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Abstract

Background: Epigenetic modifications, transcription factor (TF) availability and differences in chromatin folding
influence how the genome is interpreted by the transcriptional machinery responsible for gene expression.
Enhancers buried in non-coding regions are found to be associated with significant differences in histone marks

between different cell types. In contrast, gene promoters show more uniform modifications across cell types. Here
we used histone modification and chromatin-associated protein ChIP-Seq data sets in mouse embryonic stem (ES)
cells as well as genomic features to identify functional enhancer regions. Using co-bound sites of OCT4, SOX2 and

regularization to identify key features.

types confirmed cell type-specificity of these enhancers.

expression

NANOG (co-OSN, validated enhancers) and co-bound sites of MYC and MYCN (limited enhancer activity) as
enhancer positive and negative training sets, we performed multinomial logistic regression with LASSO

Results: Cross validations reveal that a combination of p300, H3K4me1, MED12 and NIPBL features to be top
signatures of co-OSN regions. Using a model from 10 signatures, 83% of top 1277 putative 1 kb enhancer regions
(probability greater than or equal to 0.8) overlapped with at least one TF peak from 7 mouse ES cell ChIP-Seq data
sets. These putative enhancers are associated with increased gene expression of neighbouring genes and
significantly enriched in multiple TF bound loci in agreement with combinatorial models of TF binding.
Furthermore, we identified several motifs of known TFs significantly enriched in putative enhancer regions
compared to random promoter regions and background. Comparison with an active H3K27ac mark in various cell

Conclusions: The top enhancer signatures we identified (p300, H3K4me1, MED12 and NIPBL) will allow for the
identification of cell type-specific enhancer regions in diverse cell types.
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Background

Chromatin immunoprecipitation followed by massively
parallel sequencing (ChIP-Seq) has enabled genome-
wide investigation of chromatin features and epigenetic
modifications within the non-coding regions of mamma-
lian genomes in high resolution [1]. ChIP-Seq provides the
opportunity to characterise and begin to understand on
a genome-wide scale how genes are regulated in a cell-
type specific manner by sequence-specific DNA-binding
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transcription factors (TFs). However, identifying regulatory
regions within the genome and linking these regions to the
regulation of specific genes remains a challenge.

Distal regulatory elements have been identified which
regulate gene transcription from several kilobases (kb)
away and have even been found to regulate genes located
on separate chromosomes [2-4]. Functional characterisa-
tion of these regulatory elements can be done by identify-
ing bound TFs and investigating whether or not they act as
enhancers, increasing transcription of a gene in a position
and orientation independent manner. ChIP-Seq analysis for
several TFs has revealed a significant fraction (40-60%) of
the binding sites for most TFs are located in intergenic
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regions >10 kb from transcription start sites (TSSs) of
annotated genes [5-7]. In addition, enhancer regions are
associated with significant epigenetic differences between
cell types, while gene promoters show more uniform
modifications across different cell types [8,9]. These find-
ings suggest that enhancers, which can be located at great
distances from the genes they regulate, play a larger
role in regulating tissue-specific gene expression than
the sequences proximal to gene promoters. Moreover,
mutations in DNA sequences of distant-acting enhan-
cers contribute to various diseases [10], further stressing
their importance in regulating gene expression.

Prior to the availability of ChIP-Seq and ChIP-chip data,
computational approaches based solely on genomic
sequences were used to identify enhancer regions. Initially
these approaches compared the genomic sequence with
TF binding motifs represented by position specific scoring
matrices (PSSM) from TRANSFAC [11] and JASPAR [12].
TF motif clustering and comparative genomics improved
the predictive power of these approaches [13-16]. In
addition, intergenic regions with high sequence conserva-
tion between human and Fugu or ultra-conserved regions
between human-mouse-rat (>200 bp of 100% identity) are
predictive of regulatory regions involved in conserved
processes such as embryonic development [17,18]. As
many enhancer regions regulate the expression of genes in
a tissue-specific manner and can be located at great
distances from the genes they regulate, the link between
cell-type and active enhancers is lacking in purely
sequenced based approaches. Using ChIP-Seq approaches
several different methods of identifying enhancers have
been applied including: enrichment of mono-methylated
lysine 4 of histone H3 (H3K4mel) and depletion of tri-
methylated lysine 4 of histone H3 (H3K4me3) [19],
binding of the co-activator p300 (also known as EP300)
[9], intergenic RNAPII (RNA polymerase II) phosphory-
lated at serine 5 on the C-terminal domain (RNAPII-ser5)
[20], multiple transcription factor bound loci (MTL) [5],
and a combination of these features [21] have been
used to identify enhancers within a target cell type.
Additional chromatin associated proteins have been
identified at enhancers including members of the
mediator (MED1, MEDI12) and cohesin (SMCIA,
SMC3, NIPBL) complexes [22].

