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Abstract

Background: The phylogenetic profile is widely used to characterize functional linkage and conservation between
proteins without amino acid sequence similarity. To survey the conservative regulatory properties of rate-limiting
enzymes (RLEs) in metabolic inhibitory network across different species, we define the enzyme inhibiting pair as:
where the first enzyme in a pair is the inhibitor provider and the second is the target of the inhibitor. Phylogenetic
profiles of enzymes in the inhibiting pairs are further generated to measure the functional linkage of these
enzymes during evolutionary history.

Results: We find that the RLEs generate, on average, over half of all in vivo inhibitors in each surveyed model
organism. And these inhibitors inhibit on average over 85% targets in metabolic inhibitory network and cover the
majority of targets of cross-pathway inhibiting relations. Furthermore, we demonstrate that the phylogenetic
profiles of the enzymes in inhibiting pairs in which at least one enzyme is rate-limiting often show higher
similarities than those in common inhibiting enzyme pairs. In addition, RLEs, compared to common metabolic
enzymes, often tend to produce ADP instead of AMP in conservative inhibitory networks.

Conclusions: Combined with the conservative roles of RLEs in their efficiency in sensing metabolic signals and
transmitting regulatory signals to the rest of the metabolic system, the RLEs may be important molecules in
balancing energy homeostasis via maintaining the ratio of ATP to ADP in living cells. Furthermore, our results
indicate that similarities of phylogenetic profiles of enzymes in the inhibiting enzyme pairs are not only correlated
with enzyme topological importance, but also related with roles of the enzymes in metabolic inhibitory network.

Background
The phylogenetic profile of a given protein is a string
that encodes the presence or absence of all the homo-
logs of the protein in each organism [1]. The similarity
of phylogenetic profiles has been widely used to charac-
terize functional linkage between proteins having no
amino acid sequence similarity with each other [2-5].
The phylogenetic profiles of proteins with contextual

information such as interactions, pathways, and cellular
localizations have been widely studied. It is often sup-
posed that proteins which tend to co-occur across spe-
cies are more likely to co-evolve. The similarity of
phylogenetic profiles is also correlated better with topo-
logical properties of metabolic enzymes such as degree
and betweenness centrality, but independent of enzyme
network importance [6].
The RLEs are a class of important enzymes playing roles

of flux control in cell [7]. According to modern flux con-
trol theory, RLEs often catalyze the slowest step in a meta-
bolic pathway with a high flux control coefficient. Thus
they are the ideal molecules to link metabolic pathways to
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regulatory networks. Based on their importance on the
flux control and regulation of metabolic pathway, we built
the first evidence-based database by systematic collecting
RLEs in Human, Mouse, Rat, budding Yeast and E. coli[8].
Our recent study reveals that RLEs in human liver often
locate in the branch points and produce nearly half of in
vivo metabolic enzyme inhibitors [9]. However, the extent
to which RLEs interact with enzyme inhibitors in liver or
other tissue is less important in investigating the phyloge-
netic conservation of the regulatory mechanisms. The cru-
cial question is whether these conservative RLEs involving
inhibitory networks also maintain a higher functional link-
age as expected.
In this study, enzyme inhibiting pairs and inhibitory

network were constructed using enzyme inhibitor data
from BRENDA database [10,11]. We found that the RLEs
provided over half of all in vivo inhibitors in five surveyed
model organisms. These inhibitors inhibited over 85%
targets in vivo in the metabolic inhibitory network. Addi-
tionally, we found that the phylogenetic profiles of RLEs
in inhibiting pairs often showed higher similarities than
those of common enzymes, which implied that the inhi-
bitory relationship between two enzymes in an inhibiting
pair was conservative across different species.

Results
In total, 230 RLEs were collected from RLEdb [8]. Based
on these 230 RLEs, we extracted species specific RLE
datasets using the enzyme organism distribution infor-
mation from KEGG LIGAND database [12,13]. In the
five most common model organisms including Human,
Mouse, Rat, budding Yeast and E. coli, there are 204,
201, 175, 139, 121 RLEs respectively (Additional file 1).
According to the six pathway categories from KEGG (i.
e., Carbohydrate, Lipid, Nucleotide, Amino acid, Cofac-
tor and vitamin and Others molecular metabolism) as in
[9], we investigated the functional distribution of all
RLEs in each organism.

