have been
used when available (hxk1, glk1 [65], lxr1 [126], xdh1 [127], xyl1 [128], lad1 [129], gld1, gfd1 [61], gal10, gal7 [130], xdh1 [127] ) and others when T.
reesei nor S. cerevisiae name exists (acl1, acl2 [93]). Cellular locations are merely indicative. Genes detected by pathway detection are specified
with a red dot.
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significant positive correlation to SPPR we tried to
detect such chromosomal clusters. Starting from the
pairs of adjacent genes with absolute correlation to
SPPR above 0.7 and of the same direction of correlation,
we looked for such triplets of correlated genes and
expanded the triplet by adding genes to the cluster untill
the direction of correlation in subsequent genes
changed.
In total nine clusters with positive correlation (c1:c9)

to SPPR and seven clusters with negative correlation
(cn1:cn7) to SPPR were detected (Figure 4, Additional
file 1, Figure S6, Additional file 1, Table S6 and S7). Of
the chromosomal clusters with positive correlation to
SPPR, three contain typical secondary metabolism genes
(c1: non-ribosomal peptide synthase; c9: polyketide
synthase; c7: trichothecene C-15 hydroxylase homologue
[49] ). Four contain carbon source degradation and
uptake related genes (c2: xyn1 [50], ThPg1 [51] homolo-
gue and two other CAZymes; c3: trhxt1 [52] and three
other putative transporters; c6: glucose-methanol-cho-
line (GMC) oxidoreductase; c7: cbh1 [53] and three
putative transporters). Of these c1, c6 and c9 contain
putative transcription factors of the Zn2Cys6-family. Of
the chromosomal clusters with negative correlation to
SPPR three contain homologues of genes involved in
regulation in S. cerevisiae (cn1: SIP3, which protein is an
interaction partner of Snf1p and cn2: SNF1; cn4: SPT10
histone acetylase), one in Schizosaccharomyces pombe
(cn3: srk1/mkp1 [54] signalling related protein kinase,
cn4: ace2 [55] cell division transcription factor) and two
in Emericella nidulans (cn6: pldA signalling related pro-
tein [56]; cn7: oefA [57] signalling related protein).
Homologues of S. cerevisiae protein biosynthesis, trans-
port and secretion related proteins are found in six
negatively correlating clusters (cn1: putative translation
termination factor, cn3: AGE1 secretory pathway
GTPase and putative translation initation factor; cn4:
putative initation factor; cn5: UBC6 ER-associated
degradation protein; cn6: BRO1 vacuolar sorting protein
and cn7: BET3 transport protein particle complex
protein).
In relation to central carbon metabolism a putative D-

xylulose 5-P/D-fructose 6-P phosphoketolase (77481) in
cn4, also detected by proteomics (Additional file 1,
Table S10) and the ICL1 isocitrate lyase in cn2, also
detected by pathway analysis, are of note (Additional file
1, Table S5).
We also checked whether any of the chromosomal

clusters were conserved in other fungi and found that
only the negatively correlated cluster cn7 was conserved
outside Hypocreales (Additional file 1, Figure S7, Addi-
tional file 1, Table S8). Four genes (oefA, BET3, CCHC
Zn finger protein and WD-repeat protein that is a puta-
tive homologue of S. pombe splicing factor Spf38 [58])

Figure 4 Chromosomal gene clusters with positive correlation
with SPPR on scaffolds. The Y axis shows the scaffold. Only end of
scaffold 1 is shown i.e. 2 - 3.75 Mb (1e). Only scaffolds with
chromosomal gene clusters are shown. The × axis shows the
nucleotide position on scaffold. Below each scaffold (black line) a
color coding is shown for taxonomic specificity as in Figure 3.
Above each scaffold a color coding is shown for gene expression
correlation to specific protein production rate. Detected clusters
(Additional file 1, Table S6) are highlighted in green.
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of the five genes in cn7 were found close to each other
in seven of the 14 studied Pezizomycotina species,
which cover species of the subphyla widely.
Differentially expressed novel genes detected with sparse
arrays
In addition to the predicted genes of the T. reesei gen-
ome, the microarray used in this study included probes
that covered the intergenic regions of the genome with
approximately 100 b gap between consecutive probes.
Previously we described a method for analysing data
from signals of these probes in order to discover novel
genes and proposed that we had found novel transcripts
of putative regulatory genes [59]. Of the 125 novel
genes detected in [59] (Additional file 1, Table S9) 16
were differentially expressed between the cultivation
conditions (D = 0.03 h-1 low cell density (D03)/D = 0.06
h-1 low cell density (D06) none; D03/D = 0.03 h-1 high
cell density (HD) 12 higher in D03 and three higher in
HD; D06/HD five higher in D06 and one higher in HD).
In addition to the above, three had a correlation to
SPPR over 0.8 and none below -0.8. Eight of the above
mentioned 19 genes are neighbours of a gene or genes
with a putative role in regulation or signalling. Novel
genes between a homologue of MOB2 and a putative
bZIP transcription factor, between the orthologue of
RIO1 and Zn2Cys6 transcription factor and adjacent to
the orthologue of DOC1 and seb1 [60,61] were higher in
D03 than HD cultivations. One novel gene between a
homologue of OPY2 and a putative Ras like GTPase was
higher in HD than D03 cultivations and higher in D06
than D03 cultivations. Novel genes adjacent to a homo-
logue of CHD1 and a putative GPCR [62] had a correla-
tion to SPPR higher than 0.8.

Proteome analysis
In order to study the effects of specific growth rate and
cell density on the proteome of T. reesei, as well as to
asses how the transcriptomic responses were reflected in
the proteome, we carried out 2D gel electrophoresis
analysis of the chemostat cultivations. Cell extracts from
triplicate cultivations of D = 0.03 h-1 low cell density
condition (D03), D = 0.06 h-1 low cell density condition
(D06) and D = 0.03 h-1 high cell density condition (HD)
were subjected to analysis using the DIGE method,
using pH ranges of 3.0-5.6 and 5.3-6.5 in the isoelectric
focusing step followed by 11% w/v SDS-PAGE. We
compared D03 to HD for comparison of the effect of
cell density and D03 to D06 for comparison of the effect
of growth rate.
Protein spots showing more than 2-fold significant dif-

ference in intensity between the cultivation conditions
(significance threshold p < 0.05) were subjected to LC-
MS/MS analysis for identification (the 2D gel maps of
the identified proteins are shown in Figure 5 and the

proteins are listed in Additional file 1, Table S10 and
S11). In addition to determining the responses of indivi-
dual proteins, we also searched for enrichment of func-
tional categories among groups of differentially
expressed proteins (Table 3) in comparison to all anno-
tated proteins with a cut-off of p <0.05.
Glycoside hydrolase proteins were detected as

enriched in the comparisons (Table 3) and individual
predicted secreted proteins were detected as differen-
tially expressed (Additional file 1, Table S10 and S11).
However, as the 2D gel analysis carried out did not
include extracellular proteins from the supernatant, but
only intracellular proteins, we omit predicted extracellu-
lar proteins from the detailed analysis presented below.
Comparison of the cultivations with different growth