These different approaches show variable success at
predicting enhancers with in vivo activity. For example,
47% (246/528) of human genomic regions predicted by
sequence conservation were confirmed as enhancers in a
transgenic mouse assay [17,18]. The prediction was
significantly enhanced to 87% (75/86) when using only
p300 high throughput chromatin immunoprecipitation
sequencing (ChIP-Seq) binding sites from mouse
forebrain, midbrain and limb cells [9]. Heintzman et al.
developed a motif-independent model for identifying and
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distinguishing promoters and enhancers using histone
modification profiles [19]. They observed H3K4mel
enrichment and H3K4me3 depletion at p300 binding
sites and then used this signature to identify putative
enhancers in 5 human cell lines. Their enhancer predic-
tions were supported by DNase I hypersensitivity, bind-
ing of p300, or binding of the mediator protein MED1
63.5% of the time. Taking the MTL approach, using
overlapping regions of three major pluripotency TFs,
OCT4, SOX2, NANOG, Chen et al. 2008 generated en-
hancer candidates in mouse embryonic stem (ES) cells
and tested 25 of these regions for enhancer activity [5].
All 25 regions displayed ES cell specific enhancer activity
suggesting the MTL approach is highly predictive of
functional enhancer regions. However, enhancer activities
depend on the specific TFs occupying the MTL, as all 8
co-MYC associated MTL were found to have little or no
enhancer activity [5]. In addition, the MTL approach
requires prior knowledge of relevant regulatory TFs and
the generation of unique ChIP-Seq data sets for each
cell type.

Although previous approaches showed promising
performance, a potential issue with non-integrated
approaches is that each marker may be an incomplete
representation of the relevant enhancers in a particular cell
type. For example, although sequence conservation is fre-
quently used to identify regulatory elements, ultra-
conservation has been reported to identify only a small
subset of developmentally related enhancers, specifically,
those involved in development of the nervous system [18].
Furthermore, there is variation in the degree of conserva-
tion at enhancers; a large population of validated heart
enhancers are less deeply conserved in vertebrate evolu-
tion [23]. Although found at enhancer regions in different
cell types, p300 is reported to mark only a subset of enhan-
cers in heart [24]. Histone modifications perhaps represent
a more widely applicable enhancer signature, though by in-
spection they appear to mark the genome in a broad man-
ner. The incomplete representation of enhancers by each
feature and the broad signatures associated with histone
modifications emphasize the need to integrate these fea-
tures within the same cell type and evaluate their import-
ance for enhancer prediction.

In this study we used 31 public high throughput mouse
ES cell RNA-Seq and ChIP-Seq datasets, as well as 5
genomic features to identify the characteristics most pre-
dictive of enhancers. We applied multinomial logistic re-
gression with LASSO regularization [25,26] to identify
key enhancer signatures, predict functional enhancers,
and subsequently identify motif enrichment in predicted
enhancers. Through an initial assessment of enhancer
markers, we highlight the importance of feature selec-
tion. Furthermore, LASSO regularization ranked the
predictability of signatures necessary for enhancer
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classification with p300 being the most predictive followed
by H3K4mel and MED12. Predicted enhancers showed sig-
nificant association with MTL indicating functionality
and identified previously validated enhancers. In addition,
a supervised motif enrichment test on putative enhancer
regions using Clover [27] confirmed our ability to identify
known TFs centrally involved in ES cell transcriptional
regulatory networks.

