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Abstract

Background: The unforgiving pace of growth of available biological data has increased the demand for efficient
and scalable paradigms, models and methodologies for automatic annotation. In this paper, we present a novel
structure-based protein function prediction and structural classification method: Cutoff Scanning Matrix (CSM). CSM
generates feature vectors that represent distance patterns between protein residues. These feature vectors are then
used as evidence for classification. Singular value decomposition is used as a preprocessing step to reduce
dimensionality and noise. The aspect of protein function considered in the present work is enzyme activity. A
series of experiments was performed on datasets based on Enzyme Commission (EC) numbers and mechanistically
different enzyme superfamilies as well as other datasets derived from SCOP release 1.75.

Results: CSM was able to achieve a precision of up to 99% after SVD preprocessing for a database derived from
manually curated protein superfamilies and up to 95% for a dataset of the 950 most-populated EC numbers.
Moreover, we conducted experiments to verify our ability to assign SCOP class, superfamily, family and fold to
protein domains. An experiment using the whole set of domains found in last SCOP version yielded high levels of
precision and recall (up to 95%). Finally, we compared our structural classification results with those in the literature
to place this work into context. Our method was capable of significantly improving the recall of a previous study
while preserving a compatible precision level.

Conclusions: We showed that the patterns derived from CSMs could effectively be used to predict protein function
and thus help with automatic function annotation. We also demonstrated that our method is effective in structural
classification tasks. These facts reinforce the idea that the pattern of inter-residue distances is an important component
of family structural signatures. Furthermore, singular value decomposition provided a consistent increase in precision
and recall, which makes it an important preprocessing step when dealing with noisy data.

Background 12,000,000 protein sequences. In the last month, more

With the increasing number of genome and metagen-
ome projects, sequence databases have grown exponen-
tially. On the one hand, the August 2010 release of the
UniprotKB/TrEMBL database [1] contains about

* Correspondence: dpires@dcc.ufmg.br

'Department of Biochemistry and Immunology, Universidade Federal de
Minas Gerais, Belo Horizonte, 31270-901, Brazil

Full list of author information is available at the end of the article

( ) BiolVled Central

than 300,000 new sequences have been added to that
repository, and about 6,000,000 entry annotations have
been revised. On the other hand, the Pfam database of
protein families [2] represents about 12,000 families,
and about 20% of these are domains of unknown func-
tion (DUFs), revealing that state-of-the-art sequence
similarity-based and even profile-based annotation
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methods have had limited success in assigning functions
to novel proteins.

Protein structural classification databases, such as
SCOP [3], also present difficulties in keeping up with
the increasing number of protein structures solved and
deposited in public repositories. Approximately 53% of
the Protein Data Bank (PDB) [4] entries are classified by
the current release of SCOP (1.75) as of April 2011, and
after removing redundancy (sequence similarity at 90%),
the coverage drops to about 41%. As international struc-
tural genomics initiatives have produced a huge number
of structures of unknown function, attempting to auto-
matically assign functions to these proteins is becoming
even more necessary, and significant efforts have been
devoted to this task [5-8].

In this context, novel paradigms, models and meth-
odologies for automatic annotation must be investigated.
Because protein structure and function are more con-
served than protein sequence [9], the identification of
similarities between novel sequences and known struc-
tures would greatly improve the characterization of
these sequences. Fold recognition refers to identifying
main structural features by the connections and posi-
tions of secondary structure elements. Conversely,
according to Murzin et al. [3], structural classification is
conducted at hierarchical levels (class, fold, superfamily
and family) that embody evolutionary and structural
relationships. In this work, we focused on structural
classification, which encompasses the problem of fold
recognition. Both fold recognition and structural classifi-
cation are important steps toward function prediction.

Over the years, protein fold recognition has been
addressed through different approaches. The authors of
[10] extracted a series of features from protein
sequences and used support vector machines and neural
network learning methods as the base classifiers in a
dataset composed of SCOP folds. Later, ensemble classi-
fiers [11] were applied to these same feature vectors,
improving the success rate. The use of a combination of
sequence and structure information brought an
improvement to fold recognition, as mentioned in the
information retrieval approach introduced in [12].

Likewise, several efforts toward structure-based pro-
tein function prediction have been made. We can quote,
for instance, the search for structural motifs [13-15] and
functional residues (such as DNA [16] and metal [17]
binding sites), the use of 3D templates [5] and the com-
parison of protein folds by structure alignments [18,19].
There have also been attempts to infer function from
structure without the use of alignment algorithms, such
as in enzyme classification [20,21]. Similarly, in the pre-
sent work, we do not use alignment techniques or any
sequence information in our method, relying only on
structural grounds. A primary problem faced when
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dealing with protein function, as pointed out in [22], s
defining the scope and function. Protein function pre-
diction may be understood from different perspectives.
It could mean the prediction of the cellular process in
which a protein is involved, its enzymatic activity or
even its physiological role. For instance, a protein’s
enzymatic activity could be described by EC numbers,
while its physiological role might be related to its sub-
cellular localization. In this work, the aspect of protein
function considered is enzyme activity. However, the
study might be extended, without loss of generality, to
other functional features, like the terms of the Gene
Ontology (GO) [23] annotation.

