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Abstract

Background: Protein/receptor explicit flexibility has recently become an important feature of molecular docking
simulations. Taking the flexibility into account brings the docking simulation closer to the receptors’ real behaviour
in its natural environment. Several approaches have been developed to address this problem. Among them,
modelling the full flexibility as an ensemble of snapshots derived from a molecular dynamics simulation (MD) of
the receptor has proved very promising. Despite its potential, however, only a few studies have employed this
method to probe its effect in molecular docking simulations. We hereby use ensembles of snapshots obtained
from three different MD simulations of the InhA enzyme from M. tuberculosis (Mtb), the wild-type (InhA_wt),
INhA_IN6T, and InhA_I21V mutants to model their explicit flexibility, and to systematically explore their effect in
docking simulations with three different InhA inhibitors, namely, ethionamide (ETH), triclosan (TCL), and pentacyano
(isoniazid)ferrate(ll) (PIF).

Results: The use of fully-flexible receptor (FFR) models of InhA_wt, INhA_I16T, and InhA_I21V mutants in docking
simulation with the inhibitors ETH, TCL, and PIF revealed significant differences in the way they interact as
compared to the rigid, InhA crystal structure (PDB ID: TENY). In the latter, only up to five receptor residues interact
with the three different ligands. Conversely, in the FFR models this number grows up to an astonishing 80
different residues. The comparison between the rigid crystal structure and the FFR models showed that the
inclusion of explicit flexibility, despite the limitations of the FFR models employed in this study, accounts in a
substantial manner to the induced fit expected when a protein/receptor and ligand approach each other to
interact in the most favourable manner.

Conclusions: Protein/receptor explicit flexibility, or FFR models, represented as an ensemble of MD simulation
snapshots, can lead to a more realistic representation of the induced fit effect expected in the encounter and
proper docking of receptors to ligands. The FFR models of InhA explicitly characterizes the overall movements of
the amino acid residues in helices, strands, loops, and turns, allowing the ligand to properly accommodate itself in
the receptor’s binding site. Utilization of the intrinsic flexibility of Mth's InhA enzyme and its mutants in virtual
screening via molecular docking simulation may provide a novel platform to guide the rational or dynamical-
structure-based drug design of novel inhibitors for Mtb’s InhA. We have produced a short video sequence of each
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ligand (ETH, TCL and PIF) docked to the FFR models of InhA_wt. These videos are available at http://www.inf.pucrs.

br/~osmarns/LABIO/Videos_Cohen_et_al_19_07_2011.htm.

Background

Molecular docking simulation constitutes one of the
main stages of rational or structure-based drug design
[1]. It provides a prediction for a molecule binding to a
protein in order to form a stable complex [2]. Knowl-
edge of proper orientation can be used to predict the
strength of association or binding affinity between two
molecules. Initially, molecular docking was compared to
the classic “key-lock” theory of enzyme-substrate specifi-
city postulated by Emil Fischer in 1894 (Reviewed by
Koshland Jr., [3,4]). In this model, the three-dimensional
(3-D) structure of both ligand and protein complement
each other in the same way a key fits the corresponding
lock [5]. However, since both protein and ligand are
flexible molecules, the concept is no longer adequate as
during the process of molecular docking both ligand
and protein adjust their conformation in order to
achieve the best protein-ligand fit. This type of confor-
mational adjustment between the two molecules, or the
induced fit theory, was first presented by Daniel E.
Koshland Jr. in 1958 [3,4].

In order to make molecular docking simulations more
realistic, an important issue is to treat both receptor and
ligand as flexible structures instead of rigid bodies. In many
methods the ligand, usually a small molecule with up to
dozens of atoms, is treated as flexible, but the flexibility of
the protein/receptor (for simplicity, herein protein and
receptor are synonymous), depending on their complexity
and size, which can reach dozens of thousands of atoms, is
still treated in a more restricted manner. According to Coz-
zini et al. “the challenge for drug discovery, as well as dock-
ing or virtual screening, is to model the plasticity of the
receptor so that both structures can conformationally adapt
to each other” [6]. Therefore, it is well known in the litera-
ture that the recognition of the ligand by the receptor is a
dynamic event, where both structures change their confor-
mations to minimize the free energy of binding (FEB) for
their association [7]. Nevertheless, most methods of dock-
ing employ a single, rigid structure of the receptor. This
happens for practical reasons. If we try to consider the
explicit flexibility of receptor and ligand, the conforma-
tional space to be considered quickly becomes impractical
[8,9], as the process would require an enormous computa-
tional effort. In addition, Totrov and Abagyan [10] state
that the best docking algorithms today erroneously predict
the position of ligand binding in 50 to 70% of the cases,
when only one receptor conformation is considered.