Results

Feature selection improves enhancer prediction

To identify and validate enhancer regions active in
mouse ES cells we used ChIP-Seq data sets from mouse
ES cells including: 12 transcription factors (TFs) [5,28], 8
histone modifications [29], 3 polymerase occupancy [30],
and 7 chromatin associated proteins [5,22] (Table 1). In
addition to these ChIP-Seq data sets, genomic features
including CpG islands, GC content, SNP, repeat regions,
and PhastCons most conserved regions [31] were also
incorporated in the model. To prevent cell type specifi-
city in the features used for enhancer identification, only
histone modifications and ubiquitously expressed non-
TF features were evaluated as enhancer markers. The TF
data sets were used for either training or validation pur-
poses. As 25/25 regions co-bound by the pluripotency
transcription factors OCT4, SOX2 and NANOG (co-
OSN) in ChIP-Seq data were shown to have enhancer ac-
tivity [5], co-OSN regions were used as the enhancer
positive training set (Enh). In contrast, 8/8 regions co-
bound by MYC and MYCN (co-MYC) had limited or no
enhancer activity [5]. As co-MYC regions showed a
strong tendency to be located close to annotated TSSs
(Figure 1A) we termed this enhancer negative training
set promoter-like (PrL, see Methods). We also included
an “unknown” training set of 5000 regions randomly

Table 1 Datasets used in the integrative modeling
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drawn from non co-OSN and non co-MYC regions of
the genome.

In our model we classified 1 kb genomic bins into 3
categories: enhancer positive (Enh), promoter-like (PrL) and
unknown. As multiple combinations of features have been
used to predict enhancers, we performed Naive Bayes clas-
sifications using various combinations of features.
Assessment of the model was carried out using four
indices, area under curve (AUC), precision, modified
precision, and recall (detailed in Methods), using 10 fold
cross validation on the training set data (Figure 1B). The
classifiers were ranked by the average ranking of the four in-
dices. We used this analysis to make a number of observa-
tions about the predictive value of various markers of
enhancers within the context of other possible features.
First, we noted that the Naive Bayes classifier using all
features (rank 12) does not generate the best classification.
Such classification bias can be caused by feature redun-
dancy and introduction of noise by non-informative
features. Second, although p300 is extensively used to
identify enhancers and has the highest modified precision
in combination with CpG islands, the recall is low which is
likely caused by the incomplete representation of
enhancers by p300 (rank 20). Classifiers using previous
markers, such as H3K4mel and H3K4me3 as well as RNA-
PII-ser5 and RNA, also performed poorly (rank 27 and 32).
Third, adding GC content, an informative genomic feature,
improves precision and recall (comparing rank 5 to 1).
Fourth, the recall of enhancers can be over 80 percent with
informative features (rank 2 and 4). Finally, we observed
that although sequence conservation has been previously
used to predict enhancers, adding most conserved regions
into feature combinations can worsen the model prediction
(rank 5 to 7; 18 to 21), which is likely due to non-exclusive
representation of enhancers in conserved regions.

Data Data Type Cell Line Purpose Accession Ref
RNA RNA-Seq V6.5 cells Feature GSE20851 [32]
Histone modifications (H3, H3K4me1, H3K4me2, H3K4me3, ChlIP-Seq V6.5 cells Feature GSE11172 [29]
H3K36me3, H4K20me3, H3K27me3, H3K9me3) and RNAPII GSE12241
RNAPII-ser2, RNAPII-ser5 ChiP-Seq V6.5 cells Feature GSE20530 [30]
SMCITA, SMC3, MED12, MED1, NIPBL ChiP-Seq V6.5 cells Feature GSE22562 [22]
p300 ChlIP-Seq E14 cells Feature GSE11431 [5]
CTCF ChlIP-Seq V6.5 cells Feature GSE18699 [28]
CpG islands, GC content, SNP, repeat regions and PhastCons BED files - Feature mm9 [31,33-35]
most conserved regions

OCT4, SOX2, NANOG, MYC, MYCN ChlIP-Seq E14 cells Training sets GSE11431 [5]
KLF4, STAT3, SMAD1, E2F1, TFCP2L1, ZFX, ESRRB ChiP-Seq E14 cells MTL analysis GSE11431 [5]