RLEs produce over half enzymes inhibitors
Our survey of in vivo inhibitors in Human, Mouse, Rat,
budding Yeast and E. coli revealed that RLEs produced
64%, 71%, 66%, 68% and 54% in vivo enzyme inhibitors
respectively. As shown in Figure 1, for instance, there
are 247 in vivo inhibitors in Human, among which 158
are produced by 186 RLEs. We identified that the in
vivo inhibitors were significantly enriched in the pro-
ducts of RLEs as compared in all the metabolic com-
pounds in five organisms (hypergeometric tests, all p
value <0.001). These results led us to ask following
questions: Why such a high proportion of in vivo inhibi-
tors were products of RLEs and how could metabolic
network be influenced by such a high proportion of
rate-limiting producing inhibitors. To address these

questions, we compared the inhibiting efficiency of inhi-
bitors produced by RLEs with that of all the inhibitors
from each metabolic pathway.

Eighty-Twenty rule style in enzyme inhibitory network
(RLEs could inhibit most targets in vivo via natural
products)
Based on the number of how many enzymes were inhib-
ited by products of enzymes, the efficiency of RLEs was
calculated in metabolic inhibitory networks. Combining
the metabolic enzyme inhibitor information in BRENDA
database [10,11] and enzyme product information in
KEGG LIGAND database [12,13], we constructed the
inhibiting enzyme pairs dataset (see Methods). As illu-
strated in Figure 2a, the products of RLEs cover most of
the targets ranging from 70.6% to 95.0% in each path-
way category. Totally, the products of RLEs have effects
on 85.15% of all targets from all pathway categories in
five model organisms. However, only a small number of
RLEs participate in inhibitory network as inhibitor pro-
vider ranging from18.9% to 47.2%. On average, only
35.8% inhibitor providers are RLEs. These two aspects,
taken together, suggest that RLEs follow an Eighty-
Twenty rule style in metabolic inhibitory network. More
interestingly, the inhibiting regulation systems consisting
of these in vivo inhibitors generated by RLEs might also
be initiated in a rate-limiting mode.

The efficiency of RLEs in sensing metabolic signals as
targets of enzyme inhibitors
To describe how effectively enzyme inhibitor signals on
the RLEs were spread to the metabolic system, all the

Figure 1 Distribution of inhibitors in Human, Mouse, Rat,
budding Yeast and E. coli. Each bar in figure shows the inhibitor
count in an organism. The black part represents the amount of
inhibitors produced by RLEs. The red one represents the amount of
other common in vivo inhibitors not produced by RLEs.
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Figure 2 Distribution of RLEs in inhibitory network. (a) Dot plots of enzyme counts for each pathway from four following aspects for Human,
Mouse, Rat, budding Yeast and E. coli. The statistic counts for certain pathways of an organism are grouped in each cell. In each cell, MEs (Provider)
mean count of all metabolic enzymes which produce inhibitors, RLEs (Provider) mean count of RLEs which produce inhibitors, Targets by MEs
(Provider) mean count of inhibited enzymes by all the metabolic enzymes, Targets by RLEs (Provider) mean count of inhibited enzymes by RLEs.
The above percentage in each cell is the ratio between the first line and the second line meaning the fraction of the RLEs (Provider) to all
metabolic enzymes (Provider); the bottom percentage is the ratio between the third line and the fourth line meaning the fraction of Targets by the
RLEs (Provider) to those by all metabolic enzymes (Provider). (b) Colour grid for fraction of the inhibited RLEs to all inhibited metabolic enzymes for
each pathway in five model species. The inhibited targets are enriched in RLEs are red-marked (hypergeometric tests, p value <0.05). (c) Colour grid
for fraction of the inhibited RLEs by RLEs to inhibited RLEs by all the metabolic enzymes in each pathway from five model species. Hypergeometric
tests reveal that all the inhibited RLEs are preferred inhibited by RLEs except one blue-marked (p value < 0.05).
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fractions of RLEs as inhibitor targets to all targets from
each pathway category in five model organisms were
summarized in Figure 2b. The average fraction in
human is over 0.45, which suggests that RLEs tend to
be inhibited by enzyme inhibitors. As marked in Figure
2b, the inhibited targets are enriched in RLEs in five
sixths pathway categories in four eukaryotic model
organisms (hypergeometric tests, p value <0.05).
Besides both important roles as inhibitor providers

and targets, further analysis (Figure 2c) shows that most
targets of RLEs are inhibited by other RLEs for each
pathway category in five model organisms. It implies
that the overall targets of RLEs tend to be inhibited by
themselves. All fractions of the inhibited RLEs by other
RLEs to all inhibited RLEs by all metabolic enzymes in
each pathway category in five model organisms were
calculated. The average fraction in human is more than
0.86, which means that eighty-six percent of RLEs can
be inhibited by other RLEs. Further hypergeometric
tests reveal that all the inhibited RLEs are preferably
inhibited by RLEs except one blue-marked as shown in
Figure 2c (all p value < 0.05).