In biological systems, proteins express their functions in
aqueous or semi-fluid environments. When in solution,

proteins exist in a number of energetically different con-
formations, so that their structure is best described when
all the different states are represented [6]. A set of struc-
tures of a particular protein can be determined experimen-
tally by X-ray crystallography or Nuclear Magnetic
Resonance, through computational methods which
includes Monte Carlo and molecular dynamics (MD)
simulations [11]. Therefore if we consider the explicit flex-
ibility using multiple receptor conformations, there are
also a number of approaches. An example is the relaxed
complex scheme (RCS) [12]. The idea is to perform MD
simulation of the unliganded receptor before docking to
address its flexibility. The RCS method acknowledges that
a ligand probably will bind to conformations of the recep-
tor that occur rarely in its dynamic state. This strong bind-
ing often indicates multivalent attachment of the ligand to
the receptor. The second phase of the RCS method
involves the rapid docking of small libraries of ligands to a
large ensemble of MD-derived receptor conformations.
Further information and comprehensive reviews of differ-
ent methods for flexible-receptor flexible-ligand docking
can be found in [13-17].

There have been very few studies on the effect of MD-
derived receptor flexibility in flexible-ligand docking
simulations [14,16-18]. In order to improve the body of
evidence about the role that receptor flexibility plays in
molecular docking simulations we use ensembles of
snapshots obtained from three different MD simulations
of the InhA enzyme from Mtb; InhA_wt, and the
mutants InhA_I16T, and InhA_I21V. Each ensemble of
snapshots is denominated a fully-flexible receptor (FFR)
model. We have used them to systematically explore
their docking to three different InhA inhibitors, namely,
ethionamide (ETH), triclosan (TCL), and pentacyano
(isoniazid)ferrate(II) (PIF).

Methods

In order to carry out docking simulations, we need a
receptor model, and at least one ligand, as well as dock-
ing software. Below we describe the different steps
involved in processing a docking simulation, including
the definition of the rigid and flexible receptor models,
the preparation of the ligands, particularly the reference
ligands’ position that will be used in our supervised
docking simulations.

The single-rigid receptor model
The InhA enzyme or 2-trans-Enoyl-ACP (CoA) reduc-
tase (EC number 1.3.1.9) from M. tuberculosis was
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chosen as receptor model for this work because of its
importance as a drug target against tuberculosis [19]. It
belongs to the SDR (short chain dehydrogenase / reduc-
tase) family of proteins, which uses NADH (B-nicotina-
mide adenine dinucleotide, reduced form) as coenzyme.
The main feature of this family is the topology of the
polypeptide backbone, where each subunit of the protein
is composed of a single domain with a classical Ross-
mann-fold topology [20]. It is characterized by a 7-
strands parallel B-sheet and eight a-helices, connected
by loops and turns, forming the NADH binding site
(Figure 1). The enzyme has a “chair-like” appearance
where the “legs” and “backrest” are topologically similar
to other dehydrogenases. The substrate binding cavity is
a “pocket” located in the backrest. It is formed by the
substrate-binding loop (helices a6 and a7 in Figure 1),
strands B4, B5, and helix a5 [20]. The NADH coenzyme
is positioned in an extended conformation in the pocket
along the top of the parallel B-sheet. The adenine ring is
nearly parallel to the “seat” of the structure while the
nicotinamide portion faces backwards, pointing to the
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Figure 1 The InhA tertiary structure. Ribbons representation of
Mtb’s InhA (PDB ID:1ENY) rigid receptor model (colored by
secondary structure) in complex with the coenzyme NADH (in
metallic grey). In yellow are the 7-strands parallel -sheet and in
magenta the eight a-helices, connected by loops (in cyan) and
turns (in white). The protein’s N-terminus is composed by helices a.1
and a2, and by the B1 to B3 strands, while the C-terminus is
formed by helices a7 and a.8. Figure produced with YMD [29].
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base of the substrate binding cavity [20]. The A- and B-
loops, as well as the substrate-binding loop are struc-
tural motifs key to this enzyme function. The rigid
model of InhA is taken from its crystal structure (PDB
ID: 1ENY) and will be called 1ENY throughout the text.