Even though function cannot be directly implied from
the specific fold adopted by a certain protein, structural
data can be used to detect proteins with similar func-
tions whose sequences have diverged during evolution
[24]. In this context, one possible strategy is the defini-
tion of structural signatures, which are sets of features
that are able to unequivocally identify a protein fold and
the nature of interactions it can establish with other
proteins and ligands. These feature sets are concise
representations of protein structures, and we believe
that their discovery and comprehension will be an
important milestone in the protein function prediction
field, being a step beyond sequence homology-based
methods.

In this paper, we investigate a special type of feature
that might be part of structural signatures: the patterns
in inter-residue distances (or contacts). Proteins with
different folds and functions present significant differ-
ences in the distribution of distances among residues as
a consequence of the underlying interaction and packing
of the atomic network, which is fundamental for defin-
ing protein folding [25]. In [26], we have used these dis-
tribution distances to compare and correlate different
methodologies of protein inter-residue contacts. We
found, surprisingly, that the traditional cutoff-dependent
approach was a simpler, more complete and more reli-
able technique for contact definition than other cutoff-
independent methods, such as Delaunay tessellation
[27], especially when the target is the discrimination of
first-order contacts. In this work, we propose using
inter-residue distance patterns for protein classification.

The structural data we used are the cumulative con-
tact distributions based on the Euclidean distances
among alpha carbons, the Cutoff Scanning Matrix
(CSM). The motivation for the use of this kind of infor-
mation lies in the fact that proteins with different folds
and functions have significantly different distributions of
distances between their residues, and protein similarity
is reflected in these distance distributions, information
that is captured in the CSM. After generating this struc-
tural data, we apply singular value decomposition (SVD)
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to reduce dimensionality and noise. The processed
matrix is finally submitted to different, previously
described classification algorithms. Therefore, the main
innovation of this work relies more on the powerful
combination of the new structural feature of inter-resi-
due contacts used as a discriminator and principal com-
ponents selection by SVD rather than in the creation of
a new classification method per se. Indeed, we showed
our methodology to be, in general, independent of the
classifiers utilized, giving even results for different classi-
fication heuristics.

Having in mind these considerations, we showed that
the patterns derived from CSMs might effectively be
used in automatic protein function prediction and struc-
tural classification. At first glance, in the case of enzyme
function prediction, the proposed method achieved
(over the superfamilies) an average precision of 98.2%
(sd = 1.6) and average recall of 97.9% (sd = 2.0), using a
gold-standard dataset of enzymes [28]. Using a much
larger set of enzymes with their respective EC numbers
(the 950 most-populated EC numbers in terms of avail-
able structures), CSM was able to achieve up to 95.1%
precision and recall results. For the recall results, con-
sidering the levels of hierarchical structure of SCOP [3],
we were able to accomplish an average precision of
93.5% (sd = 1.4) and average recall of 93.6% (sd = 1.4).
In comparison to the state-of-the-art methods used in
this context, such as that given by Jain and Hirst [29],
using very similar database input (SCOP release 1.75),
our methodology presented more robust and homoge-
neous results, with an average precision a bit below that
of those authors: 90.7% versus 93.6%, but with less dis-
persion (sd of 3.0 versus 6.4). We had remarkably better
recall results: an average of 90.7% versus 77.0%, with
significantly lower dispersion (sd of 2.9 versus 18.4).
Further details are discussed in the next section.

Results and discussion

To test the ability of our method to successfully predict
functions and recognize folds, we performed two sets of
experiments with datasets designed for these different
tasks.

For function prediction, as mentioned in the Methods
section, we built one database based on manually
curated protein superfamilies and another based on EC
numbers to test if the present structure-based method
could help in protein function annotation.

For structural classification, we performed experiments
to verify our ability to assign SCOP class, superfamily,
family and fold to protein domains. Furthermore, to
place this work into the context of the literature, we also
tested a superset of the dataset used by Jain and Hirst in
[29]. As far as we know, their work presents the highest
precision in protein fold recognition published thus far.
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Finally, we relate some experiments that aimed to
evaluate an SVD-based noise reduction strategy.

Function prediction

In the function prediction experiments, our goal was to
assess how well three different classification algorithms
predict protein function according to protein EC num-
bers and a mechanistically diverse gold-standard data-
base of functional family classes [28]. We used 10-fold
cross validation for all the experiments.

For the dataset of the top 950 most-populated EC
numbers, CSM was able to achieve 95.1% precision and
recall after SVD processing using the KNN (K-Nearest
Neighbors) algorithm. The four levels of the EC number
were used together as the classes to train and test the
classifier. Additional file 1, Figure S1 shows the variation
in the performance metrics for each EC number class
considered. Even though the number of proteins
assigned to each EC number is very unbalanced, the
majority of classes were classified properly, with high
quality according to the metrics extracted.

