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Abstract

algorithm.

promoters using MEME and MAST.

Background: CpG islands are important regions in DNA. They usually appear at the 5" end of genes containing
GC-rich dinucleotides. When DNA methylation occurs, gene regulation is affected and it sometimes leads to
carcinogenesis. We propose a new detection program using a hidden-markov model alongside the Viterbi

Methods: Our solution provides a graphical user interface not seen in many of the other CGI detection programs
and we unify the detection and analysis under one program to allow researchers to scan a genetic sequence,
detect the significant CGls, and analyze the sequence once the scan is complete for any noteworthy findings.

Results: Using human chromosome 21, we show that our algorithm finds a significant number of CGls. Running
an analysis on a dataset of promoters discovered that the characteristics of methylated and unmethylated CGls are
significantly different. Finally, we detected significantly different motifs between methylated and unmethylated CGl

Conclusions: Developing this new tool for the community using powerful algorithms has shown that combining
analysis with CGI detection will improve the continued research within the field of epigenetics.

Background

Epigenetics studies the changes in gene function and
gene expression that are not discernable by mutations in
the DNA sequence. The area of biology devoted to epi-
genetics is a recent development and has a large amount
of room for growth with new research on cancer, mam-
malian gene expression, and technological advances con-
stantly being brought forth from the community.
Epigenetic inheritance focuses on both mitotic and
meiotic cellular changes and the processes involved.
Looking at cell differentiation and genetic imprinting
through epigenetics has created new leads for cancer
research in terms of tumour growth. The chromatin
that controls DNA processes is an epigenetic mechan-
ism in either an active or repressive state. There
are three main mechanisms in epigenetics: DNA
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methylation, histone modifications, and the binding of
non-histone proteins [1].

CpG islands (CGIs) usually appear at the 5" end of
genes containing GC-rich dinucleotides. Normally, these
regions are unmethylated; however, when methylation
occurs, gene regulation is affected and methylation
sometimes leads to carcinogenesis. The importance of
CGIs has produced numerous algorithms throughout
the community dedicated to locating and understanding
these regions in DNA [2]. Many of the traditional algo-
rithms use the measures of length, GC content, and the
number of observed over expected CpGs when deter-
mining if a section of DNA is a CGI. However, some
newer algorithms employ a distance based detection
method to identify CpG clusters [3]. Some of the fea-
tures of unmethylated CpGs are their affinity to bind to
a protein domain (CXXC3), their low mutation rate, and
their association with open chromatin. Low methylation
frequency has been correlated with high CpG density
and vice versa.
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DNA methylation refers to the replacement of the
attached hydrogen with a methyl group on a cytosine
base, which causes the chromatin to become more com-
pact affecting transcription factor binding [1]. Methy-
lated cytosines will produce thymine when deaminated
unlike unmethylated cytosines which produce uracil.
CpG density is lost due to the thymine mutation and
this often inhibits the promoter regions of genes [4].
The affect of methylation is particularly important in
the case of cancer and the epigenetic modifications that
silence tumour suppressor genes. It has been observed
that genes silenced epigenetically share sequence motifs
in their promoter regions. This is one of the possible
ways to detect cancer hypermethylation [5].

In genetics, a sequence motif is a short pattern of
nucleotides that is deemed to have biological signifi-
cance. If a motif appears in the exonic region of a gene,
it may encode the structural motif of a specific protein.
Regulatory sequence motifs are located in areas where
regulatory proteins such as transcription factors bind to
the DNA. In order to find the most significant motifs in
DNA, many algorithms have been designed and applied
to different organisms [6]. When describing a motif, pat-
tern notation using regular expressions is what depicts
the sequence. The de novo computational methods to
discover important motifs take multiple input sequences
and try to generate candidate motifs. Two of the most
well-known algorithms often used by many researchers
are BLAST and MEME [7](8].

CpG islands are found in 40% of promoter and exonic
regions of mammalian genes. Other areas of the genome
contain very few CpG dinucleotides and these areas are
normally methylated [9]. Methylation of promoter CpGs
is known to cause gene silencing and is heavily impli-
cated in carcinogenesis. Gardener-Garden and Frommer
were the first researchers to use computational methods
to detect and analyze CpG islands using specific criteria:
200-bp (base pair) length DNA region, GC content
greater than 50%, and observed CpG/expected CpG
ratio (Obscpg/Expcpg) greater than 0.6 [10]. Although
the original criteria provided a good starting point for
CpG island detection, it didn’t take into account repeat-
ing regions of DNA. Alu repeats are short interspersed
elements repeating within the genome that are approxi-
mately 280-bp in length often containing a high GC
content and Obscpg/Expepg ratio [11].