The Fully-Flexible Receptor (FFR) models

In this study we have considered three FFR models of
Mtb’s InhA enzyme: (1) the InhA_wt, (2) the InhA_I16T
mutant, and (3) the InhA_I21V mutant. All three FFR
models were built from MD simulations of the
InhA_wt-NADH (3.1 ns), InhA_I16T-NADH (5.5 ns)
and InhA_I21V-NADH (6.5 ns) complexes generated
with the SANDER module of AMBER 6 [21]. The
mutants were constructed from the 1.9 ns instantaneous
snapshot of the InhA_wt MD simulation [21]. These
mutations have been clinically associated with isoniazid
drug resistance [22]. Schroeder et al. [21] showed that
the resistance was due to a reduced affinity of the
NADH for the InhA enzyme. Because ETH action is
similar to that of isoniazid, we expect a difference in its
binding to both the InhA_wt and InhA mutants. The
MD trajectories of the mutants and wild type simula-
tions had different lengths. However, to have coherent
flexible models, we considered 3.1 ns of each MD simu-
lation. For instance, each mutant FFR model was gener-
ated from a trajectory in the interval ranging from 1.9
ns to 5.0 ns. We used intervals of 1.0 ps. Accordingly,
each FFR model is composed of 3,100 snapshots.
Receptor preparation

Each FFR model of the InhA enzyme, which is an
ensemble of snapshots from its MD simulation, was
converted into the conventional PDB file using the Ptraj
module of AMBER 9 [23]. Ptraj also computed an aver-
age structure for each FFR model considering the pro-
duction phase of each trajectory, the last 1,000
snapshots. The FFR models were then fitted to their
average structures, as well as to the rigid model 1ENY.
In this manner, all snapshots making up each FFR
model, the average structure and the rigid model of
InhA will be all in the same frame of reference. Finally,
we added the appropriate partial atomic charges, and
solvation parameters using the addsol module of Auto-
Dock 3.0.5 [24], to each receptor model. All the steps
described above were accomplished with the scientific
workflow described in [25].

The ligands

Ethionamide (ETH) (ZINC code: 3872520, accessed on
08/10/2010) is a relatively small molecule, composed of
21 atoms (Figure 2a). This is a powerful second line
tuberculostatic, an isoniazid (INH) structural analogue,
and is widely used in the treatment of tuberculosis
because its primary target is the InhA protein. Like



Cohen et al. BMC Genomics 2011, 12(Suppl 4):S7
http://www.biomedcentral.com/1471-2164/12/54/S7

Page 4 of 11

Figure 2 The ligands. (A) On the left, stick model representation of the ETH ligand. The hydrogen, nitrogen, carbon, and sulphur atoms are
colored white, dark blue, cyan, and light brown, respectively. In the right, stick model representation of the adduct ETH-NAD (PDB ID: 2H9I).
Activated ETH is colored in yellow and NAD in metallic grey. The adduct binds to the InhA active site with ETH blocking part of the substrate
binding cavity. (B) Stick model representation of the TCL ligand. The color scheme and receptor representation are the same as in (A), except for
oxygen and chlorine which are colored red and magenta, respectively. Stick model representation of the 1 stacking interaction between TCL's A
ring (dark blue) and the nicotinamide ring of NADH (from PDB ID: 1P45). (C) Stick model representation of the PIF ligand. Here the iron atom is
colored green. Stick model representation of one possible interaction between PIF (green) and the InhA enzyme. InhA main-chain is represented

by ribbons.

INH, ETH is also a pro-drug that requires prior activa-
tion [26]. Its mode of action is similar to that of INH.
ETH binds covalently to carbon 4 of the nicotinamide
portion of NADH to form the adduct ETH-NAD (Fig-
ure 2a).

Triclosan (TCL), (ZINC code: 2216, accessed on 08/10/
2010) is composed of 24 atoms grouped into two aro-
matic rings (Figure 2b). It is an antibacterial and antifun-
gal agent commonly found in various preparations
ranging from toothpaste, cosmetics in general, antiseptic

soaps and even plastic. In 1998, McMurry, Oethinger and
Levy [27] suggested for the first time that TCL blocked
the biosynthesis of fatty acids by inhibiting the enoyl
reductase (ENR) or InhA. The TCL phenolic ring (A ring
in Figure 2b) forms m-stacking interactions with the nico-
tinamide ring of NADH. Such interactions are formed
due to stacking of aromatic rings of different molecules
through van der Waals forces [28].
Pentacyano(isoniazid)ferrate(II) (PIF) is the result of a
rational drug design effort by Santos, Basso and co-
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workers [29] in an attempt to find new inhibitors for M.
tuberculosis’ InhA enzyme that do not require activa-
tion. This is an INH molecule with a metallic centre,
the pentacyanoferrate group, bound to it (Figure 2c).
The PIF molecule is composed of 28 atoms. Since the
crystal structure of the InhA-PIF complex is yet not
available, we performed molecular docking simulations
to predict the binding mode of PIF to InhA [29].
Definition of the reference ligands

In many docking simulations described in the literature,
the approach chosen is blind docking, where the ligand
is placed at an initial arbitrary position within the active
site of the target receptor, and from there, the docking
software seeks to find the best ligand orientation that
should correspond to the most negative FEB. The dock-
ing results are presented in histograms (Table 1). The
problem is that the most negative estimated FEB does
not necessarily correspond to the actual binding mode
(here we call Best Pose) of the ligand found in experi-
mental results [26].

