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Abstract

Background: Newly microarray technologies yield large-scale datasets. The microarray datasets are usually
presented in 2D matrices, where rows represent genes and columns represent experimental conditions. Systematic
analysis of those datasets provides the increasing amount of information, which is urgently needed in the post-
genomic era. Biclustering, which is a technique developed to allow simultaneous clustering of rows and columns
of a dataset, might be useful to extract more accurate information from those datasets. Biclustering requires the
optimization of two conflicting objectives (residue and volume), and a multi-objective artificial immune system
capable of performing a multi-population search. As a heuristic search technique, artificial immune systems (AISs)
can be considered a new computational paradigm inspired by the immunological system of vertebrates and
designed to solve a wide range of optimization problems. During biclustering several objectives in conflict with
each other have to be optimized simultaneously, so multi-objective optimization model is suitable for solving
biclustering problem.

Results: Based on dynamic population, this paper proposes a novel dynamic multi-objective immune optimization
biclustering (DMOIOB) algorithm to mine coherent patterns from microarray data. Experimental results on two
common and public datasets of gene expression profiles show that our approach can effectively find significant
localized structures related to sets of genes that show consistent expression patterns across subsets of
experimental conditions. The mined patterns present a significant biological relevance in terms of related biological
processes, components and molecular functions in a species-independent manner.

Conclusions: The proposed DMOIOB algorithm is an efficient tool to analyze large microarray datasets. It achieves
a good diversity and rapid convergence.

Background
Rapid development of the DNA microarray technology
makes it very possible to study the transcriptional
response of a complete genome to different experimen-
tal conditions. The rapid increasing of microarray
datasets provides unique opportunities to perform sys-
tematic functional analysis in genome research. A subset
of genes showing correlated co-expression patterns
across a subset of conditions are expected to be func-
tionally related. One important research area in

bioinformatics and clinical research is finding patterns
which relate to disease diagnosis, drug discovery and the
function prediction.
Biclustering is proposed for grouping simultaneously

genes set and condition set over which the gene subset
exhibit similar expression patterns. Cheng and Church
[1] introduce first biclustering to mine genes clusters
with respect to a subset of the conditions from microar-
ray data. Up to date, a number of biclustering algo-
rithms for microarray data analysis have been developed
such as δ-biclustering [1], FLOC [2], pClustering [3],
statistical-algorithmic method for biclustering analysis
(SAMBA) [4], spectral biclustering [5].
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During the last three decades, inspired by biology
views, some heuristic approachs such as evolutionary
algorithms [6] have been proposed to discover global
optimal solutions in gene expression data. For multi-
objective optimization (MOO) problem, multi-objective
evolutionary algorithms (MOEAs) [7,8] are proposed
to discover efficiently global optimal solution.
Recently an artificial immune system is introduced to

deal with MOO problem. Jiao [9] proposes immune
genetic algorithm(IGA) which improves the searching
ability and adaptability, greatly increase the converging
speed. Yoo and Hajela [10] first extends the immune
system to solve multi-objective optimization problems.
Coello [11,12] propose an algorithm based on the
immune response principle to solve MOO problem
and effectively improve the diversity of Pareto optimal
solutions. BIC-aiNet (Artificial immune Network for
Biclustering) [13] being an immune-inspired bicluster-
ing algorithm is used to group similar texts efficiently
and extract implicit useful information from groups of
texts. Coelho [14] combines the multi-population of
aiNet and the biclustering techniques, and proposes
MOM-aiNet (Multi-Objective Multi-population Artifi-
cial Immune Network) algorithm to mining biclusters.
Liu[15] proposes a novel multi-objective immune
biclustering (MOIB) algorithm to find more significant
biclusters from gene expression data.
Most MOPs use a fixed population size to find non-

dominated solutions for obtaining the Paterto front. The
computational cost is the greatest influence of population
size on these population-based meta-heuristic algorithms.
Hence dynamically adjusting the population size need
consider the balance between computational cost and the
algorithm performance. Some methods using dynamic
size are proposed. Tan [16] proposed an incrementing
MOEA(IMOEA) that adaptively computes am appropri-
ate population size according to the online discovered
trade-off surface and its desired population size that cor-
responds to the distribution density. Yen and Lu [17]
proposed dynamic population size MOEA(DMOEA) that
includes a population-growing strategy based on the con-
verted fitness and a population-declining strategy that
resorts to the following age, health and crowdedness.
Leong and Yen [18] introduced dynamic population size
and a fixed number of multiple swarms into multi-objec-
tive optimization algorithm that improved diversity and
convergence of optimization algorithm.