Takai and Jones analyzed human chromosomes 21
and 22 for CpG islands using their own algorithm that
built upon the original criteria coined by Gardener-
Garden and Frommer. The new algorithm reduced the
number of detected CpG islands from 14,062 to 1,101,
which is closer to the number of genes located on the
two chromosomes (~750 genes). Using the same criteria,
the new algorithm modifies the constraints of each
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criterion to produce better detection results. Now
repeating elements such as Alu are not considered as
often as before (from 7,651 to 122 Alus detected as
CpG islands). The constraints for the new algorithm are
as follows: length > 500-bp, GC content > 55%, and
ObsCpG/ExpCpG = 0.65.

CpGcluster [3] discovers clusters of CpGs by looking
at the distance between other CpGs on the same chro-
mosome and applying statistical significance. The two
algorithms were compared using many different factors
(length, GC content, ObsCpG/ExpCpG) to determine
which is better at finding CGIs [2]. CpGcluster locates a
much larger number of CGIs; however, after further
analysis only 14.7% and 16.2% mapped to promoter
regions of the human and mouse genomes respectively.
The study found that often multiple clusters of CpGs
from CpGcluster were substrings of one large CGI
detected by the Takai and Jones algorithm. Since there
is no length limitation when CpGcluster detects CGIs, a
much larger number of clusters are discovered.

Gene expression is one of the most important func-
tions in all forms of life. Transcription factors are
encoded in about 3-5% of genes in eukaryotes allow the
repression or activation of specific genes within DNA.
Chromatin plays another significant role in gene regula-
tion and the network of interactions between transcrip-
tion factors and chromatin structure is becoming
increasingly important in epigenetic research. DNA
methylation is an epigenetic memory mechanism
involved in the silencing of genes within eukaryotic
organisms. Histone modifications are another instru-
ment in the epigenetic inheritance that passes informa-
tion from parent to daughter cells. Post-translational
modifications of core histone proteins have been linked
to transcription repression and activation [12].

Aberrant methylation of promoter regions of genes has
been linked to gene silencing and loss of expression in
diseases like cancer [1] and it is known that cancer muta-
tion can cause alterations to protein signaling genes [13].
Single nucleotide polymorphisms (SNPs) are the most
common variation in the genetic sequence of the human
genome. Studies continue to provide an increasing
amount of evidence that SNPs are correlated with cancer
and can be used as indicators of the disease [14]. Analyz-
ing sequence variants in motifs within promoter regions
of methylated genes could provide significant disease
markers and possible sites for therapeutic study.

In this study, we examine several problems related to
CpG islands and DNA methylation of the promoter
regions of genes:

+ Design a method of CGI detection using powerful
algorithms that improves performance while incorporating
the ability to correlate the methylation status of the DNA
with the location of the CGL
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« Incorporate the power of analysis alongside CGI
detection for an all-in-one program that covers the
needs of the community.

« Integrate motif finding into the detection algorithm,
determine if the motifs are within CGIs, and verify if
they are within a transcriptional start site (TSS).

The rest of the paper is organized as follows. We first
present the conceptual framework on which the pro-
gram was designed. Then the methodology of the fina-
lized program is discussed. Finally, the first set of
experiments is presented.

Methods

The detection of CGIs has evolved since the first detec-
tion algorithm was proposed by Gardener-Garden and
Frommer. Recently, studies have shown that incorporat-
ing the use of a hidden Markov model in a detection
algorithm can improve results [15]. When establishing
new techniques, it is still important to consider the tra-
ditional methods and integrate the best features of both
into a new algorithm. In our work, we combined a hid-
den Markov model, the Baum-Welch algorithm, and the
Viterbi algorithm along with the traditional sliding
window criteria to lower the detection of repeating
elements.

Hidden markov model

A hidden Markov model (HMM) consists of a Markov
process in which the state is unobservable. A Markov
process is a random phenomenon where future prob-
abilities are determined based on the most recent values.
An HMM requires the knowledge of a few probabilities
before it can be run on any data. These probabilities are
split into three separate groups:

« initial probabilities - the probabilities that determine
which state the system will be in during the start of the
algorithm. Often, the initial probabilities are equal among
the different states (i.e. 2 states: P(i) = 0.5, P(j) = 0.5).