For this reason, before starting the docking simula-
tions with the three different receptor models, we per-
formed a blind docking simulation with the 1ENY
structure and ETH in order to compare the best dock-
ing results with the experimental one from the crystal
structure [26]. In fact, run 7 (Table 1, in bold) is the
one that gives the best ligand pose of ETH in InhA.

Table 1 A typical example of a RMSD (in A) clustering
analysis of a 10 “runs” docking simulation with
AutoDock 3.0.5

Rank Sub-Rank Run Docked energy Cluster RMSD Reference RMSD

1 1 1 -8.99 0.00 4.10
1 2 10 -8.92 0.30 4.12
1 3 4 -8.90 0.37 4.08
1 4 9 -8.90 0.37 4.09
1 5 5 -8.87 0.22 4.15
1 6 8 -8.44 1.00 392
2 1 7 -8.27 0.00 5.84
2 2 3 -7.92 046 5.71
3 1 6 -7.84 0.00 419
4 1 2 -7.80 0.00 5.70

Autodock clusters by first sorting all the docked conformations from lowest
(Docked energy, fourth column) to highest energy (in kcal/mol). The best
overall docked conformation is used as the ‘seed’ for the first cluster (Rank 1,
first column). Then the coordinates of the second best conformation are
compared with those of the best to calculate the root-mean square deviation
(Cluster RMSD, fifth column) between the two conformations. If the calculated
RMSD value is smaller than or equal the specified cut-off, which is 1.0 by
default, that conformation is added to the ‘bin’ containing the best
conformation. If not, the second becomes the reference for a second ‘bin’
(Rank 2, seventh row). In this example we have four “bins” or clusters. As can
be seen from the table, the 10 “runs” generated four clusters. Cluster 1
contains six out of 10 “runs” and so forth. The last column shows the RMSD of
the corresponding conformation with respect to a reference ligand position.
The bold value is the best estimated docked energy corresponding to the
best docked pose expected from experiments [25].
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Note that its FEB value of -8.27 kcal/mol is greater than
the best one (-8.99 kcal/mol) ranked automatically by
the docking program.

From this test experiment, we decided not to perform
blind docking, but supervised dockings instead. For each
ligand, we first tried to find its conformation and orien-
tation corresponding to the Best Pose. The coordinates
for this ligand pose was then saved and used as a refer-
ence coordinate to calculate the reference root-mean-
square deviation (RMSD) (Table 1) of the ligand in the
docking simulations. The same process was repeated for
TCL, and PIF. Thus, in the docking experiments in this
study both, the FEB estimates and RMSD values will be
important to describe the effect of the FFR models in
docking simulations.

Ligand preparation

Using the VMD software [31], the ligands in the Tripos
Mol2 file format were randomly positioned at the recep-
tor binding site in the rigid model, as well as in the
three InhA FFR models. Since all models are in the
same frame of reference, the initial position of all three
ligands is same in all docking simulations for all models.
The ligand flexibility was determined by the deftors
module of AutoDock 3.0.5. ETH and TCL, and PIF have
two and three rotatable bonds, respectively.

Molecular docking simulations

The docking simulations were performed with Auto-
Dock 3.0.5 [32] which has been extensively tested and
proved to be successful in a variety of docking experi-
ments [14]. It can use various techniques to explore the
different conformations a ligand can assume, combining
the advantages of a complete search space and the
assessment of the best FEB [32].

Docking simulation parameters

With the rigid 1IENY model and the three FFR models
of InhA in the PDBQS format, the active site was
defined within a grid of 100 x 60 x 60 points, spaced at
0.375 A. This set up generated a grid box with approxi-
mately 37 x 22 x 22 A®, centred in the initial position of
the ligand. This grid is large enough to include the
NADH, as well as the substrate-binding cavity of InhA.
Each docking simulation was composed of 25 indepen-
dent runs, for which a maximum number of 27,000 gen-
erations were produced, employing the Lamarckian
Genetic Algorithm (LGA) on the initial population of 50
individuals, a maximum number of 500,000 energy eva-
luations, with an elitism value of 1, a mutation rate of
0.02, and a cross-over rate of 0.8. For the local search
the pseudo-Solis and Wets method was applied using
default parameters. Each run provides one predicted
binding mode. At the end of the docking experiment
binding modes with RMSD of 1.0 A within each other
were placed in the same cluster.
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Control docking

We performed docking simulations as a control for each
of the ligands using the 1ENY rigid model. All results
found for the docked FFR models of InhA will be com-
pared to these controls.