Methods
Based on the immune response principle and ε-domi-
nance strategy [19], this paper incorporating dynamic
population size [18] into MOIB [15] algorithm, and

proposes a novel dynamic multi-objective immune opti-
mization biclustering(DMOIOB) algorithm to find one
or more significant biclusters of maximum size in
microarray data. In the proposed algorithm, the feasible
solutions are regarded as antibodies and Pareto optimal
solutions are preserved in an antigen population
updated by ε-dominance relation and computation of
crowding distance. Many Pareto optimal solutions can
be effectively obtained and distributed onto the Pareto
front in this way. Three objectives, the size, homo-
geneity and row variance of biclusters, are satisfied
simultaneously by applying three fitness function in
optimization framework. A low mean squared residue
(MSR) score of bicluster denotes that the expression
level of each gene within the bicluster is similar over the
range of conditions. Therefore, we focus on finding
biclusters of maximum size, with mean squared residue
lower than a given δ, with a relatively high row variance.

Biclusters
Given a gene expression data matrix D=G×C={dij} (here
i∊[1, n] , j∊[1, m]) is a real-valued n×m matrix, here G
is a set of n genes {g1, g2, ..., gn}, C a set of m biological
conditions {c1, c2, ..., cn}. Entry dij means the expression
level of gene gi under condition cj. If there is a subma-
trix B=g×c, where g⊂G, c⊂C, to satisfy certain homoge-
neity and minimal size of the cluster, we say that B is a
bicluster.

Bicluster encoding
Each bicluster is encoded as an individual of the popula-
tion. Each individual is represented by a binary string of
fixed length n+m, where n, m is the number of genes,
conditions of the microarray dataset, respectively. The
first n bits are responding to n genes, the following m
bits to m conditions. If a bit is set to 1, it means that
the responding gene or condition belongs to the
encoded bicluster; otherwise it does not. This encoding
presents the advantage of having a fixed size, thus using
simply of standard variation operations. Therefore, the
string “0110100010#0110100110” presents the individual
encoding a bicluster with 4 genes and 5 conditions, and
its size is 4×5=20. Where # is a symbol used to delimit
the bits of the rows from the columns.

Fitness function
Our hope is mining biclusters with low mean squared
residue, with high volume and gene-dimensional var-
iance, and those three objectives in conflict with each
other are well suited for multi-objective to model. To
achieve these aims, this paper uses the same fitness
functions as [20].
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Update of �-Pareto set of the population
In order to guarantee the convergence and maintain diver-
sity in the population at the same time, we implement
updating of �-Pareto set of the population during clonal
selection operation. A general scheme of the updating
algorithm is given in [19].

Immune response principle
An immune system can collect biological processes of
an organism that protects against disease by identify-
ing and killing pathogens and tumour cells. It can
detect a wide variety of viruses and parasitic worms,
and distinguish them from the organism’s own healthy
cells and tissues to protect an organism. It is highly
distributed, highly adaptive, self-organization in nature
[21]. Artificial Immune System (AIS) is a new compu-
tational approach for the computational intelligence
community. It has widely such as pattern recogni-
tion, data analysis, function approximation and
optimization.
The immune selection principle [22] is used to

describe the basic properties of an adaptive immune
response to an antigenic stimulus [21]. When applying
the immune selection principle to solve multi-objective
problem, it can generate several elements from the Par-
eto optimal set at one run. Clonal selection operation is
used to implement local search in many different direc-
tions along the Pareto front. Mutation operator is
applied to explore through the whole search space, thus
attain the exact Pareto front of the problem.

DMOIO biclustering algorithm
Multiple-objective optimization aim at the following two
competing objectives: 1) to quickly obtain a non-domi-
nated front that is close to the true Pareto front and 2)
to maintain the diversity of the solutions along the
resulting Pareto front. These two objectives are in con-
flict each other because maintaining the diversity will
slow down the convergence speed and may degrade the
quality of the resulting Pareto front. On one hand,
MOIO algorithms tend to the optimal regions. On the
other hand, the clonal selection behaviour may lead to
premature convergence in the search space and produce
a uniformly distributed Pareto front. The influence of
population size on the performance of MOIO is the
computational cost. It is difficult to deal with this con-
flict issues for a MOIO with a fixed population size
because a predetermined computation resource has to
be allocated and properly distributed between two com-
peting objectives. Hence, inspired by [18], during biclus-
tering of the microarray datasets, dynamically adjusting
the population size to explore the search space in bal-
ance between two competing objectives is applied in
this paper.