« transition probabilities - the probabilities that pro-
vide the occurrence of a change from state i to state j (i.
e. P(i|j) = 0.25, P(i|i) = 0.75).

« emission probabilities - the probabilities distinguish-
ing each state based on the observations of the system
(i.e. P(x]i) = 0.22, P(x|j) = 0.36).

Estimating parameters

HMMs have three distinct sets of parameters or prob-
abilities: the initial state probabilities that determine
which state the system starts in; the transition probabil-
ities that decide if the state will switch after a certain
period of time; and the emission probabilities showing
whether the current symbol output belongs to one state
or another. For an HMM to decode a sequence into a
path of states, the parameters need to be trained on a

Page 3 of 8

sequence of symbols to detect the final probabilities the
system will use when finding the Viterbi path. One
of the best and most efficient methods of estimating
probabilities is through the use of the Baum-Welch
algorithm, which is a special case of expectation-
maximization.

The Baum-Welch algorithm is often used in HMM:s to
estimate the unknown parameters or probabilities. It is
also known as the forward-backwards algorithm and is a
special case of the generalized expectation-maximization
algorithm. It can produce maximum likelihood and pos-
terior mode estimates for model parameters when given
only the emission probabilities to work with. The algo-
rithm starts by assigning initial probabilities to all of the
model parameters. Then it continues until convergence
happens by adjusting the probabilities of each model
parameter to increase the probability of the model in
accordance with the training set being scanned.

Viterbi algorithm

The Viterbi algorithm uses dynamic programming to
find the most likely sequence that the hidden states
would take based on the observations in a parameterized
model. This sequence is called the Viterbi path and it is
usually related to HMMs. The Viterbi algorithm is very
similar to the forward algorithm which computes the
probability that a set of observed events was generated
by the model. The algorithm was designed in 1967 by
Andrew Viterbi to decode convolutional codes within
the noise of digital communication links.

The algorithm takes a HMM with possible Q states,
initial probabilities 7; where i is the current state of the
model, and transition probabilities a;; where i, j is the
change from state i to state j . Given a sequence of obser-
vable data xy,...,x; , the algorithm will generate a state
sequence ¢y, ...,q; for each observable value. The algo-
rithm produces the final output using recurrence relations.

Vo = P(xq | k) - 7y,
Vi, =P(x, | k)-max(a,,V,_
Lk ( t| ) qu( q.kY1 l/q)

Vi« is the probability of the most likely state sequence
based on the current / + 1 observations. The state
sequence can be recovered by saving in memory the
state ¢ is in during the run through the second equa-
tion. Then say there is a function, St(k,/) that returns
the value of ¢ which produced V;; when / > 0 and k
when / = 0. The Viterbi path can be discovered using
the following:

=arg max(V
qr 8 qu( Lq)

qi- = St(q;,1)
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DNA methylation analysis
Once the CGI detection algorithm runs and scans the
genetic sequence, the researcher can use the detected
island locations to create primer sequences to determine
the methylation status of the CGI. Often, a separate sta-
tistics program is used to calculate significance. In our
work, the analysis of the data is available using the p-
value derived from the Kolmogorov-Smirnov two-sam-
ple test and the distribution of methylated to unmethy-
lated islands is tabulated through the calculation of the
z-score. The Kolmogorov-Smirnov test uses minimum
distance estimation to compare sample datasets with
reference probability distributions equating them with a
one-dimensional probability distribution. The test can
be performed with one sample dataset (one-sample K-S
test) or with two sample datasets (two-sample K-S test).
The test either defines the mathematical distance
between the empirical distribution function of a set of
data and the cumulative distribution function of the
reference distribution (one-sample) or the distance
between the empirical distribution of two separate sets
of data (two-sample). The samples calculated under the
null hypothesis are taken from the reference distribution
(one-sample) or the same distribution (two-sample) and
form the null distribution for the test. When the Kolmo-
gorov-Smirnov test is used as a goodness of fit test, the
data is normalized and compared to a standard normal
distribution.

The Kolmogorov-Smirnov statistic uses the empirical
distribution function where Xi,...,X, are a set of
ordered data points,

En(9)== 1< 4
i=1

where 1{y; < «} is the indicator function. The Kolmo-
gorov statistic for a cumulative distribution function E
(%) can be calculated using,

K, = sup| E,(x) - E(x)|

which calculates the supremum of the distances in the
set, sup x». The Kolmogorov-Smirnov statistic often
requires a large set of data to give an accurate accep-
tance or rejection of the null hypothesis; however, since
we are working with the human genome and chromo-
somes seem to contain a large amount of CGIs [16][17]
and thus our datasets should be large enough to pro-
duce accurate p-values. In our work, we use the two-
sample K-S test to determine if two datasets (unmethy-
lated and methylated CGIs) differ in their probability
distributions in regards to length, GC content, and Obs/
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Exp ratio. The two-sample K-S test uses the Kolmo-
gorov statistic

K, =sup|E, ,(x) = E, ,(x)|
X

where E;, and E,, are the empirical distribution
functions of each sample.