Considering the gold-standard dataset, without SVD
and using KNN, our method achieved an average preci-
sion of 94.2% (sd = 5.5) and a recall of 94.5% (sd = 5.5)
(Table 1). For naive Bayes, it achieved 82.3% (sd = 13.8)
precision and 79.2% (sd = 15.4) recall (Additional file 1,
Table S1), and for random forest, it achieved 92.0% (sd
= 6.9) precision and 91.6% (sd = 7.2) recall (Additional
file 1, Table S2). We also showed that by using SVD, we
may significantly improve these results, and in the worst
case, we had 94.6% precision and 93.1% recall for the
enolase superfamily using naive Bayes. The KNN and
random forest methods were able to detect isoprenoid
synthase type I with 100% precision and recall. Addi-
tionally, we performed experiments using all six superfa-
milies to train a single classifier. In this scenario, even

Table 1 Function prediction performance using KNN for
the gold-standard dataset

Superfamily Before SVD After SVD APrec. ARec.
Precision Recall Precision Recall

Amidohydrolase 0983 0983 1000 1000 +1.7% +1.7%

Crotonase 0955 0953 0979 0977 +24% +24%

Enolase 0876 0853 0971 0967 +495% +114%

Haloacid 0881 0925 0984 0981 +103% +56%

Dehalogenase

Isoprenoid 1000 1.000 1000 1.000 +00% +0.0%

Synthase Type |

Vicinal Oxygen 1.000 1.000 1000 1000 +0.0% +0.0%

Chelate

All 0901 0903 0991 0989 +9.0% +8.6%

Prediction performance for the gold-standard dataset using KNN. The
experiment was performed in an intra-superfamily fashion, and the classes for
prediction represent the enzyme’s families. The precision and recall metrics
are weighted averages. Ten-fold cross validation was employed.
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with a greater number of families in the training and
testing phases, we were still able to achieve up to 99.0%
precision with KNN and random forest after SVD
preprocessing.

Protein structural classification

To the best of our knowledge, no test of the structural
classification of very large databases, such as the entire
SCOP containing about 110,000 domains, has been pub-
lished. Due to SVD dimensionality reduction ability and
the possibility of representing protein instances by a few
significant attributes, we present a method that can effi-
ciently handle such volume of data.

We may recognize protein folds at a 92.2% precision
and 92.3% recall using KNN (Table 2). Even broad pro-
teins categories, such as the SCOP class level, can be
separated using CSM with very significant precision and
recall (95.4% for both). The proposed method was able
to classify proteins in the four levels of SCOP hierarchy
with very high precision and recall, showing that CSM
is a suitable method for fold recognition and also that
CSMs are a very promising component of protein struc-
tural signatures. Additionally, we verified the impact of
imposing a minimum number of entities per node of
the SCOP hierarchy on the precision of the prediction.
Additional file 1, Figure S2 shows an approximately lin-
ear correlation between these variables for the fold,
superfamily and family levels with and without the SVD
processing. This correlation was not analyzed for the
class level because all of the classes have more than 100
entities.

Performance comparison

In [29], the authors presented a random forest-based
method to predict the SCOP class, fold, superfamily and
family levels based on secondary structure element
descriptors that achieved precisions of up to 99.0%.
Using a similar dataset, we tried to compare our results
to theirs. As far as we are concerned, this was the state-
of-art method for automatic structural classification.
They used a subset of SCOP database as they aimed to
recognize protein folds. In our comparison of results, we

Table 2 Structural classification performance using KNN
for the Full-SCOP dataset

SCOP Level Before SVD After SVD APrec.  ARec.
Precision ~ Recall ~ Precision  Recall

Class 0927 0.926 0.954 0954  +27% +2.8%

Fold 0.868 0.869 0.922 0923 +54%  +54%

Superfamily 0.871 0.872 0.926 0927  +55%  +55%

Family 0.888 0.889 0938 0938 +50% +4.9%

Prediction performance for the full-SCOP dataset using KNN. The experiment
was performed for each classification level of SCOP. The precision and recall
metrics are weighted averages. A 10-fold cross validation was employed.
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were able to achieve similar precision levels but with
higher recall (overcoming in up to 50.0%) in most of the
cases. In only 3 of the 16 experiments, we obtained a
lower recall value with our method and our F1 scores
were also superior. The complete set of information
regarding this experiment is available in Table 3. Figure
1 shows the performance comparison for each experi-
ment in terms of precision and recall. CSM significantly
overcomes the recall of the aforementioned study while
preserving a compatible precision level. We stress that
our method is not limited to small proteins. These
results show that our method is not only comparable to
[29] but also presents a considerable gain in terms of
recall.

Noise reduction strategy

As we mentioned, SVD-based noise reduction was able
to improve the precision and recall levels. We obtained
a gain of up to 10.3% with the KNN classifier, 35.0%
with naive Bayes and 16.2% with random forest. Inter-
estingly, we verified that the different classifiers achieved
comparable results after the use of SVD for dimension-
ality reduction (all levels remained above 90%). Dimen-
sion reduction ability is important for scalability in this
scenario because many protein domains are experien-
cing exponential growth. There are about 110,000
domains, i.e., instances to classify, in the SCOP database.
Each of these instances can be represented by 151 attri-
butes (dimensions) in the case of the CSM with a cut-
off of up to 30A.