rates (D = 0.03 h-1 low cell density condition (D03) and
D = 0.06 h-1 low cell density condition (D06)) showed
differential expression of proteins related to protein
secretion and synthesis especially. Proteins involved in
protein secretion were enriched among those more
abundant in the D03 cultivations as compared to the
cultivations of D06, including candidates for a SGT2-like
ER membrane targeting protein (74118), a Golgi assem-
bly stacking protein (105692), two a-1, 2-mannosidases
(74198, 79921) putatively involved in glycosylation as
well as a protein disulphide isomerase -related protein
(119890). The proteins more abundant in D03 cultiva-
tions as compared to D06 cultivations also included two
proteins with a putative function in chromatin and
nucleosome organisation, a GCN5-related N-acetyltrans-
ferase (123668) and the ASF1 anti silencing protein
(47838). A homologue of MPDA [63] mannitol-1-P
dehydrogenase (52267) with a putative function in sto-
rage carbon utilisation and the D-galacturonic acid
reductase (GAR1 [64]) involved in utilisation plant
material derived D-galacturonic acid were more abun-
dant in D03 than D06, which could indicate the need
for enhanced carbon harvesting under the low carbon
feeding conditions.
The functional category enriched among the proteins

that were more abundant in D06 cultivations as com-
pared to D03 cultivations was protein synthesis. This
group of proteins included several amino acid tRNA
synthetases, as well as translation initiation and elonga-
tion factors. In addition, the proteins being more abun-
dant in the high specific growth rate cultivations D06 as
compared to D03, included other biosynthesis and
growth related functions, such as amino acid synthesis
(4 proteins), carbon metabolism (3 proteins), purine bio-
synthesis (1 protein) and cytoskeleton related functions
(3 proteins) (Additional file 1, Table S10 and S11).
Regarding proteins related to regulation, a protein
kinase, a protein phosphatase 2A regulatory subunit, a
homologue of Ino1p myoinosotol-1-P synthase, and a
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GCN5-related histone acetyl transferase were detected
as more abundant in D06 than D03 cultivations. Also
mitochondrial and cytoplasmic heat shock family pro-
teins had a higher abundance in the D06 than in D03

cultivations. Proteins involved in protein secretion were
enriched among proteins more abundant in the low
density D03 cultivations as compared to the high density
cultivations HD, including proteins involved in folding

Figure 5 Identified protein spots in 2D analysis. In panel ‘A’ pH interval 3-5.6 in IEF and in panel ‘B’ 5.3-6.5 in IEF. Protein spots more
abundant in D03 cultivations than in HD cultivations in red. Respectively, in D03 than in D06 and HD in orange; in D03 than in HD in pink; in
HD than in D03 in dark blue; in HD and D06 than in D03 in green; in D06 than in D03 in light blue; other comparisons in black.
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as well as later stages of protein secretion (SGT2-like
targeting protein 74118 and a SNF7-like sorting/endocy-
tosis protein). In addition, the proteins more abundant
in D03 cultivations included e.g. proteins involved in
metabolic functions, especially in amino acid synthesis,
RNA and DNA related functions (DNA excision, chro-
matin and RNA binding, Additional file 1, Table S10
and S11).
The proteins more abundant in HD than in D03 culti-

vations were enriched in proteins with functions related
to stress, especially oxidative stress and protein degrada-
tion. Several proteins involved in carbon and amino acid
metabolism, as well as mitochondrial proteins were also
more abundant in HD than in D03 cultivations. Espe-
cially the carbon metabolism proteins related to the
early glycolytic pathway or pentose phosphate pathway
were affected (PGM1-2, TAL1 and SOL1-2-3-4, Addi-
tional file 1, Table S10 and S11), along with pyruvate
decarboxylase PDC1-5-6.
Responses to different specific growth rate or cell den-

sity had many features in common. The analysis
revealed 12 proteins that were more abundant in HD
and D06 than in D03 cultivations. The proteins had dif-
ferent types of putative functions and included proteins
involved in amino acid and amino acid-tRNA synthesis,
translation, metabolism of carbon and thiamine or sec-
ondary metabolism and oxidative stress (Additional file
1, Table S10 and S11). Of particular note is the putative
GCN5-related N-acetyl transferase (120120).
The 7 proteins more abundant in D03 than in HD and

D06 cultivations included a putative GCN5-related N-
acetyltransferase (123668), GARI a putative a-1, 2-man-
nosidase (74198), and SGT2-like ER membrane targeting
protein (74118).

Comparison of transcriptomics and proteomics data
In order to see how the transcriptomic responses were
reflected in the proteome in general, we carried out a
correlation analysis of RNA and protein level fold
changes. For the comparison of D = 0.03 h-1 low cell
density (D03) and D = 0.06 h-1 low cell density (D06)
the overall correlation r of transcript and protein fold
changes was 0.5 regardless of whether the Spearman or
Pearson method was used. Similarly, the correlation was
0.6 for D03 versus D = 0.03 h-1 high cell density condi-
tion (HD). We then compared fold changes of indidual
proteins and transcripts (Figure 6).
The transcript-protein pairs were divided in six (Q1,

Q2, Q3, Q4, T0, T-0, see below and Figure 6 for expla-
nation) classes for both comparisons. In order to divide
the pairs into these categories two cut-offs were used: 1)
a fold change of at least 1.5 (0.6 as log2) was assumed
to indicate that a protein or transcript level was differ-
entially expressed and 2) a fold change of less than 1.2
(0.3 as log2) was assumed to indicate that a protein or
transcript level was not differentially expressed.
In the comparison of D03 and D06, 2 transcript-pro-

tein pairs were found in Q1 (both protein and trancript
more abundant in D03), none in Q2 (transcript more
abudant in D06, protein more abundant in D03), 9 in
Q3 (both more abundant in D06), 12 in T0 (protein
more abundant in D03, transcript not differentially
expressed) and 17 in T-0 (protein more abundant in
D06, transcript not differentially expressed). Proteins
related to protein secretion (74118, 105692 and 119890,
see above) were found enriched among proteins more
abundant in D03 than D06, but transcripts not differen-
tially expressed (D03vD06 T0 in Table 3). In addition,
T0 included the Asf1p anti silencing protein (47838)
and the MPDA [63] mannitol-1-P dehydrogenase
(52267) homologues. The 17 proteins more abundant in
D06 than D03, but transcripts not differentially
expressed (T-0) included 6 metabolic enzymes (includ-
ing PGM1-2, ADE5, 7 and GLKI [65]), 2 proteins puta-
tively involved in actin tubulin assembly and 2 amino
acid tRNA synthetases.
In the comparison of D03 and D = 0.03 h-1 high cell

density condition (HD), 2 transcript-protein pairs were
found in Q1 (both protein and trancript more abundant
in D03), 3 in Q2 (transcript more abundant in HD, pro-
tein more abundant D03), 18 in Q3 (both more abun-
dant in HD), 19 in T0 (protein more abundant in D03,
transcript not differentially expressed) and 5 T-0 (pro-
tein more abundant in HD, transcript not differentially
expressed). Glycoside hydrolases were found enriched
among proteins more abundant in D03 than HD, but
transcripts not differentially expressed (D03vHD T0 in
Table 3). Q2 included the only identified protein (v1.2
46348), a homologue of S. cerevisiae Sti1p chaperone,