The products of RLEs have effects on the majority of
targets of cross pathway regulatory system
Cross pathway regulations are crucial to maintaining
homeostasis [14,15]. Inhibiting the targets in cross path-
ways should be one of the quickest cross pathway regu-
lation of enzyme inhibitors. High efficiencies of RLEs as
inhibitor providers cross pathway inhibitory network
were also found in five model organisms. Here the
44607 cross-pathway inhibiting pairs from five model
organisms were isolated if the pathway annotations of
inhibitor provider and target in a pair were different.
Only eight efficiency fractions are less than 60%, and all
the left 172 fractions are higher than 60% (Figure 3).
The average fraction in total is 83.2%, which reveals that
the RLEs, as inhibitor providers, have effect on over 83%
of the cross pathway inhibitory relationship. For efficient
metabolic system, it is important for the cellular meta-
bolic network to balance flux precisely between different
pathways. The high efficiency of RLEs in cross pathway
inhibitory relation networks highlights their roles in
maintaining metabolic homeostasis between different
pathways via inhibitory regulation.

The phylogenetic profiles of RLEs in inhibiting pairs often
show higher similarities than those in common inhibiting
enzyme pairs
The patterns of enzyme phylogenetic profiles among
species are a good indicator of their metabolic correla-
tion during evolution [6]. To survey the functional links
between enzymes in inhibiting pairs with inhibitory rela-
tion, phylogenetic profiles were first constructed for

each enzyme involved in inhibitory networks. Then Jac-
card coefficients were used to depict similarity score
between a pair of enzymes with inhibitory relation (Fig-
ure 4). The inhibiting pairs whose inhibitor providers
are RLEs have higher similarity scores than those of all
inhibitory pairs (p value <0.05, unequal t test) except in
Rat. Furthermore, the enzymes in inhibiting pairs whose
two members are RLEs have higher functional links
than those in all the inhibiting pairs where only inhibi-
tor providers are RLEs (p value <0.05, unequal t test)
except in Mouse. These results suggest that the inhibi-
tory relations of enzymes in inhibiting pairs are not ran-
dom, they have some functional correlation.
These global inhibitory relations conserved across sev-

eral model organisms reflect potential regulatory mod-
ules during evolution of these organisms. Based on the
number of their occurrence in Human, Mouse, Rat,
budding Yeast and E. coli, 1070 conservative inhibiting
enzyme pairs across at least three organisms were iden-
tified, of which 410 pairs contain RLEs as inhibitor pro-
vider. Our further analysis identified 317 and 234
conservative inhibiting pairs initiated by ADP and AMP
respectively, among which 171 ADP and 32 AMP were
products of RLEs (Additional file 2). Thus, comparing
with the conservative inhibiting pairs initiated by ADP
and AMP, RLEs are more likely to produce ADP instead
of AMP in inhibitory network (hypergeometric tests, p
value <0.05).

Discussion
We conducted a systematic survey of regulatory roles of
RLEs in metabolic inhibitory network in Human,
Mouse, Rat, budding Yeast and E. coli. Our analysis
emphasised their regulatory capacity and their possibility
of being regulated in metabolic inhibitory regulation. As
over half of in vivo inhibitors are produced by RLEs in
five surveyed model organisms, RLEs as a whole can
initiate inhibiting regulation and spread flux signals to
other enzymes quickly. As inhibitor provider, RLEs
cover over 85% in vivo inhibited targets in five model
organisms. Viewed from inhibited targets, RLEs also
possess their high possibility of being reached by inhibi-
tors. Forty-five percent of inhibited targets are RLEs,
which means an enzyme inhibitor has nearly a fifty per-
cent chance to inhibit RLEs. Our recent study also
reveals that the RLEs often locate near to branch points
[9]. Therefore, the inhibitory signals received by RLEs
are easy to be amplified to different branches of the rest
metabolic network in rate-limiting mode.
The cellular metabolic network can be thought as a