To find the point that maximizes the noise reduction,
we studied the singular value distribution obtained for
the gold-standard dataset. Figure 2 shows the elbow of
the curve of the contribution of each singular value to
represent the original information. Using about 9
dimensions we can represent the same information
(reducing the noise) and obtain very high precision in
classification with a considerably smaller dataset. As
shown in Figure 3, maximum precision can be achieved
with about 9 singular values for all experiments.

Conclusions

Function and fold prediction, while means of under-
standing the composition, operation, interaction and
evolution of proteins, are still great challenges in the
face of the explosive growth of protein data generation
and storage in public databases. To keep up with the
frenetic pace imposed by this increasing data availability,
novel, efficient methods for automatic and semi-super-
vised annotation are needed. As a mechanism to exploit
the close relationship between protein structure and
function, we developed a structure-based method for
function prediction and fold recognition based on pro-
tein inter-residue distance patterns. The motivation for
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Table 3 Comparison of prediction performance
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Dataset SCOP level CSM+SVD Jain et al. APrec. ARec.
Prec . Recall F1 Prec . Recall F1

3SSE Class 0.991 0.991 0.991 0.890 0.840 0.864 +10.1% +15.1%
Fold 0.956 0.957 0.956 0.860 0450 0.591 +9.6% +50.7%
Superfamily 0.956 0957 0.956 0.800 0.550 0.652 +15.6% +40.7%
Family 0935 0935 0.935 0.820 0.870 0.844 +11.5% +6.5%

4SSE Class 0.961 0.962 0.961 0.990 0.990 0.990 -2.9% -2.8%
Fold 0.939 0939 0938 0.960 0.830 0.890 -2.1% +10.9%
Superfamily 0.938 0.937 0.937 0.880 0.690 0.774 +5.8% +24.7%
Family 0935 0934 0933 0.980 0.920 0.949 -4.5% +1.4%

5SSE Class 0.985 0.985 0.985 0.980 1.000 0.990 +0.5% -1.5%
Fold 0.969 0.969 0.969 1.000 0.690 0.817 -3.1% +27.9%
Superfamily 0.970 0.969 0.969 0.980 0.650 0.782 -1.0% +31.9%
Family 0.967 0.965 0.965 0.980 0.920 0.949 -13% +4.5%

6SSE Class 0.966 0.965 0.965 0970 1.000 0.985 -04% -3.5%
Fold 0.943 0.943 0.942 0.950 0510 0.664 -0.7% +43.3%
Superfamily 0937 0939 0937 0.950 0570 0.713 -1.3% +36.9%
Family 0932 0932 0.930 0.980 0.840 0.905 -4.8% +9.2%

A comparison of prediction performance between the current study and the method introduced by [29]. The precision and recall metrics are weighted averages.

This result comprises a 10-fold cross validation in KNN.

this approach arose from the hypothesis that proteins
with different structures would show different inter-resi-
due distance patterns, and structural similarity would be
reflected in these distances.

One of the most remarkable advantages of the CSM-
based structural signature is its generality, as we suc-
cessfully instantiated it in different problem domains,
such as function and fold prediction. Also, as a require-
ment and demand for its application to databases that
are continuously growing, it is scalable for real-world
scenarios, such as whole-SCOP classification tasks, as
shown in previous sections, and it shows an efficacy
comparable or superior to state-of-the-art protein

folding and function predictors. We would like to stress
that our method is probably the first to present a full-
SCOP automatic classification in acceptable time (a few
hours in a quad-core machine).

The interpretation and understanding of the intrinsic
distance patterns generated by CSM demand further
investigation. As part of future studies, we intend to
explore the generality of CSMs in other aspects of protein
function, such as subcellular localization prediction and
prediction of GO terms, as well as under different struc-
tural classification databases, such as CATH [30]. We also
plan to contrast SVD with feature selection as methods for
discriminant information discovery in CSMs.
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Furthermore, the significant gain in prediction power
provided by SVD processing might imply that there is
room to improve in terms of the data input, indicating
that other cutoff ranges and granularities should also be
tested, which is a study already in progress in our group.

Methods

CSM-based approach

Figure 4 gives a schematic view of the CSM-based
approach for protein function prediction and fold recog-
nition employed in this work, which can be divided into
data preprocessing, CSM generation, SVD-based dimen-
sionality reduction and classification steps.

After the data acquisition and filtering steps for a cer-
tain dataset (designed either for function prediction or
fold recognition purposes), the CSMs are generated (the
details of the procedure are explained later in this sec-
tion). The CSM defines a feature vector that is then pro-
cessed with SVD. To define a threshold value for
dimensionality reduction, the singular values distribution
is analyzed. The elbow of this distribution is used as a
threshold for data approximation and recomposition

(the explanation of the SVD procedure is detailed in the
next subsections) and indicates that the contribution of
the other singular values to describing the matrix is
insignificant, and thus they might be seen as noise.

These singular values are then discarded. Finally, the
processed CSM is submitted for classification tasks
under different algorithms. Metrics such as precision
and recall are calculated to assess the prediction power
of the classifiers.