The RNA-Seq, ChIP-Seq and genomic feature data sets used in the study are listed and cited in the table. Columns represent the cell line of mouse ES cells used
(Cell Line), the usage of the data (Purpose), the NCBI GEO accession number (Accession), and the reference in which the data was generated (Ref). MTL: multiple

transcription factor bound loci.
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Figure 1 Assessing feature combinations as enhancer signatures with cross validation using Naive Bayes classifications. (A) Pie charts
representing the genomic distributions of the co-OSN and co-MYC, unknown training sets. Intergenic regions are defined to be regions =10 kb
away from the closest TSS or transcription end site; whereas upstream regions are regions within 10 kb upstream of TSSs. (B) The first 11 columns
depict the features used in each given row (Naive Bayes classifier) and the 12th (Others) column represents the rest of the features listed in

Table 1. The capability of each classifier in categorizing co-OSN regions (Enh training set) from co-MYC regions (PrL training set) and unknown is
assessed using 10-fold cross validation. The last four columns listing the area under ROC curve (AUC), precision, modified precision (precision®)
and recall values are color-coded with red indicating good model performance and blue indicating poor performance. Naive Bayes classifiers with
different feature combination are sorted by the average ranking of the four indices.
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Ranking enhancer signatures

The Naive Bayes classification approach revealed the
importance of feature selection and allowed us to deter-
mine the most appropriate combination of features for
optimal enhancer identification, however, each feature
is assumed to contribute independently. As some
features might be partially or fully redundant (e.g. histone
modifications) and some may add no or little predictive
value, we modified our approach and used a LASSO

regularized multinomial logistic regression model [25,26]
to assess features systematically and obtain their rank
contributions to the classification of enhancers. LASSO
regularization [25,26] introduces a lambda penalty factor
to shrink feature weights, so uninformative or redundant
features can be assigned zero weights and not impact
classification. Furthermore, regression models can detect
and down-weight highly correlated (and likely redundant)
features. Feature weights corresponding to specific log
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lambda values for each category are shown in Figure 2A.
By increasing the penalty parameter lambda, weights of
less informative features for each category shrink to zero;
whereas weights of informative features remain non-zero.
Through LASSO regularization we identified the most
positively predictive features for Enh regions, p300
and H3K4mel, which have been used for enhancer
prediction in other studies [9,19,36]. The component
of the mediator complex, MED12, and the cohesion
loading factor, NIPBL, are ranked third and fourth.
Both have been shown to associate with enhancers
involved in chromatin looping to promoter regions
[22]. Features that best categorize PrL regions are
CpG islands, H3K4me3, G+ C percent and RNAPII-
ser5 all in agreement with promoter characteristics.
Ten features were selected to classify the 1 kb bins
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into three categories in our model (log lambda= -4,

Figure 2B).

Classified enhancer and promoter-like candidates

A total of 19200 1 kb regions were predicted to be Enh,
67672 were predicted to be PrL, and 2567872 regions
were predicted as unknown using the LASSO regular-
ized model (Additional file 1: Table S1). Of the 1291
c0-OSN training regions 922 were classified as Enh in
the model, while 4054 of 4465 co-MYC training regions
were classified as PrL. All luciferase-validated enhancer
positive regions from Chen et al. 2008 [5] are predicted
positive whereas, all luciferase-validated enhancer nega-
tive regions are predicted PrL in our model. As Enh

candidates are
thresholds can

ranked by probability, more stringent
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Figure 2 Feature ranking determined using multinomial logistic regression with LASSO regularization. (A) Feature weights in each class
with respect to log lambda, which is a penalty factor to shrink feature weights. Weights of features less discriminative of the three categories

shrink to 0 as lambda is increased. Top ranking features are those with non-zero weights at high lambda values: p300, H3K4me1 and MED12 for
Enh group; CpG islands, H3K4me3, G + C percent and RNAPII-ser5 for PrL groups. (B) Signatures used in the model chosen from cross validation
(log lambda=-4) are shown in each category with their degree of contribution.
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enhancer candidates. Applying a stringent threshold of
greater than 0.8 probability, 24 of 25 previously vali-
dated enhancer regions were predicted Enh and 7 of 8
previously identified negative regions were predicted
PrL. In addition, the log probabilities of putative enhan-
cer candidates are significantly correlated (p=0.44,
p=0.0002) to an independent luciferase assay data set in
which 67 regions bound by CHD7 were tested for en-
hancer activity [37]. A heatmap of the top 50 Enh and
PrL candidates demonstrates that the Enh and PrL sig-
nature features are separated with hierarchical cluster-
ing except for H3K4me2, the lowest ranked feature in
the PrL category (Additional file 2: Figure S1). The
probability and modeling approach, in contrast to an
overlapping peak approach, allows variations in features
within the predicted category.