molecular economic system of supply-and-demand rela-
tions between all the participating molecules [16]. One of
the most important cellular functions is to carry out the
overall metabolic activities to adapt dynamically different
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environmental or in vivo metabolic conditions [17,18]. As
enzyme inhibitor is a short-term regulatory style, the
cross pathway inhibiting capacity is useful as a feedback
to balance metabolic signals between different pathway
categories quickly. Our cross-pathway inhibiting analyses
confirm the regulatory capacity of RLEs as precise inhibi-
tor providers to maintain the balance of metabolic flux
from different pathways, which may form an ideal
mechanism to support a quick self-regulatory system.

To investigate the pathway topological evolution, ear-
lier studies have been conducted on relations between
phylogenetic profiles of metabolic enzymes and their
topological importance including degree, betweenness
centrality and closeness centrality [6]. Our present study
on phylogenetic profiles of enzymes in inhibiting pairs
highlights the evolution of regulatory mechanisms in
pathway. Our results suggest that the inhibiting pairs
whose inhibitor providers are RLEs have higher

Figure 3 Inhibitory relation between six pathway categories for Human, Mouse, Rat, Yeast, E. coli. The regulatory relations for certain
pathways of an organism are grouped in each cell, the blue dot in the first line means the ratio of inhibited enzymes by RLEs from Others
metabolic pathway category to the inhibited enzymes by all metabolic enzyme in the same pathway; the dot in the second line means the ratio
of inhibited enzymes by RLEs from Nucleotide metabolic pathway category to the inhibited enzymes by all metabolic enzyme in the same
pathway; the dot in the third line means the ratio of inhibited enzymes by RLEs from Cofactors and Vitamins metabolic pathway category to the
inhibited enzymes by all metabolic enzyme in the same pathway; the dot in the fourth line means the ratio of inhibited enzymes by RLEs from
Lipid metabolic pathway category to the inhibited enzymes by all metabolic enzymes in the same pathway; the dot in the fifth line means the
ratio of inhibited enzymes by RLEs from Carbohydrate metabolic pathway category to the inhibited enzymes by all metabolic enzyme in the
same pathway; the dot in the sixth line means the ratio of inhibited enzymes by RLEs from Amino acid metabolic pathway category to the
inhibited enzymes by all metabolic enzyme in the same pathway.
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similarity scores of phylogenetic profile than those of all
common inhibiting pairs except in Rat. Furthermore the
inhibiting pairs whose two members are RLEs have
higher similarity scores of phylogenetic profile than all
the inhibiting pairs where only inhibitor providers are
RLEs except in Mouse. Despite the fact that inhibitor
data in some organisms are not yet comprehensive, the
higher similarities of phylogenetic profiles of RLEs imply
their high functional linkages. Especially for conservative
inhibiting pairs constituting two RLEs, their highest
functional correlation implies that the RLEs possess
modularity in metabolic inhibitory regulation network.
In summary, our results indicate that the similarities of
phylogenetic profiles of metabolic enzymes are not only
correlated with topological importance, but also related
with their roles in metabolic inhibitory network.
Our comparison between the conservative inhibiting

pairs initiated by ADP and AMP indicates that RLEs are
more likely to produce ADP instead of AMP in inhibi-
tory network. Previous studies on regulatory role of
small compounds in metabolic network revealed that

chemical structures of compounds were related with
their suitability for use in regulation [19]. And their
results show that ATP, ADP and AMP were the top
three regulator compounds. Our results confirmed the
important regulatory role of ADP in RLE involved inhi-
bitory network. As molecular unit of currency, ATP is
the most important energy source for metabolic reac-
tions. And ADP is the most common and quickest pro-
duct of hydrolysis of ATP in the cell with release of a
large amount of free energy. The ratio of ATP to ADP
in living cells is the most important metabolic signal in
maintaining energy homeostasis. As the RLEs are often
related with conversion between ATP to ADP, they are
ideal molecules to sense and maintain energy
homeostasis.