Receptor-ligand interaction analyses

After performing the docking simulations, we employed
LIGPLOT 4.4.2 [33] to analyze the hydrogen bonds and
hydrophobic contacts between the ligands and the rigid
and FFR models of InhA_wt and the mutants
InhA_I16T and InhA_ I21V. LIGPLOT defines a FFR
residue to be in a hydrophobic contact (NNB) with a
ligand if there is at least one heavy atom of the residue
within 3.9 A of some atom from the ligand. For hydro-
gen bonds (HHB) the criteria is more restricted. The
donor and acceptor atoms of FFRs’ residues and ligands
have to be at a maximum distance of 3.5 A [33].

Automating the molecular docking simulations

We carried out the molecular docking experiments in a
Core 2 Quad 2.4 GHz machine, with 8 GB of RAM and
500 GB HD. However, as there is currently no reliable,
automated way to perform docking simulations in FFR
models as the ones used in this work, our solution was
to create in-house processing scripts using the program-
ming languages Bash, Awk and Python.

Automating the docking analyses

In order to carry out the docking analyses with LIG-
PLOT [33], we also created processing scripts, which
are detailed below.

1. For each docked snapshot in a given FFR-ligand
complex we extracted and stored the best runs accord-
ing to the lowest FEB (blind docking) and the lowest
RMSD in separate tables. We note that this RMSD mea-
sure is calculated with respect to the reference ligand
pose (Best Pose in the supervised docking). This pro-
duced nine tables (ETH, TCL, and PIF against each of
the InhA_wt, InhA_ 116T and InhA_I21V FFR models).

2. We then ran LIGPLOT for each FFR-ligand com-
plex, processing the output files in order to extract and
store the amino acid contacts of each one into a second-
ary table. This step produced 36 tables (the previous
nine combinations split into HHB and NNB intermole-
cular contacts).

3. Finally, we counted the amino acid contacts, produ-
cing extra 36 tables for the FFR-ligand complexes
describe above. The goal here was to identify which resi-
dues of the FFR models had interacted most with the
ligands.

Results
Flexible ETH, TCL, and PIF ligands were docked to
three different FFR models of Mtb’s InhA: InhA_wt,
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InhA_I16T and InhA_I21V. Each complex gave us a set
of docking results composed of the average and stan-
dard deviations (SD) of the best FEB (in kcal/mol) and
its corresponding RMSD (in A) with respect to the
reference pose for the ligand (Table 2, columns A and
B). We also obtained similar statistics for the set of FEB
values matching the lowest RMSD with respect to the
reference pose for the ligands (Table 2, columns C and
D). The latter values are expected to represent the dock-
ing results for the best ligand pose (supervised docking).
For each set we also calculated minimum and maximum
values of the FEB and RMSD in order to compare with
our control docking simulation. Based on the average
and the standard deviations of the FEB values, we do
not see much difference between the FFR and the rigid
1ENY models. The only exception is for the PIF ligand.
The average best FEB for the initial PIF position was
-9.0 + 2.0, -10.2 + 1.5, and -10.9 + 1.4 kcal/mol while
for the reference pose, the average FEB was -6.5 + 2.7,
-8.3 + 2.6 and -8.7 + 2.3 kcal/mol for InhA_wt,
InhA_I16T and InhA_I21V, respectively. The equivalent
FEB values for the 1ENY rigid model was -13.4 and
-13.5 kcal/mol, respectively. These values represent a
difference that varies from 2.5 to 7.0 kcal/mol between
the rigid and FFR models of InhA. Also, they are greater
than the intrinsic error (2.2 kcal/mol) attributed to the
estimation of the FEB by AutoDock3.0.5 [30]. The expli-
cit flexibility of the InhA receptor clearly had an impact
in the way PIF interacted with it.

Analyses of FFR models-ligands interactions

The coordinates of the FFR models-ligands complexes
were analysed by LIGPLOT. Through this analysis we
were able to identify which residues were making HHB
and NNB contacts with the ligands in at least one of
the FFRs models’ snapshots (Table 3) which means
that, in order to identify those residues we simply con-
sidered all snapshots making at least one contact,
either HHB or NNB, with each ligand. When the same
residue made both intermolecular contacts, the redun-
dancy was eliminated. As Table 3 shows, there is a sig-
nificant increase in the number of residues that are
able to interact with the ligands in the FFR models as
compared to the rigid one. Overall, a minimum of nine
and a maximum of 80 different residues interacted
with any of the three ligands in all FFR models. Con-
versely, in the rigid 1IENY model these numbers vary
from only zero to five. These data further corroborate
our hypothesis that considering the explicit flexibility
of the receptor during docking simulations allows a
ligand to interact, even casually, with other receptor
residues than those found in a single, rigid crystal
structure. The behaviour of the FFR models simulates
the induced fit phenomenon [4].
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Table 2 Summary of docking results for the FFR models of WT, 116V, and 121T InhA enzyme from M. tuberculosis