Initial population
In most multi-objective optimization methods the
initial archive is set to empty. The first archive con-
tains the non-dominated solutions of the initial popula-
tion. Each antigen selects best local guide from the
archive members using Sigma method [23]. Selecting
the first local guides from the archive has a great
impact on the diversity of solutions in the next genera-
tions. Hence the diversity of solutions depends on the
first non-dominated solutions. But if the initial archive
is not empty and contains some well-distributed non-
dominated solutions, the solutions converge faster than
before, while keeping a good diversity. There are two
methods to find a good initial archive. The first possi-
bility is to run the MOIO with an empty archive for a
large population and a few generations. The large
population gives us a good diversity and a few genera-
tions (e.g., 10 generations) are used to develop the
population to a little convergence. On another hand,
MOEA can produce some good solutions with a very
good diversity after a few generations. So another pos-
sibility is to use the results of a small MOEA method.
Here, small means a MOEA with a few individuals and
a few generations (e.g., 10 individuals and 10 genera-
tions). This paper first runs state-of-art MOEA(NSGA-
II [24] ) with 30 individuals and 10 generations to pro-
duce the initial archive of DMOIOB.

Fining the global best solution
To order to find the global best solutions, this paper
uses the basic idea of Sigma method [23] and by con-
sidering the objective space, finding the best local
guide pg among the archive members for the antigen
iof population as follows. In the first step, we assign
the value sj, to each antigen j in the archive. In the
second step, sifor antigen i of the population is calcu-
lated, and then calculates the distance between the si

and sj, ∀jj=1,...,|A|. Finally, the antigen kin the archive
A which its skhas the minimum distance to si is
selected as the best local guide for the antigen i. There-
fore, antigen pg = xkis the best local guide for antigen i.
In other words, each antigen that has a closer sigma
value to the sigma value of the archive member, must
select that archive member as the best local guide. In
the case of two dimensional objective spaces, closer
means the difference between the sigma values and in
the case of m- dimensional objective space, it means
the m-dimensional Euclidean distance between the
sigma values. Algorithm 1 shows the algorithm of the
Sigma method for finding the best local pg for the anti-
gen i of the population [23]. Here, the function Sigma
calculates the s value and dist computes the Euclidian
distance. yi denotes the objective value of the jth ele-
ment of the antigen population P.
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Population adding method
Population adding strategy mainly consist in increasing
the population size to ensure sufficient number of indi-
viduals to contribute to the search process and to place
those new individuals in unexplored areas to discover
new possible solutions. Based on the strategies of
dynamic population size [18], the following procedures
is proposed to facilitate exploration and exploitation
capabilities for DMOIOB.
Step 1: Selecting candidate antibodies added
The non-dominated set considered as candidate anti-

bodies must have the highest probability of generating
new antibodies that will improve the convergence
toward the Pareto front. Therefore the number of
potential antibodies determined via ns = INT(r1× (total
no. of antibodies in non-dominated set)) is randomly
selected from the non-dominated set. Where r1 denotes
a random number obtained from a uniform distribution
within [0, 1].
Step 2: Defining the number of mutation
The number of mutation of the selected antibody is

adaptively determined every iteration. Each selected
antibody’s responsibility is to generate a certain number
of new antibodies from the selected antibody. A prob-
ability value is used to determine the number of pertur-
bations adaptively in which the number of mutation

(number of new antibodies to be generated) is bound by
the minimum and maximum number of mutation.
Step 3: Limiting the range of new antibodies
In proposed algorithm, to balance the exploitation and

exploration capabilities and to avoid generating too
many new antibodies from being too far away from the
selected antibodies, it is necessary to generate a higher
number of new antibodies within the neighbourhood
than outside of the neighbourhood which similar
to [16].