Table 3 Enriched functional categories in proteome
analysis

Description Expression % of
expressed

% of
annotated

p-
value

Protein secretion D03/D06 27.8 7.7 0.00

Protein synthesis -D03/D06 14.6 11.3 0.00

Protein secretion D03/D06
T0

25.0 4.6 0.01

Glycoside
hydrolase

D03/HD 20.0 14.9 0.00

Protein secretion D03/HD 14.3 7.7 0.01

Stress -D03/HD 8.3 20.0 0.00

Protein
degradation

-D03/HD 11.1 7.0 0.04

Glycoside
hydrolase

D03/HD T0 15.8 6.4 0.02

’Expression’ is type of expression behaviour the proteins have i.e. -D03/D06
stands for proteins more abundant in D06 than in D03. In the two cases
labelled with ‘T0’ and ‘T-0’ transcripts were not regulated, i.e. the transcript
fold change was less than 1.2 (see Figure 6 for further details). See Table 1 for
explanations of subsequent columns.
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that was predicted as gene in genome version 1.2, but
not in genome version 2.0. In addition, 79686, a homo-
logue of S. cerevisiae Pab1p polyadenylate binding pro-
tein and 119731, a homologue of S. cerevisiae Hsp60p
mitochondrial chaperone, were included in Q2. Proteins
more abundant in D03 than HD, but transcript not dif-
ferentially expressed (T0) included 4 proteins related to
amino acid metabolism and BIPI.

We also calculated the translational control efficiency
ratio (TCEr) [1] for each protein in both comparisons of
conditions (Additional file 1, Table S10) and inspected
extremes of the TCEr distributions.
Translational control efficiency (TCE) is a measure of

the effective conversion of a gene’s transcript into pro-
tein, encompassing synthesis and degradation processes,
hence TCEr is the ratio of relative changes in

Figure 6 Correlation between transcriptomics and proteomics data. The Y axis shows the log2 fold change of protein expression and the ×
axis the corresponding transcript expression. Upper panel shows a comparison between D = 0.03 h-1 low cell density (D03) and D = 0.06 h-1 low
cell density (D06) and lower panel between D03 and D = 0.03 h-1 high cell density (HD). Data points are coloured based on gene expression’s
correlation to specific protein production rate. Central crosshairs shows the 1.5 (0.6 as log2) fold change cut-off for both axes. In addition, a half
of that on log2 scale i.e. 1.2 (0.3 as log2) was used as cut-off for ‘non-transcriptionally regulated’ assingment (T0, T-0). Q1-4 label the quadrants of
transcript-protein relationship classification. Same cut-offs were used for enrichment analysis of proteomics (Table 3) and transcript-protein
relationship classification (Additional file 1, Table S10).
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translational control efficiencies between the two condi-
tions studied. TCEr can be calculated from genome-
wide data, such as ours, although the TCE cannot be.
In the comparison of D03 and D06, 4 proteins, includ-

ing a HSP78 mitochondrial chaperone (2687) and QRI1
UDP-N-acetylglucosamine pyrophosphorylase (79568)
had a TCEr<0.33 i.e. they were 3 times more efficiently
translated in D06 than in D03. 6 proteins, including the
Golgi protein 105692 and MPDA [63] homologue
(52267) had a TCEr>3 i.e. they were 3 times more effi-
ciently translated in D03 than in D06. In the compari-
son of D03 and HD, 3 proteins, including the same
HSP78 protein (2687) and a translation elongation fac-
tor (120235) had a TCEr <0.33. 10 proteins, including
GARI, a putative mitochondrial HSP60 (119731), protein
synthesis initiation factor (111131) and SNF7-like pro-
tein (121169) had a TCEr>3.
The results of enrichment analysis of the proteome

agree with the enrichment analysis of the transcriptome
with regard to protein synthesis (i.e. correlating nega-
tively with SPPR) and glycoside hydrolases (i.e. correlat-
ing positively with SPPR, Table 2, Additional file 1,
Table S3 and S10). In enrichment analysis of the tran-
scriptome, peptidases were found to enriched among
genes correlating positively with SPPR while proteasome
components were among those negatively correlated. In
enrichment analysis of the proteome, protein degrada-
tion related proteins were found to be enriched among
proteins more abundant in D = 0.03 h-1 high cell density
condition (HD) than in D = 0.03 h-1 low cell density
condition (D03) (an thus negatively correlating with
SPPR). The correlation to SPPR of proteins related to
protein secretion is generally negative (’Protein secre-
tion’ in Figure 2), while the enrichment analysis of pro-
teome finds ‘Protein secretion’ enriched among proteins
more abundant in D03 than HD or D06 (i.e. correlating
positively with SPPR). Notably, pdi1 falls to this
category.

Discussion
We have used chemostat cultivations at specific growth
rates and cell densities to characterise the transcriptome
and proteome of T.reesei in order to understand the
molecular bases of low growth protein production phe-
notype. The stability of the cultivations was monitored
with online and off-line measurements, including a
monitoring for stability of transcription of the 31 repor-
ter genes covering essential cellular processes [66].
We used the strain Rut-C30, instead of the sequenced

QM6a strain, due to its improved protein production
capabilities. The mutations in Rut-C30 in comparison to
QM6a have been described genome wide [67,68] and
the phenotype of three of them have been studied. For
the single major multi gene deletion of Rut-C30 in

scaffold 15, it has been shown that it has no impact to
cellulase production on lactose containing medium [68].
The glucosidase II alpha subunit frameshift of Rut-C30
improves protein production by changing the glycosyla-
tion pattern of secreted proteins [69]. The cre1 trunca-
tion weakens carbon catabolite repression of Rut-C30
[70]. Given that we used a non-repressive carbon source,
lactose, and no residual glucose was detected and we try
to describe the cellular response to protein production,
these mutations do not interfere, but rather might
improve our study. However, without additional data,
for example transcription profiling data of QM6a from
the same conditions, it is very hard to deduce, what
would be the impact of other yet uncharacterised muta-
tions to the results of our study. We inspected the 967
genes which expression correlated significantly with
SPPR. We found that 8 genes correlated positively and
11 negatively, had a substitution in them or in promoter
or terminator regions as defined by [67]. Among them
only one possible regulator was found, gene 123344 that
was negatively correlated to SPPR. It is an orthologue of
S. cerevisiae YPD1 histidine phosphotransferase involved
in osmotic stress. Hence, mutations in Rut-C30 are not
likely to have major direct effects to gene regulation in
our experiment. Although some details of our results
may turn out in time to be strain specific, in light of the
current understanding of the phenotype of Rut-C30 it
does not seem likely that the general results presented
in this paper would be. Also, the low growth rate pro-
tein production phenotype we study is not specific for
NG14/Rut-C30 strain lineage, but has been described
for two other strains of the QM9123/QM9414 lineage
[30,31].
We used a correlation-based analysis of gene expres-