We examined the distribution of Enh and PrL candidates
in the genome and found that high probability (>0.8) Enh
and PrL candidates are distributed relative to annotated
genes similarly to the training data (Figure 3A). As expected
more of the top Enh candidates are located in intergenic
regions (33%, p<22x107'°) than top PrL candidates,
which more frequently overlap TSSs. To examine the distri-
bution of Enh and PrL candidates more specifically with re-
spect to TSSs we calculated the distance to the closest TSS
for each candidate. Enh candidates tend to be further away
from TSSs compared to PrL candidates (p<2.2x 107,
Figure 3B). Distributions of the entire set of the three cat-
egories are provided in Additional file 3: Figure S2.
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Enhancer and promoter-like candidates coordinately
regulate gene expression
To assess the regulatory potential of the Enh and PrL
candidates in ES cells, we assigned candidates to the closest
gene TSSs and compared the ES cell gene expression distri-
bution among subsets of genes: associated with both Enh
and PrL, either PrL or Enh only, and genes without an asso-
ciated Enh or PrL candidate (denoted as Enh&PrL, PrL,
Enh and None, respectively) (Figure 4). Distributions of
gene expression in all categories containing an Enh or PrL
candidate are significantly higher than those with no asso-
ciated candidate. While we found that PrL alone conferred
significantly higher expression than Enh alone
(p=4.1x10"*), Enh&PrL genes showed significantly
higher expression than that of PrL-only genes
(p=2.3x107"%). These findings suggest that Enh and
PrL candidates coordinately regulate transcription of a
subset of target genes in mouse ES cells, while other
genes are regulated solely by PrL signatures. It is im-
portant to note that Enh candidates are expected to be
more difficult to assign to the correct gene(s) as they are
often located in intergenic regions and may in fact not
regulate the closest gene in the linear genome. Regard-
less, we observe the presence of a candidate enhancer is
associated with increased levels of expression in
addition to the presence of a promoter candidate.

Short intergenic transcripts have been found associated
with enhancers in neurons [38], while the human -globin
distal locus control region (LCR) is associated with long,
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B genic
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I overlapTSS
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Figure 3 Genomic distribution of enhancer and promoter-like candidates. (A) Pie charts representing the genomic distributions of the high
confidence Enh and PrlL candidates (prob = 0.8) and top 30 k unknown candidates. Intergenic regions are defined to be regions = 10 kb away
from the closest TSS or transcription end site; whereas upstream regions are regions within 10 kb upstream of TSSs. (B) Violin plots demonstrating
the distances to TSS of the closest transcript for each high probability set (Enh and PrL: prob 20.8; unknown: top 30,000).
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cell cycle-regulated intergenic transcripts [39,40]. We
investigated the overlap between lincRNAs (large inter-
genic non-coding RNA) identified in ES cells and our Enh
and PrL categories. We found that only 135 out of 2127
lincRNAs (0.7% total Enh) from Guttman et al. 2009 [41]
overlapped predicted Enh regions and only 22 (1.7% high
probability Enh) overlapped high probability Enh candi-
dates (prob=>0.8). A larger proportion overlapped PrL
regions, 501 (3.1% total PrL) and 233 (2.3% high probabil-
ity PrL) of the 2127 lincRNAs overlapped the total and top
(prob>0.8) PrL candidates, respectively. In addition, the
proximity of Enh candidates to protein coding transcripts
is significantly greater than the proximity to these lincR-
NAs (p < 2.2x107'). The enhancer associated transcripts
identified by Kim et al. 2010 [38] are generally short,
<2 kb in length, and lincRNAs were defined as at least
5 kb in length. These may therefore represent functionally
different types of intergenic non-coding transcripts.