InhA_WT InhA_116T InhA_I21V
A B @ D A B @ D A B @ D
Avg -9.6 54 -9.1 4.1 -9.2 43 -8.7 33 -9.1 59 -86 33
SD 04 2.1 0.5 13 03 16 04 0.5 03 29 03 08
ETH Min -11.0 19 -109 14 -10.3 2.2 -10.2 1.7 -105 24 -96 1.7
Max -84 14.9 -7.5 78 -8.2 129 -74 6.9 -84 14.9 -7.2 7.1
1ENY -9.2 6.0 -85 1.8 - - - - - - - -
Avg -12.2 56 -10,5 43 -11.5 46 -10.8 33 -11.3 5.2 -10.3 3.2
SD 06 1.8 1.1 1.2 0.5 13 0.7 04 0.5 14 0.5 0.5
TCL Min -14.3 30 -135 22 -13.0 26 -127 2.1 -129 26 -120 1.7
Max -8.1 14.9 52 139 -100 10.1 -76 6.2 -95 9.5 -6.8 64
TENY -10.7 13 -106 13 - - - - - - - -
Avg -9.0 9.0 -6.5 6.0 -10.2 6.9 -8.3 53 -10.9 4.8 -8.7 35
PIF SD 20 40 2.7 36 15 28 26 24 14 24 23 1.1
Min -14.0 30 -136 24 -14.2 3.1 -14.1 29 -144 2.7 -14.0 24
Max -1.0 200 0.0 16.3 -38 18.1 0.0 12.1 -50 17.0 -0.1 15.1
1ENY -134 09 -135 03 - - - - - - - -

The first column indicates the ligands. The second column describes the statistics evaluated for each docking result: the average, standard deviation (SD), the
minimum and maximum FEB values. Column 3 (A) contains the values of best FEB in kcal/mol and column 4 (B) its related RMSD in A. Columns 5 (C) and 6 (D)
show the FEB corresponding to the lowest RMSD calculated with respect to the reference ligand position (see Methods section). Columns 3-6 contain the results
for InhA_wt. Columns 7-10 and 11-14 are the values of A, B, C and D for InhA_I16T and InhA_I21V mutants, respectively. The last row shows the results for the

1ENY rigid model.

From the data in Table 3 we were able to single out
the top 19 FFR amino acid residues that made contact
with ETH and PIF ligands, and the top 18 FFR amino
acid residues that made contact with TCL, in at least
one of their snapshots (Table 4).

Note that we are not trying to count the absolute
number of contacts. Instead we are counting how many
snapshots of each FFR model provided those contacts.
For ETH (Table 4a) we found three polar (SER20,
SER94, THR196), one acidic and one basic (ASP148,
LYS165), and 14 hydrophobic residues. As for TCL
(Table 4b) we found three polar (THR16, SER94,
THR196), one basic (LYS165), and 14 hydrophobic

residues. For PIF (Table 4c) we found two polar (SER94,
THR196), one acidic and one basic (ASP42, LYS165),
and 15 apolar residues.

As can be seen in column 1 of Table 4, most of the
residues are hydrophobic, which is somewhat expected
since the InhA active site is predominantly apolar. Fig-
ure 3 shows where these residues are located in the
receptor structure. These residues are part of both, the
NADH and, in particular, the substrate binding pockets.

Discussion
In order to make molecular docking simulations more
realistic, an important issue is to treat both receptor and

Table 3 Comparison of the number of different amino acid residues making HHB and NNB contacts with the ligands
in at least one of the FFR models’ snapshots during the docking simulations

Model  Ligand  Best FEB (HHB)  Best FEB (NNB)  Residues sum (HHB+NNB)  Best Pose (HHB)  Best Pose (NNB)  Residues sum (HHB+NNB)
WT ETH 52 74 80 38 54 62
TCL 25 46 46 12 24 24
PIF 23 35 35 22 32 34
ner ETH 34 47 49 23 37 37
TCL 19 34 34 9 24 24
PIF 23 28 28 17 22 22
21V ETH 31 52 56 21 37 37
TCL 18 40 40 11 24 25
PIF 22 20 22 21 22 24
TENY ETH 2 4 5 1 3
TCL 0 1 1 0 2
PIF 2 2 2 0 2

The total number of receptor residues that made HHB and NNB contacts with the ligands and the union of these residues (HHB+NNB) for the Best FEB (column

5) and for the reference or Best Pose (column 8).
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Table 4 Top 19 and 18 amino acid residues that interacted with the ligands in at least one snapshot for each of the
three FFR models during the docking simulations