sion, as has been used previously for S. cerevisiae che-
mostat cultivations of variable growth rate and nutrient
availability [2]. This allowed us explicitly to concentrate
on our main interest, the correlation of specific extracel-
lular protein production rate (SPPR) and intracellular
processes and gives us a single number per gene that
defines the genes behaviour in the three conditions,
instead of several numbers from pair-wise comparisons.
Such an analysis is not sensitive to variations in cultiva-
tions provided that adequate parameters have been
quantified, as is possible in bioreactor cultivations.
In comparing enrichment analysis of genes that signif-

icantly correlate to SPPR and genes with significantly
different fold changes between different conditions, we
see similar trends for example for genes of secondary
metabolism and secreted proteins (positive correlation,
higher in D = 0.03 h-1 low cell density condition (D03)
and D = 0.06 h-1 low cell density condition (D06) than
in D = 0.03 h-1 high cell density condition (HD)) and
genes of protein secretion, cytoskeleton and primary
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metabolism (negative correlation, higher in HD cultiva-
tions than in D03 and D06 cultivations, Table 2 and
Additional file 1, Table S3). It was not possible to detect
significant differences between D03 and D06 cultivations
by analysing fold changes alone, thus we could not say
whether specific growth rate also affected expression of
these genes. In contrast, our analysis of genes with cor-
relation to SPPR clearly reveals that both cell density
and specific growth rate contributed to the SPPR.
We found that the highest specific protein production

rate was achieved with low cell density cultivations at
specific growth rate of D = 0.03 h-1 (D03). Transcrip-
tomics and proteomics suggested that the effect resulted
from high transcript, and hence protein, levels of the
secreted enzymes (Table 2, Figure 6, Additional file 1,
Table S10 and S11) in D = 0.03 h-1 low cell density
(D03) cultivations. Secreted glycoside hydrolases were
detected as enriched among proteins more abundant in
D03 than in D = 0.06 h-1 low cell (D06) or D = 0.03 h-1

high cell density (HD) cultivations. As we carried out
intracellular proteomics the higher amount of the
secreted proteins in the intracellular samples could be
either due to corresponding increased synthesis of the
protein or due to limitation in transport of the proteins
as described in [32] based on in vivo labelling
experiments.
In comparison to [32], in which similar cultivations of

variable growth rate were studied, we found the same
direction of expression change of specific marker genes
such as bip1 [71] and pdi1 [45]. We also found that
their proteins were more abundant in D = 0.03 h-1 low
cell density (D03) than in D = 0.03 h-1 high cell density
(HD) cultivations (Figure 6 and Additional file 1, Table
S10). In [32] it was proposed that the Unfolded Protein
Response (UPR) would be active in D03 in response to
increased production of secreted proteins. UPR has been
described as a large scale induction and modification of
the protein secretion pathway involving hundreds of
genes [72]. We detect no clear UPR in response to high
protein production, rather genes of the protein secretion
pathway generally had a negative correlation to SPPR,
pdi1 being one of the few exceptions to this rule. In S.
cerevisiae BIP1 and PDI1 have been shown to be poor
indicators of UPR [73]. In T. reesei bip1 and pdi1
expression levels have been shown to correlate well with
hac1 splicing, indicating UPR, in a batch cultivation
[74]. As we studied steady state rather than induction
conditions, the high level of bip1 and pdi1 in D03 culti-
vations could be a remnant of an earlier full UPR. In
general our transcriptomics and proteomics data agree
well, as we detected for both proteomic comparisons a
correlation of >0.5 between transcript and protein fold
changes, while correlations from 0.4 - 0.7 [1] to 0.21
[75] have been reported earlier. However, when we

classified transcript-protein pairs into groups by their
expression we found that in most cases the transcript of
a differentially expressed protein was not differentially
expressed with the strict cut-offs used. As it is known
that the normalisations used for transcriptomics can
damp fold changes [76] it is hard to know whether this
is a true biological phenomena or a data analysis arte-
fact. However, the used classification allowed us to pick
outstanding transcript-protein pairs. Three genes were
found to have more abundant transcripts in D = 0.03 h-
1 high cell density (HD) than in D = 0.03 h-1 low cell
density (D03) cultivations, while their proteins had
opposite abundance (Figure 6, D03/HD, Q2). Two of
them are homologues of S. cerevisiae Pabp1 and Sti1p
that belong to a RNA-binding protein network regulat-
ing posttranscriptional and posttranslational events of
protein synthesis [77]. Sti1p acts as chaperone, while the
third of them is a homologue of S. cerevisiae Hsp60p, a
mitochondrial chaperone. Pab1p has been shown to be
involved in control of translation initiation in response
to metabolic state of cell [78]. Transcript-protein pairs
with non-correlated expression could be required for
fast responses to changes in environment [79]. Taken
together, the differential expression and predicted func-
tion of these genes suggests them as actors in regulation
of translation in response to metabolic state of cell. In
addition, we have observed condition dependent abun-
dance variation in different pI isoforms of Hsp60p
(119731, Figure 5).
Enrichment analysis of proteomics highlighted in par-

ticular key processes and genes related to protein pro-
duction. In the transcriptome peptidases were positively
correlated and proteasome components negatively corre-
lated to SPPR (Table 2). In the proteome division
between peptidases and proteasome components was
not evident. Nevertheless both positive and negative cor-
relations of individual protein degradation related pro-
teins were detected in proteomics (Table 3). Proteins
related to the machinery of protein secretion were
enriched among proteins more abundant in D = 0.03 h-1

low cell density (D03) than D = 0.06 h-1 low cell density
(D06) and D = 0.03 h-1 high cell density (HD) cultiva-
tions. These included a-1, 2-mannosidases and glycosy-
lation related genes. While on transcriptomics side, 9
out of the 16 genes that had a correlation with SPPR
above 0.7, were also related to glycosylation. Further-
more, protein secretion related proteins were implicated
as targets of posttranscriptional regulation since their
protein abundance appeared to be differentially
expressed, while the transcript abudance was not (Table
3, Figure 6). Chitin metabolism was detected by pathway
analysis and the genes had, notably, both negative and
positive significant correlations to SPPR. Thus, proteins
of the protein secretion machinery detected by
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proteomics and the 16 genes of protein secretion
machinery which had a correlation to SPPR >0.7 may
highlight key activities of protein secretion machinery
which are required for especially high level of protein
secretion.