Cutoff scanning matrices

In a previous work [26], we conductedd a comparative
analysis between two classical methodologies to prospect
residue contacts in proteins, one based on geometric
aspects, and the other based on a distance threshold or
cutoff, by varying (scanning) this distance to find a
robust and reliable way to define these contacts. In the
present work, we used the cutoff scanning approach for
classification purposes, which is the basis of the CSMs.
The motivation for the use of this kind of information
relies on the fact that proteins with different folds and
functions present significant differences in the
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distribution of distances between their residues. On the
other hand, one can expect that proteins with similar
structures would also have similar distance distributions
between their residues, information that is captured in a
CSM.

The CSMs were generated as follows: for each protein
of the datasets, we generated a feature vector. First, we
calculated the Euclidean distance between all pairs of C,,
and defined a range of distances (cutoffs) to be consid-
ered and a distance step. We scanned through these dis-
tances, computing the frequency of pairs of residues,
each represented by its C,, that are close according to

this distance threshold. Algorithm 1 shows the function
that calculates the CSM.

Algorithm 1 Cutoff Scanning Matrix calculation
function GENERATECSM( ProteinSet, CSM, Distance ., Distance y , Distance gpgp)
for all protein i € (ProteinSet) do
j=0
Calculate the distances between all pairs of C,,

for dist « Distancey; to Distance,y,y; step Distancegrpp do
CSM(i][j] « Get frequency of pairs of C, within a distance dist
j+
return CSM

In this work, we vary the distance threshold from 0.0
A to 30.0 A, with a 0.2-A step, which generates a vector
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Figure 4 CSM-based function prediction and fold recognition workflow. A schematic view of the CSM-based function prediction and fold
recognition approach is shown. The workflow is divided into steps of data preprocessing, CSM generation, SVD dimensionality reduction,
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of 151 entries for each protein. Together, these vectors
compose the CSM. In short, each line of the matrix
represents one protein, and each column represents the
frequency of residue pairs within a certain distance.
Alternatively, this frequency might be seen as the num-
ber of contacts in the protein for a certain cutoff dis-
tance or the edge count of the contact graph defined
using that distance threshold. This step was implemen-
ted in the Perl programming language.

It is important to mentioned that other centroids
could be chosen instead of the C,, such as the Cg or the
last heavy atom (LHA) of the side chain. Additional file
1, Figure S3 shows the performance comparison
between the C, and Cg for the EC number dataset. The
C, performed better in all experiments, a fact that
demands further investigation.

The motivation for using CSMs comes from the differ-
ences in the contact distributions for proteins of different
structural classes, as can be seen in Additional file 1, Fig-
ure S4, which shows the normalized edge count density
distribution per cutoff for proteins from different SCOP
classes, namely: all alpha, all beta, alpha+beta and alpha/
beta. 1t is possible to see that the differences between the
distributions emerged at different cutoff ranges. For exam-
ple, the first peaks for the alpha proteins indicate first-
order contacts of their helices and the differences at higher
cutoffs might happen due to the diameter and density of
the proteins. We stress that these variations in the edge
count are not only a phenomenon of the secondary struc-
ture composition of the proteins but a phenomenon of the
protein packing itself. It is important to explain the cutoff
variation. The cutoff variation (scanning) aggregates
important information related to the packing of the pro-
tein and captures, implicitly, the protein shape. We believe
that pockets on the surface and even core cavities are well
accounted for by this novel type of structure data we pro-
posed. Another example of contact distributions is shown
in Figure 5. Three proteins with very different shapes were
selected (a globin, PDB:1A6M; a porin, PDB:2ZFG; and a
collagen, PDB:1BKV), and the topology of the contact
graph obtained with different cutoffs is shown (6.0 A, 9.0
A and 12.0 A). The cumulative and normalized density
distributions for the CSM feature vectors for these repre-
sentatives are also plotted. We can see from these exam-
ples that an expressive difference in shape is accounted for
in the CSM. In the contact profile, the peaks indicate high
frequency of recurrent distance patterns present in pro-
teins structures. A higher peak under 3.8-4.0 A provides
evidence for the distances given by consecutive C,s. These
distances will tend to be independent of the protein struc-
tural class in face of the planar property that characterize
the peptide link intermediating two contiguous Cs in the
chain. In addition to this pattern, in proteins rich in
helices, we will find new suggestive peaks between 5.0 A
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and 7.0 A, representing mainly the recurrent distances
between the local (in sequence) C,s positions (i, i + 2), (i, i
+ 3) and (i, i + 4) that compose turns of a helix, and also
some nonlocal contacts. Conversely, in proteins rich in
beta strands, important peaks will be noted around 6.0 A
and 5.0 A, referring not only the distances in local C,
positions (i, i + 2) but also nonlocal C,, contacts (i, i + k)
present in companion strands. This implies that CSM is
manipulating two essential structural information levels:
local and nonlocal relevant contacts. We also can see that
the shapes of the proteins directly interfere in the underly-
ing contact network, which is reflected in the protein fold-
ing, as pointed by [25]. These properties make the CSM a
rich and important source of information when dealing
with problems like protein function prediction and struc-
tural classification.