(a) INhA_WT - ETH InhA_I6T - ETH InhA_I21V - ETH
Residue Best FEB Best Pose Best FEB Best Pose Best FEB Best Pose
HHB NNB HHB NNB HHB NNB HHB NNB HHB NNB HHB NNB
GLY14 681 363 64 47 89 80 2 2 1,652 311 264 18
ILE15 12 164 0 0 81 41 0 0 487 39 0 0
SER20 0 856 0 100 3 0 0 6 2 99 0 0
ILE21 0 1,015 0 1,974 0 971 0 1,528 0 0 0 0
VAL21 0 0 0 0 0 0 0 0 0 714 0 1,022
PHE41 0 4 0 0 0 65 0 0 0 426 0 0
SER94 1,115 955 387 740 1,311 516 156 762 1,712 1,683 447 1,060
ILE95 323 389 392 229 713 479 74 424 110 1,566 230 617
GLY9% 178 169 2 213 8 781 0 124 2 270 0 170
MET147 10 1,127 49 1,805 3 755 9 943 2 849 3 1,096
ASP148 78 394 556 587 328 512 842 348 0 104 444 537
PHE149 5 1,028 0 1,235 0 1,529 0 1,531 0 564 0 1,453
MET161 0 1,064 0 1,664 1 1,204 0 1,838 2 712 0 1,675
LYS165 0 405 0 719 0 531 0 618 0 32 0 161
ALA191 184 16 666 0 177 12 707 42 90 55 483
GLY192 779 68 903 155 959 140 1,586 136 564 210 1,716 384
PRO193 0 333 0 305 0 398 0 256 0 408 0 720
ILE194 275 71 0 221 27 366 10 999 5 12 73 185
THR196 71 216 4 322 0 644 0 889 2 363 0 693
(b) INnhA_WT - TCL InhA_INeT - TCL INhA_I21V - TCL
Residue Best FEB Best Pose Best FEB Best Pose Best FEB Best Pose
HHB NNB HHB NNB HHB NNB HHB NNB HHB NNB HHB NNB
GLY14 861 934 523 59 101 533 18 5 1,157 1,131 582 114
ILE16 0 494 0 85 0 0 0 0 0 571 0 191
THR16 0 0 0 0 0 433 0 38 0 0 0 0
ILE21 0 998 0 2,067 0 944 0 1,060 0 0 0 0
VAL21 0 0 0 0 0 0 0 0 0 638 0 1,200
PHE41 0 47 0 0 0 519 0 0 0 1,383 0 5
SER94 1,746 1,676 1,780 1,340 1,450 605 1,213 67 638 458 777 297
ILE95 241 562 342 450 645 1,134 259 108 438 1,022 249 242
GLY9%%6 370 897 49 745 517 1,148 64 831 197 970 19 665
PHE97 26 71 13 103 17 31 26 1,430 2 70 7 125
MET103 2 9 0 0 0 0 0 0 13 33 105 1,370
MET147 121 541 137 910 13 507 8 268 13 257 8 341
PHE149 10 97 1 287 0 3 0 0 0 2 0 0
MET161 30 1,262 13 2,310 9 1,234 13 1,872 3 322 13 1,402
LYS165 0 176 0 570 0 111 0 203 0 0 0 2
GLY192 1,418 0 1,959 2 860 0 1,308 0 297 0 1,302 1
ILE194 1 0 8 3 2 152 6 1,830 13 0 21 17
THR196 16 55 40 269 0 276 6 438 2 86 1 499
(0 INnhA_WT - PIF InhA_IN6T - PIF InhA_I21V - PIF
Residue Best FEB Best Pose Best FEB Best Pose Best FEB Best Pose
HHB NNB HHB NNB HHB NNB HHB NNB HHB NNB HHB NNB
GLY14 83 202 57 103 1 125 2 0 65 818 15 379
ILET6 0 765 0 595 0 0 0 0 0 228 0 147
THR16 0 0 0 0 0 701 0 846 0 0 0 0
ILE21 0 456 0 1,370 0 333 0 865 0 0 0 0
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Table 4 Top 19 and 18 amino acid residues that interacted with the ligands in at least one snapshot for each of the
three FFR models during the docking simulations (Continued)

VAL21 0 0 0 0 0 0 0 0 0 669 1,547
ASP42 14 10 1 10 671 553 53 0 17 13 2 7
PHE9S3 1 1,050 0 0 0 0 3 7 0 0 0 0
SER94 238 386 174 1,047 170 297 71 1,043 47 1,223 79 1,952
ILE95 2 773 9 1,779 191 565 65 1,275 0 1,942 1 2,202
GLY9% 316 1,252 130 2,389 911 1,110 270 1,894 1,532 1,325 333 2,291
PHE97 1 1,050 7 1,146 3 757 0 531 1 186 0 166
PHE149 0 246 0 640 0 121 0 0 0 58 0 78
MET161 0 494 1 1,491 3 854 1 1,021 1,436 1,739
LYS165 0 160 0 303 0 347 0 0 0 12 0 20
GLY192 279 1 759 3 189 9 661 14 468 21 886 31
ILE194 11 5 55 7 4 67 9 335 17 78 25 355
THR196 4 472 14 1,295 6 905 10 1,491 38 2,168 16 2,572
LEU197 3 430 0 167 4 285 0 0 5 14 0 7
ALA198 0 382 0 735 0 105 0 0 1 11 0 21