Population decreasing method
To prevent the excessive growth in population, a
population decreasing strategy which similar to [16] is
proposed to adaptively control the population size. In
DMOIOB, the condition to remove a antibody depends
upon Sigma values. Sigma value is utilized to select
potential antibodies to be deleted. After computing all
the distance between Sigma value of each antibody and
Sigma value of its corresponding best local guide, the
rank of the distance of each antibody can be attained.
If the removal of antibodies is only based upon the
distance rank of each antibody, then there is a possibi-
lity of eliminating an excessively large quantity of anti-
bodies in which some may carry unique schema to
contribute in the search process. A selection ratio is
implemented to regulate the number of antibodies to
be removed and to provide some degrees of diversity
preservation at the same time. A selection ratio that is
inspired by Coello and Montes [25] is used to stochas-
tically allocate a small percentage of antibodies in the
population for removal. Hence, given a selection ratio
S ∊ [0, 1], at iteration t, the number of antibodies to
be eliminated is S×|Pt|. Note that the choice of the
selection ratio is dependent upon the user’s preference,
where it can be a function of the swarm population
size or it can be a fixed ratio. For this paper, the selec-
tion ratio is a fixed number, which is set to be a small
number, i.e., S ≤ 0.2. With a small selection ratio,
there is a possibility that those selected antibodies in
Pt may not be eliminated. In other words, some of the
selected antibodies in Pt whose rank indicators are
low may remain in the next iteration. In addition, a
small selection ratio can prevent the removal of an
uncontrollable large number of antibodies while pro-
viding some degree of diversity preservation. This
paper set S =0.02.

DMOIOB algorithm
We propose a dynamic MOIO biclustering algorithm
(DMOIOB) to mine biclusters from the microarray data-
sets to attain the global optimum solutions. We incor-
porates the following three strategies: 1) �-dominance to
quicken convergence speed; 2) Sigma method to find
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good local guides; 3) population-growing strategy to
increase the population size to promote exploration cap-
ability; and 4) population declining strategy to prevent
the population size from growing excessively.
The pseudo-code of the proposed DMOIOB algorithm

is given in Algorithm 2.
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DMOIOB algorithm iteratively updates the antigens
population until user-defined number of generation are
generated and last converges to the optimal solution.

Results
This paper applies the proposed DMOIOB algorithm
to mine biclusters from two well known datasets
and compare the diversity and convergence of the
DMOIOB algorithm with MOIB algorithm. Lastly, the
biological relevance of the biclusters found by
DMOIOB is given.

Datasets and data preprocessing
The first dataset is the yeast Saccharomyces cerevisiae
cell cycle expression data [26], and the second dataset is
the human B-cells expression data [27].
The yeast dataset collects expression level of 2,884

genes under 17 conditions. All entries are integers lying
in the range of 0-600. Out of the yeast dataset there are
34 missing values. The 34 missing values are replaced
by random number between 0 and 800 [1].
The human B-cells expression dataset is collection of

4,026 genes and 96 conditions, with 12.3% missing
values, lying in the range of integers -750-650.The miss-
ing values are replaced by random numbers between
-800-800 [1]. However, those random values affect the
discovery of biclusters[28]. For providing a fair compari-
son with existing methods here set the same parameter
for δ as [1], i.e., for the yeast data δ=300, for the human
B-cells expression data δ=1200. The two gene expres-
sion dataset are taken from [1].

Testing
DMOIOB algorithm is implemented in JAVA program-
ming language and is performed on a 1.7GHz Pentium
4PC with 512M of RAM running Windows XP. To eval-
uate its performance, the proposed algorithm is com-
pared to MOIB [15] algorithm on two well known
datasets, the yeast cell cycle expression data [26] and
the human B-cells expression data [27].

Yeast dataset
Table 1 shows the information of six biclusters out of
the one hundred biclusters found on the yeast dataset.
The first hundred biclusters found by the proposed
algorithm cover 75.8% of the genes, 100% of the condi-
tions and in total 56.7% cells of the expression matrix.
The biclusters found by MOIB [15] cover 62.4% of the
genes, 100% of the conditions and in total 54.8% cells of
the expression matrix. While an average coverage of
51.34% cells is reported in MOEB [7].
Figure 1 depicts sample gene expression profiles for

small biclusters (bicluster 22) for the yeast dataset. They
present a similar behaviour, and there are two genes
with lower expression level than that those of the main
group of genes on all the conditions.

Human B-cells expression dataset
Table 2 shows the information of six biclusters out of
the one hundred found on the human dataset. Table 2
shows that the first hundred biclusters found by the
proposed algorithm cover 39.1% cells of microarray
dataset (51.2%of the genes and 100% of the conditions).
The one hundred biclusters found by MOIB [15] on the
human dataset cover 33.6% cells of dataset(43.7%of the
genes and 100% of the conditions), whereas an average
of 20.96% cells are covered in MOEB [7].