Noise reduction with SVD

To reduce the inherent noise in the generated data and
also reduce the cost of the classification algorithms in
terms of execution time and memory requirements, we
used an SVD-based dimensionality reduction. SVD
establishes non-obvious, relevant relationships among
clustered elements [31-33]. The rationale behind SVD is
that a matrix A, composed of m rows by n columns, can
be represented by a set of derived matrices [33] that
allows for a numerically different representation of data
without loss in semantic meaning. That is:

A=TSDT

Where T is an orthonormal matrix of dimensions m x
m, S is a diagonal matrix of dimensions m x n and D is
an orthonormal matrix with dimensions #n x n. The
diagonal values of S are the singular values of A, and
they are ordered from the most to the least significant
values.

When considering only a subset of singular values of
size k <p, where p is the rank of A, we can achieve Ay,
an approximate matrix of the original matrix A:

T
A=A, =T)S,D;,

Thus, data approximation depends on how many singu-
lar values are used [34]. In this case, the kK number of sin-
gular values is also the rank of the matrix A;. The
possibility of extraction of information with less data is
part of this technique’s success, as it can permit data com-
pression/decompression within a non-exponential execu-
tion time, making analysis viable [34]. A dataset
represented by a smaller number of singular values than
the full-size original dataset has a tendency to group
together certain data items that would not be grouped if
we used the original dataset [33]. This grouping could
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explain why clusters derived from SVD can expose non-
trivial relationships between the original dataset items
[35]. In this paper, we use Ay, the product’s factorization
by SVD, to rank k, but with only two arrays of SVD, the
matrix V;[32] can be represented in the context of the
matrix:

A, =T, S,Dy =Ty (S, D1) = T,V

The justification for using only V} is that the relation-
ships among the columns of A; are preserved in Vj
because Ty is a base for the columns of A;.

We evaluated the singular values distribution in an
effort to find a good threshold to reduce the number of
dimensions without losing information. This step, as
well as the generation of all graphics, was performed via
R programming language scripts.

Evaluation methodology

An extensive series of experiments was designed to eval-
uate the efficacy of CSMs as a source of information for
protein fold recognition and function prediction.

In the classification tasks, the Weka Toolkit [36],
developer version 3.7.2 was used. For the gold-standard
dataset, three classification algorithms were used, and
their performances were compared: KNN, random forest
and naive Bayes. For the other datasets, KNN was used.
The algorithms’ parameters, when applicable, were var-
ied and the best result computed. In all scenarios, 10-
fold cross validation was applied. The classification per-
formance was evaluated using metrics such as precision
(Precision = TP/(TP + FP)), recall (Recall = TP/(TP +
EN)), FI score (the harmonic mean between precision
and recall: F1=2%* %%) and the Area Under
the ROC Curve (AUC). The variation in precision was
used to measure the gain obtained with SVD processing,
and the recall variation was evaluated to compare the
results with those for the dataset derived from [29].

We also correlated the precision obtained by the clas-
sifiers and the number of singular values considered and
compared it with the results using the whole CSM.

Datasets
Our datasets consisted of proteins structures available in
the Protein Data Bank [4]. The domains covered by
SCOP release 1.75 were obtained through the ASTRAL
compendium [37]. The protein structures were grouped
according to the purpose of the experiment, namely,
function prediction or fold recognition. For structures
solved by NMR, we only considered the first model. The
chains were split into separate files and the C, co-ordi-
nates extracted using PDBEST toolkit.

The first dataset concerns a gold-standard of mechanis-
tically diverse enzyme superfamilies [28]. We consider six
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superfamilies (amidohydrolase, crotonase, haloacid dehalo-
genase, isoprenoid synthase type I and vicinal oxygen che-
late), comprising 47 families distributed among 566
different chains. The list of PDB IDs as well as the family
and superfamily assignments are available in Additional
file 2.

The second dataset contains enzymes with EC num-
bers. We considered the top 950 most-populated EC
numbers in terms of available structures, with at least 9
representatives per class, in a total of 55,474 chains,
which covered 95% of the reviewed enzymes from Uni-
prot [1], i.e., the experimentally validated annotations
from that database.

The third dataset originated from SCOP version 1.75 for
fold recognition tasks. We selected all PDB IDs covered by
SCOP with at least 10 residues and 10 representatives per
node in the SCOP classification hierarchy. These IDs
represented a total of 110,799, 108,332, 106,657 and
102,100 domains at the class, fold, superfamily and family
levels, respectively. We would like to emphasize that this
is a very large dataset and that we found no other paper
relating the use of such a complete dataset in strutcural
classification tasks. The last dataset was derived from [29]
for comparison in fold recognition tasks. We selected all
domains described in its additional files with a minimum
of 10 representatives per node in the SCOP classification
hierarchy. It was not possible to identify exactly the
domains they used from the additional files and only those
pairs of domains with a sequence identify below 35% were
retained. It is important to stress that the work of Jain and
colleagues only contemplate structures with 3, 4, 5 or 6
secondary structure elements.

Additional material

Additional file 1: Additional figures and tables. Figure S1 -
Performance metrics across EC classes. Figure S2 - Correlation between
precision and minimum number of representatives. Figure S3 - The
influence of C,, and Cg distances in the performance. Figure S4 - Feature
vector density distribution for proteins of different SCOP classes. Table S1
- Function prediction performance using naive Bayes for gold-standard
dataset. Table S2 - Function prediction performance using random forest
for the gold-standard dataset.