Primary biosynthetic functions are expressed at low level
in low growth rate protein production
From analysis of distribution of correlation of gene
expression to SPPR we found that genes in metabolism,
protein secretion and known mitochondrial genes were
generally expressed at low level when protein produc-
tion rate was high in T. reesei (Figure 2). By the gene
set enrichment analysis we could further see that some
protein biosynthesis, cytoskeleton and protein degrada-
tion genes behaved similarly. We then constructed a
draft metabolic network model for T. reesei (Additional
file 2) in order to analyse transcriptional responses in
the network’s context by pathway analysis. In particular,
we found that genes involved in the TCA cycle and
related to glucose 6-phosphate, i.e. in upper glycolysis,
were typically expressed at low level in high production
(Figure 3 and Additional file 1, Table S3, S4 and S5).
The expression of ZWF1 glucose-6-phosphate dehydro-
genase (Figure 3), the key branching point enzyme
between glycolysis and the pentose phosphate pathway
and responsible for producing NADPH required for
growth, had a particularly high negative correlation
(-0.85) with SPPR. The negative correlation of the genes
involved in TCA cycle to SPPR was detected with the
two pathway analysis methods and also in analysis of
significantly changing genes between different cultiva-
tion conditions.
Transcript and protein abundance changes of pentose

phosphate pathway (tal1, sol1-2-3-4), glycolysis (pgm1-2,
pcd1-5-6, glk1) genes and ade5, 7 and acl2 were coher-
ent (Figure 3 and 5 and Additional file 1, Table S10).
pgm1-2, phosphoglucomutase, and ade5, 7, purine bio-
synthetic protein, were detected by the pathway analyses
and were negatively correlated with SPPR. Thus, central
carbon metabolism is overall expressed at low level
under high protein production conditions on transcrip-
tional but also on proteome level.
Of special interest are the paralog pairs, i.e. isoen-

zymes, with opposite direction of correlation to SPPR,
found in the central carbon metabolism (Figure 3).
However, the correlations were not significant in all of
the pairs. Proteome analysis in S. cerevisiae suggested
clearly defined functional separation for paralog pairs
[80]. Even the modest correlations detected for these
pairs may highlight key enzymes required for high rate
of protein production.
We looked for chromosomal regions i.e. clusters with

particular correlation to SPPR. We found 7

chromosomal clusters with negative correlation to SPPR
(Additional file 1, Figure S6 and Additional file 1, Table
S7). Only one of these clusters was found to be con-
served in Pezizomycotina (Additional file 1, Figure S7,
Additional file 1, Table S8). The cluster contains secre-
tion and regulation related proteins and thus could be
particularly essential for Pezizomycotina. Together these
chromosomal clusters contained a wealth of regulators,
in particular three with links to carbon source depen-
dent regulation (SNF1, SIP3 interaction partner of Snf1p
and pldA [56]).
In S. cerevisiae the SNF1 complex is activated by car-

bon derepressed conditions. Likewise, induction of pldA
homologues in derepressed conditions have been shown
[56]. In T. reesei snf1 appears not to phosphorylate cre1
and its expression is possibly independent from the car-
bon source [81]. Given its strong negative correlation to
SPPR (-0.87) in our study, SNF1 could be an active reg-
ulator in the non carbon catabolite repressed growth
conditions we studied.

Plant biomass degradation and secondary metabolism
genes are induced together
As expected cellulases and other plant biomass degrada-
tion related proteins were found to have a positive cor-
relation to SPPR. Genes of predicted secreted proteins
in general, and sugar transporters in particular, were
found to have a positive correlation (Table 2 and Figure
2). Many genes possibly involved in secondary metabo-
lism were found also to have a positive correlation with
SPPR. Accordingly, we identified chromosomal clusters
positively correlated to SPPR containing the above men-
tioned genes (Figure 4 and Additional file 1, Table S6).
Seven (c1, c2, c3, c6, c7 and c8) of our nine clusters
overlap with cellulase clusters previously predicted for
T. reesei [14]. Also several of the clusters found by [14]
were reported to contain genes encoding proteins
involved in secondary metabolism.
The transition to stationary phase in batch cultivations

is known to activate secondary metabolism, such as afla-
toxin synthesis in Aspergilli [82], in most fungi. To our
knowledge the joint induction of secreted proteins and
secondary metabolism has not been previously shown.
However, the physiology at specific growth rate of opti-
mal protein production (D = 0.03 h-1 and low cell den-
sity) for T. reesei may be similar to the physiology of
transition phase in batch cultivation. Further, in both the
batch deceleration phase and the chemostat, inducing
carbon source would be present in low concentration.

Lineage specific response to low upper glycolytic or TCA
cycle flux?
From analysis of distribution of correlation of gene
expression to SPPR we found that not only functional
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categories had distinctive correlations, but also that
genes with positive correlation to SPPR tended to be
more lineage specific than genes with negative correla-
tion (Figure 2). Furthermore, we found that genes with
significant positive correlation to SPPR had significantly
lower maximum expression, fold change, GC% and dis-
tance to scaffold end than non-correlated genes (Table
1, Additional file 1, Figure S3). In Aspergillus oryzae
genes in non-syntenic blocks have particularly low
expression levels, but they have particularly high fold
changes in conditions inducing plant biomass degrada-
tion enzymes [12,20]. Genes in non-syntenic blocks and
belonging to protein families enriched in Pezizomyco-
tina [5] tend to be found in or near subtelomers and are
particularly short in Aspergillus fumigatus [15,17]. In
Nectria haematococca the GC% of lineage specific
genes, particularly of those found in supernumary chro-
mosomes, is lower than that of conserved genes [11].
Thus, the characteristics of genes positively correlating
to SPPR agree in regard to protein families, low maxi-
mum expression, GC% and chromosomal position with
previous descriptions of lineage specific genes found in
non-syntenic blocks. However, the fold change trend
was opposite in T. reesei to that in A. oryzae and we did
not find a significant difference on gene length, in con-
trast to NSB genes A. fumigatus. These differences
could reflect either intrinsic differences between Sordar-
iomycetes and Eurotimycetes or differences due to
experimental conditions. The lower GC% could reflect
only the lack of codon optimisation, i.e. low expression,
but in that case one would expect larger variation
around the average GC% rather than a different average
GC%. Notably, the average GC% falls even lower when
considering only pairs of adjacent positively correlated
genes, highlighting the link to genome structure. Gene
expression levels do not necessarily correlate with
enzyme activities in the cell and hence with the cellular
flux of the catalysed reactions. In particular, chemical
reactions and changes of enzyme activity happen on
much smaller time scales than changes in gene expres-
sion. Regardless, transcriptional profiling data has been
succesfully used to constrain fluxes in flux balance ana-
lysis (FBA) in bacteria [83-85] and algae [86]. Results
from these studies suggest that when considering phy-
siologically clearly distinct steady states, such as the
conditions we studied, transcriptome profiling data may
have, at least at the pathway level, a meaningful correla-
tion to flux.
In S. cerevisiae, expression of essential and conserved

genes is positively correlated with growth rate and
hence, in the particular conditions studied flux through
primary metabolism to biomass [1]. We are interested
on SPPR rather than growth rate and our data was gen-
erated from only two different growth rates. However,

we detected a strong negative correlation of gene
expression, in particular, of upper glycolysis and TCA
cycle, and in general of primary metabolism with SPPR.
Thus, in the conditions we studied SPPR could be