Comparative analysis
In this section, this paper compares the proposed algo-
rithm with MOIB algorithm on the yeast dataset and the
human dataset and the results are showed in Table 3.
From Table 3, the biclusters found by DMOIOB has a

slightly higher squared residue and a higher bicluster

Table 1 Information of biclusters found on yeast dataset

Bicluster Genes Conditions Residue Row Variance

1 1 16 238.54 789.25

22 91 17 210.58 685.36

24 563 12 201.55 875.65

29 1233 9 275.69 896.35

78 145 13 225.11 745.65

98 874 11 207.98 874.01

Table 1 shows the number of genes and conditions, the mean squared
residue and the row variance of six biclusters out of the one hundred
biclusters found on the yeast dataset.
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size than those by MOIB on both yeast dataset and
human dataset. It is clear from the above results that
the proposed MOIB algorithm performs best in main-
taining the diversity of solutions.
For computation cost we find that the computation

time of MOIOB is 88.02s on yeast dataset and 258.48s
on human dataset, is superior to that of MOIB.
In total it is clear from the above results that the pro-

posed DMOIOB algorithm performs best in maintaining
diversity, achieving convergence.

Biological analysis of biclusters
We determine the biological relevance of the biclusters
found by DMOIOB on the yeast dataset in terms of the
statistically significant GO annotation database. The
gene ontology (GO) project (http://www.geneontology.
org) provides three structured, controlled vocabularies
that describe gene products in terms of their associated
biological processes, cellular components and molecular
functions in a species-independent manner. To better
understand the mining results, we feed genes in each
bicluster to Onto-Express(http://vortex.cs.wayne.edu/
Projects.html) and obtain a hierarchy of functional
annotations in terms of Gene Ontology for each
bicluster.
The degree of enrichment is measured by p-values

which use a cumulative hyper-geometric distribution to
compute the probability of observing the number of
genes from a particular GO category (function, process
and component)within each bicluster. The p-values are
calculated for each functional category in each bicluster
to denote how well those genes match with the corre-
sponding GO category given in Table 4.

Conclusions
This paper has provided a novel dynamic multi-objective
immune optimization biclustering framework for mining
biclusters from microarray datasets. We focus on finding
maximum biclusters with lower mean squared residue
and higher row variance. Those three objectives are
incorporated into the framework with three fitness func-
tions. We apply immune clonal selection principle and
Sigma method to find better local guide in objective
space and combine ε-dominance and crowding distance
strategy to improve the diversity of the solutions and to

Table 2 Biclusters found on human dataset

Bicluster Genes Conditions Residue Row Variance

1 597 49 855.69 3584.54

3 611 45 911.58 2875.12

8 1024 31 887.54 3012.25

10 478 39 812.88 6854.54

22 874 29 874.96 8740.24

31 698 37 800.74 4870.91

Table 2 shows the number of genes and conditions, the mean squared
residue and the row variance of six biclusters out of the one hundred
biclusters found on the human dataset.

Table 3 Comparative study of three algorithms

Algorithm Dataset Avg. MSR Avg. size Avg. time

DMOIOB Yeast 201.86 2841.08 88.02

Human 832.79 7106.51 258.48

MOIB Yeast 202.32 2638.74 108.12

Human 839.74 6918.29 280.76

Table 3 compares the performance of two algorithms. It gives the average of
mean squared residue and the average size of the found biclusters, and gives
computation cost of two algorithms.

Figure 1 Small biclusters of size 26×15 on the yeast dataset
Figure 1 shows the expression value of 26 genes under 15
conditions from the small biclusters(bicluster 22).

Table 4 Significant GO terms of genes in three biclusters

Cluster
No.

No. of
genes

Process Function Component

1 99 Response to DNA damage stimulus
(n=21,p=0.0016)

RNA polymerase II transcription factor
activity (n=11,p=0.0064)

Intracellular membrane-bound
organelle (n=16,p=0.0025)

22 91 Physiological process (n=23,p=0.0014) MAP kinase activity (n=6,p=0.0023) Cytosolic ribosome (n=17,p=0.0042)

78 145 Protein biosynthesis (n=52,p=0.0024) Protein transporter activity (n=9,p=0.0021) Cytosolic ribosome (n=12,p=0.0032)

Table 4 lists the significant shared GO terms which are used to describe genes in each bicluster for the process, function and component ontology.
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quicken convergence of the algorithm; a population add-
ing method that dynamically grows new individuals with
enhanced exploration and exploitation capabilities; a
population decreasing strategy to balance and control
the dynamic population size. The results on the yeast
microarray dataset and the human B-cells expression
dataset verify the good quality of the found biclusters,
and comparative analysis show that the proposed MOIB
is superior to MOIB algorithm in terms of the diversity
of solutions and the convergence of the algorithm.
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