Additional 2: Enzyme gold-standard dataset. List of PDB identifiers
that compose the enzyme gold-standard dataset and its family and
superfamily assignments.

List of abbreviations used

EC: Enzyme Commission; CSM: Cutoff Scanning Matrix; DUF: Domain of
Unknown Function; SVD: Singular Value Decomposition; PDB: Protein Data
Bank; SCOP: Structural Classification of Proteins; GO: Gene Ontology; LHA:
Last Heavy Atom; KNN: K-Nearest Neighbors; AUC: Area Under the ROC
Curve.

Acknowledgements
This work was supported by the Brazilian agencies: CAPES, CNPqg, FAPEMIG
and FINEP. The EC number dataset was kindly provided by Elisa Lima.


http://www.biomedcentral.com/content/supplementary/1471-2164-12-S4-S12-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-12-S4-S12-S2.csv

Pires et al. BMC Genomics 2011, 12(Suppl 4):S12
http://www.biomedcentral.com/1471-2164/12/54/S12

This article has been published as part of BMC Genomics Volume 12
Supplement 4, 2011: Proceedings of the 6th International Conference of the
Brazilian Association for Bioinformatics and Computational Biology (X-
meeting 2010). The full contents of the supplement are available online at
http://www.biomedcentral.com/1471-2164/12%issue=54

Author details

'Department of Biochemistry and Immunology, Universidade Federal de
Minas Gerais, Belo Horizonte, 31270-901, Brazil. 2Departmem of Computer
Science, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901,
Brazil. *Advanced Campus at Itabira, Universidade Federal de Itajubg, Itabira,
37500-903, Brazil.

Authors’ contributions

DEVP conceived of the study, developed the algorithms, performed the
experiments and drafted the manuscript. RCMM participated in the design
of the study, helped with presenting and analyzing the results and drafted
the manuscript. MAS participated in the design of the study, provided
advice on the SVD analysis and helped draft the manuscript. CHS helped
with presenting the results, provided advice on its analysis and helped draft
the manuscript. MMS helped draft the manuscript and provided advice on
analyzing the results. WM participated in the coordination of the study and
helped draft the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 22 December 2011

References

1. Consortium TU: The Universal Protein Resource (UniProt) in 2010. Nucleic
Acids Research 2010, 38(Database issue):D142-D148.

2. Finn RD, Mistry J, Coggill P, Heger A, Pollington J, Gavin OL, Gunasekaran P,
Ceric G, Forslund K, Holm L, Sohhhammer ELL, Eddy SR, Bateman A: The
Pfam protein families database. Nucleic Acids Research 2010, 38(Database
issue):D211-D222.

3. Murzin AG, Brenner SE, Hubbard T, Chothia C: SCOP: a structural
classification of proteins database for the investigation of sequences
and structures. Journal of Molecular Biology 1995, 247(4):536-40.

4. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K,

Feng Z, Gilliland GL, lype L, Jain S, Fagan P, Marvin J, Padilla D,
Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD,

Zardecki C: The Protein Data Bank. Acta Crystallogr D Biol Crystallogr 2002,
58(Pt 6 No 1):899-907.

5. Laskowski RA, Watson JD, Thornton JM: Protein function prediction using
local 3D templates. Journal of Molecular Biology 2005, 351(3):614-626.

6. Laskowski RA, Watson JD, Thornton JM: ProFunc: a server for predicting
protein function from 3D structure. Nucleic Acids Research 2005, 33(Web
Server issue):W89-93.

7. Watson JD, Roman AL, Thornton JM: Predicting protein function from
sequence and structural data. Current Opinion in Structural Biology 2005,
15(3):275-284.

8. Watson JD, Sanderson S, Ezersky A, Savchenko A, Edwards A, Orengo C,
Joachimiak A, Laskowski RA, Thornton JM: Towards fully automated
structure-based function prediction in structural genomics: a case study.
Journal of Molecular Biology 2007, 367(5):1511-1522.

9. Chothia C, Lesk AM: The relation between the divergence of sequence
and structure in proteins. EMBO J 1986, 5(4):823-6.

10. Ding CH, Dubchak I: Multi-class protein fold recognition using support
vector machines and neural networks. Bioinformatics 2001, 17(4):349-58.

11. Shen HB, Chou KC: Ensemble classifier for protein fold pattern
recognition. Bioinformatics 2006, 22(14):1717-22.

12. Cheng J, Baldi P: A machine learning information retrieval approach to
protein fold recognition. Bioinformatics 2006, 22(12):1456-63.

13.  Barker JA, Thomnton JM: An algorithm for constraint-based structural
template matching: application to 3D templates with statistical analysis.
Bioinformatics 2003, 19(13):1644-9.

4. Goyal K, Mohanty D, Mande SC: PAR-3D: a server to predict protein active
site residues. Nucleic Acids Research 2007, 35(Web Server issue):W503-5.