Conclusions
In conclusion, our systematic study reveals that over
60% in vivo enzyme inhibitors are products of RLEs in
Human, Mouse, Rat and Yeast. And the conservative
roles of RLEs in efficiency in sensing metabolic signals

Figure 4 The average phylogenetic Jaccard coefficients for the inhibiting enzyme pairs in Human, Mouse, Rat, budding Yeast and E.
coli. The higher score indicates higher functional correlation in an enzyme pair. The product of the first enzyme in the pair is the inhibitor for
the second enzyme in the pair. For each organism, the yellow bar represents the average phylogenetic Jaccard coefficients from the common
enzyme pairs whose inhibiting enzyme and inhibited enzyme are both from all the metabolic enzyme; the red one represents the average
phylogenetic Jaccard coefficients from the RLE pairs whose inhibiting enzyme is from all the RLE; the blue one represents the average
phylogenetic Jaccard coefficients from the pairs whose inhibiting enzyme and inhibited enzyme are both RLEs.
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and transmitting regulatory signals to the rest of the
metabolic network reveal that they are ideal regulatory
molecules in balancing energy homeostasis via maintain-
ing the ratio of ATP to ADP in living cells. Further-
more, our results indicate that the similarities of
phylogenetic profiles of metabolic enzymes are not only
correlated with their topological importance, but also
related with their roles in enzyme inhibitory network.

Methods
Collection of RLEs
230 potential RLEs from Human, Mouse, Rat, budding
Yeast (Saccharomyces cerevisiae) and E. coli were com-
piled from RLE database (RLEdb) [8]. Although some
RLEs have species specific metabolic roles, most of RLEs
are overlapped in the three mammalian organisms. To
do comparative study for the global RLE roles in differ-
ent organisms, we assumed that all the RLEs could play
similar rate-limiting roles in the same pathway in differ-
ent organisms. If there was a gene to encode a RLE in
an organism, the RLE would be assigned to the organ-
ism. KEGG pathway annotations were added to each
RLE according to KEGG-LIGAND database as described
in [9].

Collection of in vivo enzyme inhibitors from BRENDA
database and construction of the inhibiting enzyme pairs
In vivo enzyme inhibitor data were extracted from the
BRENDA database 7.1 [10,11]. And each inhibitor was
assigned a KEGG compound identifier. Then the inhibit-
ing enzyme pairs were constructed as described in [9].
We did not transfer the inhibitor annotation between dif-
ferent organisms as the previous study [12,13], so there
were different amounts of inhibitors between different
organisms. For example, the inhibitors in Mouse were far
fewer than those in Human and Rat (Figure 1).

Construction of enzyme phylogenetic profile
To analyze the functional linkage of two enzymes in an
inhibiting pair, we assigned a profile to each enzyme
involved in inhibiting network. To construct a reliable
phylogenetic profile, 23 prokaryotes (Their genomes
were completed before the end of 2000) and 59 eukar-
yotes (Their annotation data were from Refseq database
in KEGG database) were selected. Data from these 82
well studied genomes were included to minimize the
bias of in-complete enzyme annotation. Then for each
given enzyme, a profile including a string with 82 entries
were calculated. If there were one or more enzyme
genes in a certain organism, the assigned value for the
organism of the enzyme would be one, otherwise it
would be assigned zero; finally the functional linkages of
enzymes in inhibiting pairs were calculated by Jaccard
coefficient.

Evaluation of the similarity between two profiles using
Jaccard coefficient
To assess the similarity between two profiles A and B,
we used Jaccard coefficient to score the overlapping
values between A and B. Each value of A and B could
either be 0 or 1.
The Jaccard similarity coefficient J was calculated as:
J = M11 ÷ (M01 + M10 + M11 )
Let J be Jaccard coefficient. The total number of each

combination of values for both A and B were specified
as follows:
M11 means the count of values when A and B both

were 1.
M01 means the count of values when the value of A

was 0 and the value of B was 1.
M10 means the count of values when the value of A

was 1 and the value of B was 0.

Statistical significant tests
Throughout the paper, we calculated p values based on
hypergeometric test and unequal t test in R package
2.6.2 [20].

Additional material

Additional file 1: RLEs from literature The curated 230 RLEs are listed
in Additional file 1. For each so-called RLE, we record the original
PubMed abstract for reference.

Additional file 2: The conservative inhibitory relations initiated by
ADP and AMP produced by RLEs in Human, Mouse, Rat, budding
Yeast and E. coli The conservative inhibitory relations initiated by ADP (171
pairs) and AMP (32 pairs), products of RLEs, are listed in Additional file 2.
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