In order to probe the functional significance of the genes
regulated by Enh or PrL, we investigated functional enrich-
ment in these categories using DAVID [42,43] followed by
clustering of functions with significant numbers of shared
genes using Enrichment map [44]. The Enh set is signifi-
cantly enriched with DNA binding, transcription regulating
activities and stem cell development (FDR=1.2x10"%,
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Figure 4 Enhancer and promoter-like candidates co-ordinately
regulate gene expression. Boxplots of ES cell gene expression of
the genes closest to various subsets of Enh and PrL candidates.
Enh&PrL denotes genes with at least one of both Enh and PrL
closest to their TSSs; PrL set denotes genes with PrL but not Enh
closest to them and vice versa for Enh set; None set denotes genes
without any Enh and PrL closest to them. The numbers in brackets
below each set show the counts of genes within the category. The
y-axis denotes gene expression represented by RPKM plotted on a
log scale. Distributions of gene expression are all significantly higher
compared to sets on their right (*** p-values <107).
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0.0018, and 0.03 respectively), and the genes include several
TFs involved in ES cell transcriptional regulation: Oct4,
Myc, Mycn, Sox2, Esrrb, Phcl and Zic3 (Additional file 4:
Figure S3). In contrast the PrL candidates are enriched with
a wide variety of molecular functions in addition to DNA
binding, such as RNA binding and processing, translation,
and chromatin organization (all FDR < 1.0 x 107%) indicat-
ing these genes are associated with more basal cellular
functions. This indicates that, in addition to promoters,
Enh candidates play a significant role in regulating the ES
cell transcriptional program to maintain pluripotency.

Enhancer candidates are bound by multiple transcription
factors in ES cells

As we initially trained our classifier based on the binding of
either co-OSN (Enh signature) or co-MYC (PrL signature),
we wanted to determine whether we also identified regions
bound by additional TFs. Single TF binding sites are found
at many locations in the genome while MTL are more
limited and have been shown to be associated with
increased regulatory activity [5,24]. We examined the
association of our Enh and PrL candidates with ES cell-
expressed TFs using 7 ChIP-Seq data sets (Table 1,
excluding the OCT4, SOX2, NANOG, MYC and MYCN
training data). We found that the Enh candidates were
most highly and significantly enriched with MTL (>4 TFs)
compared to both the PrL and unknown categories, and
overall genomic bins (p < 10~%°; Figure 5A). Of the 1277
top Enh candidate regions (prob>0.8), 1065 of these
overlapped with at least one of the 7 TF binding sites. It is
noteworthy that although Enh candidates tend to be
further away from TSSs compared to PrL candidates, the
Enh set is significantly more enriched in MTL than the
PrL set. This is in agreement with the observation that a
significant proportion of individual TF bound regions are
located within the intergenic regions of the genome [5-7].
We also investigated the effect of increasing the enhancer
probability threshold on the proportion overlapping MTL
(Figure 5B). With increasing Enh probability we found an
increase in the proportion of candidates associated with
more bound TFs. This significant association of Enh
candidates with MTL further supports the regulatory func-
tionality of these regions.

ES cell enhancer candidates

We next looked at how well the model predicts previously
identified mouse ES cell enhancer regions associated
with mediator and cohesin proteins and shown to form
chromatin loops with the nearby gene TSSs [22]. These
tissue-specific promoter-interacting enhancer regions
upstream of Oct4 (Pou5f1), Nanog, Phcl and Leftyl are
all predicted Enh with probabilities greater than 0.8
(Additional file 5: Figure S4). Moreover, several significant
TF binding peaks overlap with these enhancers. Although
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Figure 5 Enhancer candidates overlap multiple transcription factor bound loci. (A) Percentage overlap of Enh, PrL, Unknown and all 1 kb
genome bins to TF bound regions in three categories (0, 1-3 or 4+ TFs). Generated by comparison to ChIP-Seq data for 7 ES cell-expressed TFs
(excluding OCT4, SOX2, NANOG, MYC and MYCN). The Enh candidates are significantly enriched with MTL in comparison to the PrL and unknown
sets as well as whole genome bins with p-values <0.001. (B) Percentage overlap of Enh candidates with TF bound regions using various enhancer
probability thresholds. The numbers in brackets beside enhancer probability thresholds show the number of regions predicted to be Enh using
the indicated threshold.

the aligned TF peaks at the Oct4 upstream enhancer are
located at the boundary of two 1 kb genome bins, our
model predicted both sides with high probability (prob =
0.9487 and 0.8363). In addition to the Leftyl promoter-
interacting enhancer, we identified novel contiguous
enhancer regions over 3-5 kb upstream of Lefty2
(prob =0.9107 and 0.8999).