Page 11 of 11

15. Stark A, Russell RB: Annotation in three dimensions. PINTS: Patterns in
Non-homologous Tertiary Structures. Nucleic Acids Research 2003,
31(13):3341-4.

16.  Shazman S, Celniker G, Haber O, Glaser F, Mandel-Gutfreund Y: Patch
Finder Plus (PFplus): a web server for extracting and displaying positive
electrostatic patches on protein surfaces. Nucleic Acids Research 2007,
35(Web Server issue):W526-30.

17. Babor M, Gerzon S, Raveh B, Sobolev V, Edelman M: Prediction of
transition metal-binding sites from apo protein structures. Proteins 2008,
70:208-217.

18. Holm L, Sander C: Protein structure comparison by alignment of distance
matrices. Journal of Molecular Biology 1993, 233:123-38.

19. Kolodny R, Koehl P, Levitt M: Comprehensive evaluation of protein
structure alignment methods: scoring by geometric measures. Journal of
Molecular Biology 2005, 346(4):1173-88.

20. Dobson PD, Doig AJ: Predicting enzyme class from protein structure
without alignments. Journal of Molecular Biology 2005, 345:187-199.

21, Alvarez MA, Yan C Exploring structural modeling of proteins for kernel-
based enzyme discrimination. /EEE Symposium on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB) 2010, 1-5.

22. Punta M, Ofran Y: The rough guide to in silico function prediction, or
how to use sequence and structure information to predict protein
function. PLoS Computational Biology 2008, 4(10):e1000160.

23.  Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A,
Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene
ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nature Genetics 2000, 25:25-29.

24. Lee D, Redfen O, C O: Predicting protein function from sequence and
structure. Nature Reviews: Molecular Cell Biology 2007, 8(12):995-1005.

25. Soundararajan V, Raman R, Raguram S, Sasisekharan V, Sasisekharan R:
Atomic interaction networks in the core of protein domains and their
native folds. PLoS One 2010, 5(2):€9391.

26. da Silveira CH, Pires DE, Minardi RC, Ribeiro C, Veloso CJ, Lopes JC, Meira W
Jr, Neshich G, Ramos CH, Habesch R, Santoro MM: Protein cutoff scanning:
a comparative analysis of cutoff dependent and cutoff free methods for
prospecting contacts in proteins. Proteins 2009, 74(3):727-743.

27. Delaunay B: Sur la sphere vide. A la memoire de Georges Voronoi. [zv
Akad Nauk SSSR 1934, 7:793-800.

28. Brown SD, Gerlt JA, Seffernick JL, Babbitt PC: A gold standard set of
mechanistically diverse enzyme superfamilies. Genome Biology 2006, 7:R8.

29. Jain P, Hirst JD: Automatic structure classification of small proteins using
random forest. BMC Bioinformatics 2010, 11(364):1-14.

30. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM:
CATH - a hierarchic classification of protein domain structures. Structure
1997, 5(8):1093-108.

31. Eldén L: Matrix Methods in Data Mining and Pattern Recognition
(Fundamentals of Algorithms). Society for Industrial and Applied
Mathematics 2007.

32. Eldén L: Numerical linear algebra in data mining. Acta Numerica 2006,
15:327-384.

33, Berry MW, Dumais ST, O'Brien GW: Using linear algebra for intelligent
information retrieval. SIAM review 1995, 37(4):573-595.

34. del Castillo-Negrete D, Hirshman SP, Spong DA, D'Azevedo EF:
Compression of magnetohydrodynamic simulation data using singular
value decomposition. Journal of Computational Physics 2007, 222:265-286.

35. Deerwester SC, Dumais ST, Furnas GW, Harshman RA, Landauer TK,
Lochbaum KE, Streeter LA: Computer information retrieval using latent
semantic structure. 1989.

36.  Witten IH, Frank E: Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann;, second 2005.

37. Brenner SE, Koehl P, Levitt M: The ASTRAL compendium for sequence
and structure analysis. Nucleic Acids Research 2000, 28:254-256.

doi:10.1186/1471-2164-12-54-512

Cite this article as: Pires et al: Cutoff Scanning Matrix (CSM): structural
classification and function prediction by protein inter-residue distance
patterns. BMC Genomics 2011 12(Suppl 4):512.



http://www.biomedcentral.com/1471-2164/12?issue=S4
http://www.ncbi.nlm.nih.gov/pubmed/19843607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19920124?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19920124?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7723011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7723011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7723011?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12037327?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16019027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16019027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15980588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15963890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15963890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17316683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17316683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3709526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3709526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11301304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11301304?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16672258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16672258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16547073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16547073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12967960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12967960?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17478506?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17478506?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17537808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17537808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17537808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17657805?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17657805?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8377180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8377180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15701525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15701525?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15567421?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15567421?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18974821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18974821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18974821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18037900?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18037900?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20186337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20186337?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18704933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18704933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18704933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16507141?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16507141?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20043860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20043860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9309224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592239?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Function prediction
	Protein structural classification
	Performance comparison
	Noise reduction strategy

	Conclusions
	Methods
	CSM-based approach
	Cutoff scanning matrices
	Noise reduction with SVD
	Evaluation methodology
	Datasets

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