The first columns show, from the total of amino acid residues found in Table 3, the top 19 (18 for TCL) residues that were able to make contacts, HHB and/or
NNB, with the ligands (a) ETH, (b) TCL, and (c) PIF, respectively, in at least 10% of the trajectories. Note that each FFR model is a MD simulation trajectory.
Columns 2 to 13 show the number of snapshots for each FFR model involved in such contacts (marked in bold).

ligand as flexible structures instead of rigid bodies.
However, this has been demonstrated not to be a trivial
task [7,14,17,34]. We know that the enzyme InhA from
M. tuberculosis is a highly flexible receptor [21] and is a
very important molecular target for the development of
new drugs against tuberculosis [19]. Given that only a
few studies [7,12,14,17,34] have addressed the role of
the explicit flexibility of receptors in molecular docking
simulations and the biomedical importance of the InhA
enzyme, here we reported our systematic analysis of the
effect of InhA explicit flexibility in docking simulations
to three ligands known to be its inhibitors. Our three
FFR models of InhA, namely InhA_wt, InhA_I16T, and

InhA_I21V were generated from their MD simulations
trajectories [21]. As a result we obtained a number of 3-
D snapshots of the protein that were slightly different
from each other. After that, we then docked each ligand
(ETH, TCL and PIF) to each one of FFR models of
InhA. We believe that the structural differences from
one snapshot to another, creates a space in the receptors
binding cavities, which differs from the one we see in
the rigid, crystal structure. For instance, in the case of
the InhA_wt FFR model, and using the CASTp server
[35], the snapshots at 1.0 ns and 1.5 ns have both 1,559
A% and 1,955 A3, respectively. There is a variation of
approximately 400 A® in the volume of the InhA’s

\

(b)

Figure 3 Top amino acid residues in the receptor-ligand interactions. Representation of the top 19 and 18 amino acid residues in the
receptor structure (PDB ID: 1ENY). The stick representation of ETH (a), TCL (b), and PIF (c) are colored yellow, dark blue, and green, respectively.
The residues are represented as magenta beads. The InhA receptor main-chain is represented by ribbons.
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major binding pocket between these two snapshots. This
“new space” gives the ligand an opportunity to better
explore the binding cavities, increasing its chance to
accommodate to it.

Due to the fact that we knew beforehand how ETH and
TCL inhibits InhA, blind docking simulations would not
be appropriate. ETH binds covalently to carbon 4 of the
nicotinamide portion of NADH to form the ETH-NAD
adduct [26], whereas the phenolic ring of TCL forms -
stacking interaction with the NADH nicotinamide ring
[27,28]. To acknowledge that, in our docking simulations,
although the ligands were randomly positioned in the
receptor active site, we created what we called the refer-
ence ligand. This means that the RMSD calculated during
the docking simulations did not use the initial position of
the ligand, but rather the position of the reference ligand
or Best Pose, closer to the one expected to form the
adduct [26]. Our analyses showed that up to 80 different
receptors’ residues interact with the ligands as opposed
to up to only five residues in the rigid 1IENY model. This
constitutes, in our opinion, a strong basis to recommend
the use of explicitly flexible models of Mtb’s InhA
enzyme in virtual screening efforts to search for novel
drug candidates against tuberculosis.

Conclusions

With our data analyses we were able to find a total of
up to 80 receptor amino acid residues interacting with
the ligands employed in this study. Performing docking
under the same conditions, but in the rigid, crystal
structure 1IENY, we were able to find only five for ETH
and two for both TCL and PIF. These numbers supports
our hypothesis that flexible receptor models can accom-
modate a more diverse range of ligand conformations.
This indicates that they are more prone to select a new
ligand capable of binding to InhA than they would do if
we used only one receptor conformation. In other
words, taking the receptor plasticity into account when
performing docking simulation means that amino acid
residues, loops and turns, can move slightly in different
directions, giving the ligand a better chance to accom-
modate itself in the receptors’ binding site. Nonetheless,
we are aware that our results were based on a short MD
simulation; only 3.1 ns long and that nowadays much
longer simulations can be generated. Hence, one of our
future goals is to consider whether or not longer MD
simulations would affect our conclusions, or even how
our docking simulations would behave if they were per-
formed on different FFR models generated from MD
simulations at physiological temperatures.
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