Program architecture

There are a multitude of detection programs that use
many different algorithms to accurately detect CGIs
within a genetic sequence. Some of the most popular
CGI detection algorithms are Gardener-Garden and
Frommer [10], CpG Island Searcher [9], and CpGProd
[18]. The Gardener-Garden and Frommer algorithm is
the original CGI detection algorithm which uses a slid-
ing window of 200 bp along with a GC content greater
than 50% and an observed-to-expected CpG ratio
greater than 0.6. The CpG Island Searcher built upon
the original foundation using a window of 500 bp, GC
content > 55%, and Obscpg/Expcpg 2 0.65. The
CpGProd algorithm searches a genome for CGIs using
two steps: (1) search for all CGIs in a submitted
sequence based of the traditional criteria, and (2) predict
the orientation of promoters once the start CGI is dis-
covered [18].

We decided to design a graphical user interface (GUI)
for our CGI detection program to provide accessibility
for researchers that are not well-versed in scripting or
working with programs depending on the command
prompt. While both the CpG Island Searcher and
CpGProd have a web server that provides a user inter-
face, it is not feasible to run an dataset as large as a
human chromosome through the web. Both programs
must be run using typed commands and parameters if
not running them through the web and do not provide
the same interface as on the web for the user.

Layout and design

The original CGI detection layout and code was
released by Tanner Helland (http://www.tannerhelland.
com/) under the BSD license. It was originally written
and designed in Microsoft Visual Basic 6.0, but we
updated and modified the code using Microsoft Visual
Basic .NET and Microsoft Visual Studio 2008. The GUI
provides an intuitive method for loading the FASTA
sequence file, setting up the HMM parameters, estimat-
ing the parameters based on the file, and running the
algorithm. Once the Viterbi algorithm has defined when
the sequence is in an island state ("I”) or a normal state
("B”), the sliding window can be run to detect where
the islands are located within the genomic sequence
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CpG Island Detection 1.0

CGI Detection | Analysis |
Step 1: Load information from a FASTA file

Open a FASTA file...

Step 2: Input HMM Parameters

|/B Probabilities State Probabilities: Initial Probabilities:
plB->B): (06871 plalB): (03385 | plallk [0.1645 plB)  [0.3554
plE->1l: [0.3128 plcB) [0.1850 | plell) (0.3501 pll): 0.6445

o8 o) [170] il [150]
pll->1) PUBY: [02362] it} [0.1453]

Step 3: Run the HMM and Viterbi algorithm on your data
] Results: 77.93701% B, 22.06239% |

[ Run the algorithm!

Step 4: Aun a sliding window analysis to determine possible CG island locations

] Sliding window size:

C/G Observed vs. Expected [Maximum = 1.454237):

l Scan with sliding window

Current File: C:\Documents and SettingshLeah\My Doc

E stimate probabilities

After running your analyses, any estimated CG islands will appear here.

Viterbi analysis:
|BBBEBBEBBBEBEBIIBBEIIBBBEEBBEEEBBBBEBEBBEBEBBBBIIBBBBIIBBBE
BBEBBEBEBBBEBEBEEEEEBBEEEBEEEBEBBEEEBEBEBEBBBEEBEBEBEII
BBIIININNIBINIEBBEBEBBEIIBBEBBEEBBEBBEBINNIIIBIIIBBEEIIBIIIBEIIEE
BEBBBEEBEEEBEBBBEEEEIIBBEBEBBEEBBEBBEBEBEBEBBEEEBEEBBEBBEE
EBBEBEEIIBEEBIIEBBEEEEEEEBEBBBEBBEBEBEBBBEEEIINIIBEBEBBBEEE
EBIIIBEBIIIEEBEBBIIEBBBEEEBEIIIBIIIIEBIIEEBEEEBEEEEEEBBEBBEBBEBE!

Likely CpG Islands:
2019 to base 2425

1/B Ratio (Maximum = 0.605):

| Sliding window analyses are complete.