strongly negatively correlated with flux through these
pathways and thus a more fundamental major determi-
nant of SPPR could be, for example flux through the
upper glycolysis or TCA cycle, rather than growth rate.
In that case our results and results from S. cerevisiae
growth rate experiments would be in agreement con-
serning conditions of high flux through the primary
metabolism. The basic biosynthetic machinery, con-
served throughout eukaryotes, is induced when high flux
to biomass is possible in order to maximise growth.
However, the regulation of TCA cycle genes specifically
is species specific [87-89] depending on whether a spe-
cies favours fermentative or respiratory metabolism in
the presence of glucose or, possibly, in high enough gly-
colytic flux.
In S. cerevisiae the set of genes with negative correla-

tion to growth rate, i.e. flux to biomass in the experi-
ment in question, is enriched in genes of unknown
function [1]. Similarly, we detect that genes with no
known domain tend to have negative correlation to
SPPR (Figure 2). In addition, we detect that lineage spe-
cific genes with characteristics typical to genes in lineage
specific genomic regions (Table 1, Additional file 1, Fig-
ure S3) and carrying out functions enriched in Pezizo-
mycotina lineage [5] (Table 2) had a positive correlation
to SPPR and thus possibly a negative correlation to flux
to biomass. Similar lineage specific induction response
to low flux to biomass, i.e. starvation or carbon limita-
tion, are well known also from Eurotiomycetes [20,21],
that are not known to exhibit low growth rate protein
production.
Thus, our results support the conclusion in [1] of

existence of a conserved core protein machinery govern-
ing cell growth in Eukarya. Furthermore, we propose a
novel lineage specific response possibly to low flux to
biomass, or more specifically low upper glycolysis or
TCA cycle flux, in Eukarya. In these conditions, lineage
specific functions are induced. These functions are
essentially what make the phenotype and evolutionary
niche of an organism, but they are typically poorly
understood as study of lineage specific genes has been
negleted in molecular biology [90].

Regulation of the lineage specific response?
Metabolic fluxes have been suggested not only to be set
by regulation but also to participate in the regulation via
specific metabolite pools acting as flux sensors [91]. It
has been proposed in mouse that the flux of the TCA
cycle directly controls gene expression via acetyl-CoA
whose concentration in the nucleus plays a key role in
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nucleosome acetylation [92]. In particular, the control of
upper glycolysis genes by acetylation was shown,
demonstrating a feedback control loop from the TCA
cycle to glycolysis.
Saccharomycotina, except for Yarrowia lipolytica, do

not have the necessary enzyme, for acetyl-CoA produc-
tion in cytosol from the TCA cycle, ATP-citrate lyase
(ACL). However, it is generally found in other fungi as
two genes (acl1 and acl2) encoding the N and C term-
inal domains separately [93,94]. Regardless, a similar
link between acetyl-CoA concentration and regulation
of gene expression exists in S. cerevisiae through the
acetyl-CoA synthases, commonly found in fungi [95].
The depedency of histone acetylation on ACL has
been shown in the Sordariomycetes Gibberella zeae
[96]. In T. reesei it has been shown that cbh1 and egl1
transcription is dependent on mitochondrial function
[97].
Given that lineage specific genes tend to occur in spe-

cific genomic regions and clusters and especially the
control of secondary metabolism clusters has been
linked to nucleosomal modifications, nucleosome acety-
lation would offer a convenient mechanism to control
chromatin structure in lineage specific regions and
hence, induce or derepress lineage specific genes in con-
ditions where the flux to biomass production is low.

Vice-versa, as suggested by the experiments done with
mouse [92], acetylation could tune the gene expression
of the upper glycolysis and TCA cycle genes to correlate
with the flux through the corresponding enzymes, espe-
cially under steady state conditions (Figure 7).
Undoubtly numerous other intra- and extra cellular sig-
nals would be integrated by regulatory networks to
enable finer condition specific control of gene expres-
sion. Namely the TOR and SNF1 networks discussed
above and the velvet and AP-1 networks to integrate
information on light, developmental status, oxidative
stress etc. (for review [98,99]). Interestingly, the velvet
complex protein VeA has been proposed to regulate dis-
tribution of carbon flow between primary and secondary
metabolic functions [100].
Pezizomycotina genomes are enriched in Zn2Cys6

transcription factors and many of them reside close to
the biomass degradation and secondary metabolism
genes. However, general mechanisms for their control
are not known. A general opening of lineage specific
chromosomal regions or more specifically promoters of
individual lineage specific genes through histone acetyla-
tion could be a major inducing factor in Zn2Cys6 tran-
scription factor transcription. Zn2Cys6 transcription
factors could then induce further actual lineage specific,
often neighbouring, enzyme genes.

Figure 7 Major responses in low growth rate protein production and their hypothetic regulatory relationships in T. reesei Rut-C30.
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In general histone acetylation and acetylase occupancy
at promoters positively correlates with transcriptional
activity in S. cerevisiae [8]. However, acetylation patterns
and their correlation to gene expression can also be
gene specific [101]. With on average at least 30 GCN5-
like histone acyltransferase family members, thrice more
than in Saccharomycotina, Pezizomycotina genomes are
well equipped [5] for gene and condition specific histone
acetylation. In our data GCN5 family genes were
enriched among genes at higher level in D = 0.06 h-1

low cell density condition (D06) than in D = 0.03 h-1

high cell density condition (HD) (Additional file 1,
Table S3) and two were detected with proteomics.
Number of other regulators that could control the

responses we detect arise from our data. Namely, snf1,
not likely having a role in induction of carbon catabolite
repressed genes in T. reesei [81], could instead be
involved in flux or carbon limitation based control of
transcription. PNC1, required for life span extension by
calorie restriction [43], would be a natural candidate for
regulation at slow growth rate and ASF1 for anti silen-
cing lineage specific silent loci.
A lineage specific response would be likely to involve

also lineage specific regulators. Pezizomycotina lineages
typically have numerous lineage specific Zn2Cys6 tran-
scription factors [5]. The novel genes discovered from
this data set, proposed to be novel regulators [59] and
shown to have correlations to SPPR are also prime
candidates.

Conclusions
We present the first genome-wide analysis correlating
gene expression and specific extracellular protein pro-
duction rate (SPPR) and confirm and extend our results
with proteomics. We have previously described in detail
the protein coding content of Pezizomycotina genomes
[5]; in the current work we link lineage specific genomic
content to its regulation. We propose that low flux
through upper glycolysis or the TCA cycle, resulting in
low flux to biomass, is a more fundamental determing
factor of protein production at low specific growth rate
than the growth rate itself. In addition we propose a
response to this flux state, i.e. the lineage specific
response (LSR), a large scale induction of lineage speci-
fic genes and regulatory factors for it. If our hypothesis
about the role of flux in regulation of protein produc-
tion in T. reesei and the lineage specific response holds,
the open question is, what then controls the flux? Our
data suggests that it is not only the growth rate, but also
the density of cells.
Although, protein production at low specific growth

rate might be an exception limited to Sordariomycetes,
literature from Fungi and Bacteria suggests that lineage
specific response to low flux to biomass is a wide spread

phenomena. Most previous genome wide studies in
Fungi with defined growth rates have been limited to S.
cerevisiae. With its small genome, minimal number of
lineage specific genes [5] and lack of the potential key
enzyme, ATP-citrate lyase, detecting the lineage specific
response in S. cerevisiae could be difficult.

Methods
Bioreactor cultivations
Trichoderma reesei strain Rut-C30 [102] was grown in
chemostat cultivations as described in [103]. Strain Rut-
C30 was used instead of the sequenced strain QM6a for
its enhanced protein production capabilites. Cultivations
were done in lactose-limited chemostats in three condi-
tions: specific constant growth rate of 0.03 h-1 (D03) or
0.06 h-1 (D06), both with low cell density and 0.03 h-1

with high cell density (HD). The high cell density was
achieved by increasing the lactose concentration of the
feed medium from 10 g/L to 40 g/L. Triplicate cultiva-
tions were analysed for the three conditions.
The medium contained: KH2PO4 15 g l-1, (NH4)2SO4

5 g l-1, CaCl2x2H2O 0.6 g l-1, MgSO4x6H2O 0.6 g l-1,
CuSO4x5H2O 30 mg l-1, FeSO4x5H2O 5 mg l-1,
MnSO4xH2O 1.6 mg l-1, ZnSO4x7H2O 1.4 mg l-1,
CoCl2x6H2O 3.7 mg l-1 and lactose 20 or 80 g l-1. Salt
concentrations in cultivations containing 80 g lactose l-1

were increased to: KH2PO4 15 g l-1, (NH4)2SO4 12.5 g l-
1, CaCl2x2H2O 1.5 g l-1, MgSO4x6H2O 1.5 g l-1,
CuSO4x5H2O 30 mg l-1, FeSO4x5H2O 12.5 mg l-1,
MnSO4xH2O 4.0 mg l-1, ZnSO4x7H2O 5.6 mg l-1,
CoCl2x6H2O 14.8 mg l-1.
The stability of several physiological parameters was

monitored before and after the onset of continuous
medium feeding to evaluate the steady state of chemo-
stat cultivations. Standard on-line (e.g. base consump-
tion, dissolved O2 concentration and off gas
concentrations for CO2, O2, N2) and off-line (e.g. dry
weight, NH3 concentration, cellulase activity) measure-
ments were used. In addition to these conventional pro-
cess analyses a novel method for rapid transcriptional
profiling called TRAC [42] was used to monitor gene
expression of 31 genes and chemostat stability [103].
The TRAC probe set included genes related to pro-

duct formation (123989:cbh1, 122081:egl1, 120749:bgl2,
80240:bga1), various stress responses (e.g. 122920:bip1,
122415:pdi1, 21745:hsp105, 62100:hsp30, 50039:SOD2,
79565:TRR1, 104135:trx2, 65290:cpc1, 120676:NTH1,
62040:nsf1), central carbon metabolism (73774:ACS1-2a,
120568:ENO1-2, 119735:TDH1-2-3/gpd1, 48707:TPS2b),
growth and conidiation (46490:RPS16B, 124010:RPL16A,
34312:con6, 51492:chs1, 121491:ccg9), proteases (121495:
aep1, 77579:VPA1, 60676:MCA1), oxygen regulation
(123382:hem6, 55362:hsp70) and transport (122043:ctaA,
51110:GAP1).
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Stable chemostat cultivations were attained within two
or three residence times, and three generations after
steady states were attained, samples were withdrawn for
transcriptomic and proteomic analyses. Smaller samples
were taken 1-3 times per day and used for limited tran-
script analysis with TRAC, dry weight and enzyme activ-
ity measurements. CO2 production in the fermentor was
measured on line. Samples were collected and analysed
as in [103]. Briefly, samples were withdrawn from the
fermentor rapidly, filtered, washed and the biomass fro-
zen with liquid nitrogen and stored at -80°C. The super-
natant was also frozen in liquid nitrogen and stored at
-80°C for protein, sugar and enzyme analyses. For deter-
mination of dry weight, two sample aliquots were
weighed, collected by filtration, washed and dried to
constant weight at 105°C. Residual lactose, glucose and
galactose in the cultivation filtrate was measured enzy-
matically (Lactose kit, Roche, Basel, Switzerland). Solu-
ble protein concentration was measured using the Bio-
RAD Protein assay (Hercules, CA). The ammonium
concentration was determined using the Roche ammo-
niak test kit (Basel, Switzerland) adapted for automated
analysis with the Cobas-mira (Roche). The activities of
the cellulolytic enzymes were measured as in [103].

Microarray analysis of transcriptome
Microarray analysis was carried out as in [59]. Briefly,
total RNA was extracted and submitted to microarray
analysis by Roche Nimblegen (WI, USA). Probe design
and synthesis, RNA labelling, hybridisation and signal
quantification were carried out by Nimblegen. Design of
the microarray and analysis of microarray data were car-
ried out with the T. reesei genome [14] version 1.2
[104]. Each of the 9997 genes were covered with 11
25mer probes.
In addition the, plus strand of intergenic regions were

covered with 187, 641 25mer oligonucleotide probes
with approximately 100 nt spacing as described in [59].
The data has been submitted to GEO with accession

number GSE30458.
Annotation of the genes and all homology based ana-

lysis were carried out with genome version 2.0 [105]
unless otherwise stated, provided the gene was found
among the 9129 genes of version 2.0.

2D-gel analysis of proteome
Mycelial samples from steady state chemostat cultiva-
tions were collected by filtering through Whatman GF/B
filters, washed with 0.9% w/v NaCl, frozen immediately
in liquid nitrogen and stored at -80°C. The cells were
disrupted by grinding under liquid nitrogen, resus-
pended in 10mM NaN3- 10% TCA-20mM N-ethylmalei-
mide, and kept on ice for 30 min. Two volumes of cold
acetone (-20°C) was added, and after 30 min incubation

on ice the samples were centrifuged at 14 000 g, +4°C,
for 10 minutes. The pellets were washed with -20°C
acetone and resuspended (30 min, room temperature) in
sample buffer (7M urea, 2M thiourea, 15mM Tris base,
4% w/v CHAPS). In order to remove insoluble material,
the samples were centrifuged 14 000 g at +4°C for 10
min. The pH in the samples was adjusted to pH 8.5,
and the protein concentration was adjusted to 7mg/ml.
The 2-D Quant Kit (GE Healthcare) was used to mea-
sure protein concentration in the samples, according to
the instructions of the manufacturer. Three replicate
protein extracts were prepared for each of the
cultivations.
For 2D gel electrophoresis, three replicate protein

extracts from each cultivation were labelled with CyDye
DIGE Cy5 (GE Healthcare) as instructed by the manu-
facturer. A mixture containing equal amounts of all the
samples was labelled with CyDye DIGE Cy3 and used as
an internal standard in the analysis (GE Healthcare). 50
μg of the Cy5 labelled protein samples mixed with an
equal amount of the Cy3 labelled internal standard were
subjected to isoelectric focusing using immobilised pH
gradients Immobiline DryStrip pH 4-7 or pH 3-5.6 and
pH 5.3-6.5 (GE Healthcare) and the IPGphor equipment
(GE Healthcare) according to the instructions of the
manufacturer. The isoelectric focusing was followed by
11% w/v SDS-PAGE as the second dimension.
The 2D gels were scanned independently for Cy5 and