Figure 1 CGI Detection 1.0 Layout.

which show inside the graphs for Obsc,g/Expcpg ratio
and I/B ratio. Once the sliding window has scanned for
CGIs, the results are shown in the textbox to the right
(Fig. 1).

We modified the layout to use a tab control in order
to switch between the CGI detection and the analysis of
the results. The analysis tab contains a small spread-
sheet for the detected islands where the user can change
the methylation status (methlyated/ unmethylated) and
can enter a methylation score for each island. Methyla-
tion scores have been used in many different studies
[16][19][20] as a measure of the strength of the methyla-
tion of a specific CGI to determine whether to classify it
as methylated or unmethylated. Once the user has filled
in the values for methylation status and score for each
C@], the analysis of the data can be completed.

The table next to the spreadsheet displays the separate
mean values for CGI length, GC content, and Obscpa/
Expcpg ratio for the unmethylated and methylated
CGlIs. The p-values are calculated using the Kolmo-
gorov-Smirnov two-sample test. The chart underneath
the spreadsheet displays the z-score distribution for the
methylated and unmethylated CGls determined by using

the methylation scores entered by the user. The final
chart shows the distribution of lengths of the CGIs
across the two sets of data (Fig. 2).

We created this layout and design to provide practi-
cality for users that are not computational experts and
to offer an all-in-one solution for detecting and analyz-
ing CGI data.

Results

Methylation analysis

Looking at the composition of CGIs when methylated
and unmethylated is important in the study of the epi-
genetic mechanism of methylation. The list of promo-
ters from Weber et al. [21] was evaluated by taking the
promoters found within chromosome 21 and analyzing
them using the CpG Island Detection 1.0 program ana-
lysis tab. The 163 promoters were selected based on
the promoter class given to each in the previous work.
Those with a class of HCP or ICP were considered to
contain CGIs within or covering the promoter region
when looking at methylation. A CGI was considered
methylated if the 5mC log2 ratio 0.4 and unmethylated
otherwise. Using these criteria, the promoter regions
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CpG Island Detection 1.0

CGl Detection | Analpsis |

CplG Island Methylation Status Methylation Score
2019- 2425 Unmethylated v 044
100 - 435 Methylated v |120
743-1156 Unmethylated v | -0.98
1568 - 1984 Methylated v 389

R E Unmethylated v
4265 - 4894 Methylated v 243

CpG Island Z-score Distribution

120 —— Unmethylated CGls

—— Methylated CGls
100+
80

60

Islands (%]

401 /
20

Islands Islands PValue
Number of Islands 3 3
Length 505.33 460 0.695374133686422
GC Content (%) 5352 48,94 0.0366310527071183
Obs/Exp 1.03 1 0.0366310527071183
CpG Island Length

Mumber of CGls

Unmethylated CpG Methylated CpG

Il Unmethylsted CGl Length
I Methylated CGl Length

PFP PP SO

VST 7

CGI Length

Figure 2 CGI analysis layout and design.

were run through the program, using the 5mC log2
ratio for the methylation score of each island (Fig. 3).

Of the 163 promoters, 13 were considered methylated
and 150 were unmethylated. This distribution is unsur-
prising considering that promoters which are methylated
tend to silence the function associated with the gene.
The p-values calculated by the Kolmogorov-Smirnov
test clearly show the significance between methylated
and unmethylated CGIs with all categories being notably
less than 0.05 as shown in Table 1.

The unmethylated islands show a normal distribution
according to the z-scores; however, it is hard to dis-
cern any important findings from the methylated CGIs.
This is possibly due to the lack of methylated islands
in this dataset. A larger count of methylated CGIs
might have provided some deeper insight into how
they tend to be distributed throughout the genome.
Looking at the allocation of island length, it is clear
that most islands within promoters are somewhere
in the range of 900 - 1500 bp long. With a larger set
of methylated CGIs, there might have been a more
informative conclusion as to whether longer islands,
such as those in promoters, are more susceptible to
methylation.

CGI motifs
It is still widely unknown as to why certain CGIs are
more susceptible to DNA methylation as compared to
others. The possibility that CGIs, especially those
located within promoter regions and covering TSSs,
contain motifs that are more likely to mutate or allow
methylation has not yet been thoroughly researched. To
determine if any of the CGIs contained similar motifs,
MEME was run on 5 of the total 13 methylated promo-
ters to discover the top 3 most significant methylated
sequence motifs. The motifs were then checked against
the entire 13 CGIs by using the MAST tool for align-
ment. A similar experiment was performed for 13 ran-
domly chosen unmethylated promoter CGIs. It is
interesting to note that even from this small sample of
CGIs, a large percentage (76.9%) of methylated islands
contain the top motif; whereas, less than half of the
unmethylated islands contain that same motif (38.4%).
The third motif for methylated CGIs contains the most
surprising result showing that it was almost non-existant
within the scanned unmethylated CGIs as compared to
the methylated promoters (7.7% and 61.5% respectively).
However, when looking at the unmethylated island
motifs, both the methylated and unmethylated CGIs
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Figure 3 Analysis of promoters found on chromosome 21.

have almost equal occurrences for the top 3 hits. With a
larger database of methylated CGls, a more significant
result could be obtained in terms of the motifs found
within the islands, especially the CGIs that cover pro-
moter regions and TSSs.

Discussion

In our work we designed a brand new CGI detection
tool, CpG Island Detection 1.0. It uses a hidden-Markov
model and the Viterbi algorithm to detect CGIs within
mammalian genomes. The parameters of the model are
estimated using the Baum-Welch algorithm and the
final method of locating islands uses a sliding window of
a size specified by the program user. The tool provides a
graphical user interface for users, allowing textbox entry
and one click results. Even with the limitations in com-
putational power, CpG Island Detection 1.0 stood up
well against the Takai and Jones CpG Island Searcher. It
was able to detect 347 CGIs within human chromosome
21 and the average lengths and Obsc,g/Expcpg ratios

were in line with that of the Takai and Jones method,
1206 bp and 0.87 respectively.

A list of 163 promoters within chromosome 21 from
Weber et al. was analyzed using the tool’s analysis tab.
The methylation status was entered from the original
data and after the tool’s analysis some significant results
were obtained. There is a definite difference between
methylated and unmethylated islands and the composi-
tions of their characteristics (Length, GC content,
Obscpg/Expcpg ratio) which all had p-values less than
0.05 (as indicated by the Kolmogorov-Smirnov two-sam-
ple test). The z-score graph produced by the dataset
showed that unmethylated CGIs show a normal distri-
bution as well. A larger dataset of methylated islands is
required in order to see if there is anything interesting
in regards to how they are distributed.

Finally, the 13 methylated promoter regions and
another 13 unmethylated regions were run through
MEME and MAST to determine if there are any signifi-
cant motifs shared between CGIs. The methylated

Table 1 Comparison of methylated and unmethylated promoter CGls.

Unmethylated CpG Islands Methylated CpG Islands P-Value
Number of Islands 150 13
Length 1188.27+16148 1145.924359.79 <148 x 10"
GC Content (%) 60.76+10.34 66.44+19.34 <181 x107?
Obscpa/EXPcpa 149+0.25 163047 < 181 x 107

Methylated and unmethylated promoter CGls were compared by sequence for average length, GC content (%), and ObsCpG/ExpCpG ratio. P-values were

determine using the Kolmogorov-Smirnov two-sample test.
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islands shared the 3 top motifs with percentages of
76.9%, 69.2%, and 61.5% respectively; whereas, those
motifs were only found in less than 50% of the
unmethylated CGIs. The motifs found within the
unmethylated islands were equally distributed through-
out both the methylated and unmethylated regions. This
indicates a possible correlation between motifs and
methylation in regards to gene silencing. Those genes
more likely to become methylated may contain motifs
prone to methylation and mutation.

Conclusions
Using an entire genome analysis will provide better
insight into the analysis of methylated and unmethylated
islands. A more recognizable distribution for methylated
islands might be possible with a larger set of data points
to consider. Acquiring more data will better showcase
the power of the analysis tool and the assistance it pro-
vides to users scanning genomic regions for CGIs. The
tool will be improved to allow a user to save their
results and export the located CGIs to a file for other
experiments and analyses. It will also be upgraded to
allow a user to import located CGIs from a previous
session or file, rather than requiring a rescan of a
sequence every time an analysis needs to be completed.
Obtaining a larger number of methylated islands for
analysis with MEME and MAST will provide more sig-
nificant results in terms of motifs within CGIs. Looking
across the entire genome and the promoter regions
found within a multitude of chromosomes could show
whether the methylation-prone motifs are consistent
within susceptible CGIs across the genome and provide
an insight into why certain genes become silenced
within diseases such as cancer. Developing this new tool
for the community using powerful algorithms has
shown that combining analysis with CGI detection will
improve the continued research within the field of
epigenetics.
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