Cy3 labelled proteins using Typhoon 8600 scanner (GE
Healthcare), and the image analysis was done using Pro-
genesis software (Nonlinear Dynamics). The ratiometric
method provided by the Progenesis software (based on
the ratio of the Cy5 signal to the Cy3 signal of the spot
in the same gel) was used for normalisation of the sig-
nals in the 2D gels. The normalised intensities of the
protein spots in the replicate protein extracts of the cul-
tivation were averaged and the average values used in
Student’s t-test to evaluate the significance of the differ-
ence between the groups of cultivations.
Protein spots with more than 2-fold differences (t-test

p <0.05) in the intensity between the cultivations were
selected to LC-MS/MS for identification. The gel spots
were excised manually and stored in -20°C. Before LC-
MS/MS analysis, the gel spots were destained as
instructed by manufacturer and trypsin digested as
described earlier [106]. Protein digests were desalted
and concentrated with ZipTip μ-C18 reverse phase col-
umns (Millipore Corporation). The eluent was evapo-
rated in vacuum centrifuge and peptides dissolved in
0.1% HCOOH and then subjected to automated
nanoLC-MS/MS. The used instruments and methods
were as in [107]. Obtained spectral data was analysed by
in-house Mascot software (Matrix Science) against T.
reesei genome sequence version 1.2 [104].
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Data analysis
Analysis of TRAC data
In order to correlate TRAC and microarray data differ-
ent linear models were tested and the best selected
based on Akaike Information Content. The three best
models are shown as scatter plots in Additional file 1,
Figure S2, along with diagnostic plots for the best
model. m0 is a model with single intercept and slope,
m1 a model with gene specific intercept and m2 a
model with gene specifc slope. m1 had the lowest AIC
and was thus selected:

Arrayij = αj + β ∗ TRACij + εij and εij ∼ N(0, σ 2)

Where Array is the microarray signal of jth gene in
the ith sample, TRAC is respectively the TRAC signal, a
the gene specific intercept, b the slope (estimated as
0.52) and s the residual standard error (estimated as
0.25 with R package nlme [108]).
Gene annotation
Functional annotation of genes was based on [5] and
included Interpro protein domain prediction [109], Prot-
fun protein function prediction [110] and TargetP pro-
tein localisation prediction [111].
Protein clusters from [5], updated to 49 species [112],

were used to transfer annotation between species,
namely from the Saccharomyces Genome Database
[113] and MIPS Funcat [114], provide a taxonomic spe-
cificity for each T. reesei gene and construct phyloge-
netic trees as in [112] with TNT [115]. Taxonomic
specificity was defined for each gene by checking from
each protein cluster whether it contains only Tricho-
derma or Pezizomycota genes or is found more gener-
ally in Fungi.
Carbohydrate Active enZYme database [116,117] pre-

dictions were obtained from [14].
Based on these computationally created annotations

and literature searches, genes with significant changes
or significant correlation were also manually categorised
in a two level hierarchy of ‘Class’ and ‘Extension’. Meta-
bolic model for T. reesei (Additional file 2) was con-
tructed by mapping T. reesei genes to Aspergillus niger
genes by bi-directional best hit blastp [118] with a cut-
off of bit score >50 in either direction ). Metabolic reac-
tions were then transferred for each gene from the A.
niger metabolic model [48]. Homology relationships of
genes of central carbon metabolism were further verified
by constructing a phylogenetic tree for each protein
cluster which contained several genes from Saccharo-
myces cerevisiae or Trichoderma reesei. Annotation of
the fungal secretion system was retrieved from [119].
Genes were mapped to protein clusters from [5] and
from them to T. reesei.

Gene names in capitals are derived from the S. cerevi-
siae according to Saccharomyces Genome Database
[113], while names in italics are from other fungal spe-
cies as specified. Numbers after gene names or descrip-
tions refer to T. reesei genome version 2.0 gene
identifiers.
Analysis of transcriptome data
All data analysis was carried out with R [120] and Bio-
conductor [121]. The raw array data obtained from
Nimblegen was first normalised with RMA (Robust
Multichip Average) [122] and LIMMA (Linear Models
for Microarrays) [123] was subsequently used to select
significantly changing genes with a cut-off of p-value
<0.05 (which corresponds to a false-discovery rate of 5%
in this analysis) and log2 fold-change >0.5.
For each gene its correlation to specific protein pro-

duction was calculated. The false discovery rate was esti-
mated from the Q-value [124] using the R package
‘qvalue’, and found to be 3.3% for absolute correlation
>0.8 and 4.8% for >0.7. The probability of observing a
pair of adjacent genes both with absolute correlation
>0.7 and the same direction of correlation, was esti-
mated with a permutation test and found to be p <1e -
5.
Genomic clusters were found by looking for three

adjacent genes with absolute correlation >0.7 with the
same direction of correlation, and then extending the
cluster to adjacent genes untill the direction of correla-
tion changed.
Conservation of chromosomal clusters was studied by

looking for combinations of Interpro domains found in
the genes of the genomic cluster in other genomes. Pro-
tein sequences of 33 fungi [5] were mapped to their
respective genome sequences by tblastn [118] in order
to find genomic co-ordinates for each gene. From the
gene co-ordinates, windows of 16 or 30 consecutive
genes along chromosomal sequence were calculated,
moving the window along the chromosome with incre-
ments of 2 or 5 genes, respectively, to cover all 33 gen-
omes with overlapping windows. For each window its
protein domain content, i.e. InterPro identifier content,
was determined, based on protein domains of individual
genes. We then searched for windows in which Interpro
domain content overlapped that of the T. reesei genomic
clusters found above and verified that the genes in these
windows were either ortho- or paralogoues using pro-
tein clusters from [5].
Gene enrichment tests were carried out with a hyper-

geometric test for computationally created annotations
and with a Ficher test for manual annotations, both
with a cut-off of p <0.05.
Significance of difference of general characterics (GC

%, fold change, etc.) of genes significantly positively or
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negatively correlated to SPPR from non-correlated genes
was checked with a linear model.
Metabolic pathways correlated with specific protein

production rate were identified with EMPath as in [47]
using the color coding algorithm [125]. The p-value of
correlation to specific exracellular protein production
rate was assigned to node (gene) weights of the meta-
bolic network. Edge (metabolite linking genes) were
weighted with the probability of observing such an edge
i.e. by the product of the bi-directional blast hit scores
from A. niger versus T. reesei homology search used to
construct the model.
Path lengths from 3 to 12 were investigated. The p-

value of a path was estimated from an empirical distri-
bution of shuffling the edge and node weights 10 000
times and the overlapping paths with a p-value below
the cut-off, combined into the final result paths. Repor-
ter metabolites [46] were identified using the same
weight settings in gene nodes of the metabolic network.

Additional material

Additional file 1: Supplementary Figures and Tables.

Additional file 2: Metabolic model. Excel file of the mapping of T.
reesei genome to the A. niger metabolic model including enzymes
named by phylogenetic analysis for Figure 3.
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