We also identified high probability Enh candidates
surrounding the Sox2 gene and around 100 kb downstream
(Figure 6). In addition to the role SOX2 plays in regulating
the transcriptional program in ES cells, Sox2 is also a key
neurodevelopmental gene, and multiple Sox2 enhancers
have been identified in various different cell types ranging
from ES to neural precursor and lens epithelial cells
[45-50]. The evolutionary conserved SRR1 enhancer,
4 kb upstream of Sox2, has been shown to enhance the
expression of a reporter gene by 10 fold in ES cells and
overlaps a high confidence Enh candidate (prob =0.9956)
[47,48,50], while the second validated enhancer 4 kb
downstream of Sox2, SRR2, overlaps partially with a lower
confidence Enh (prob=0.6301; not shown). In addition
to these previously validated enhancers, we identified a
cluster of eight high confidence enhancers downstream of
Sox2 overlapping multiple TF peaks as well as p300 and
MED12 peaks. Notably, the furthest downstream enhancer

region is ranked in the top 4 with an Enh probability of 1.
Located between the Sox2 gene and the enhancer cluster
is a RefSeq transcript Gm3143m which is not expressed in
ES cells and therefore unlikely to be regulated by the clus-
ter of eight high confidence enhancers. We also noted an
expressed lincRNA immediately downstream of the distal
enhancer cluster (Additional file 6: Figure S5 shows the ex-
pression of the lincRNA).

We further investigated other high probability enhan-
cer clusters and identified an enhancer dense region up-
stream of the miR-290 microRNA cluster. The miR-290
cluster, though not sufficient to maintain ES cell
pluripotency alone, inhibits ES cell differentiation when
over-expressed [51,52]. Four of the seven identified high
probability Enh regions (prob >0.8) upstream of miR-290
overlap with MTL (Figure 7, Additional file 7: Figure S6A).
Interestingly, although overlaps of putative enhancers with
co-MYC regions are rare (420/19200), two Enh candidates
(prob =0.9850, 1.0000) contain MYC and MYCN binding
peaks.

In addition to Enh candidates overlapping co-OSN
sites, we have also identified several putative enhancers
with limited OSN occupancy including those shown
surrounding Tet1/U6, Zic3, and C80913 (Figure 7). We
identified seven contiguous enhancers around the U6
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small nuclear RNA, upstream of Tet! which overlap TF
bound regions as well as a CHD7 bound region
(obtained from [37]; Figure 7, S6B). TET1 modifies
methylated cytosine (5mC) by hydroxylation, generating
5-hydroxymethylcytosine (5hmC) [53], potentially the
first step in DNA demethylation [54], and is involved in
regulating the lineage potential of ES cells [55]. We
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identified two adjacent PrL candidates upstream of
the annotated mouse gene which overlap the aligned
human TETI gene (Figure 7). The upstream enhancer
(prob=0.9138) of the Zic3 gene showed nine-fold up-
regulation of luciferase activity compared to a minimal Oct4
promoter [56], and the higher probability enhancer down-
stream (prob =0.9550), overlapping one E2F1 and one
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CHD?7 peak, has not been investigated (Figure 7, S6C).
Furthermore, the putative enhancer 10 kb upstream of
C80913 overlaps only with a CHD7 peak (Figure 7, S6D).

TF motif enrichment at ES cell enhancer candidates
Although our modeling approach was trained using co-
OSN regions, the prediction is not limited to sites bound
by these TFs. In fact, of the 1277 regions with enhancer
probability >0.8, 522 overlap with co-OSN regions, 394
overlap with at least 4 of the other 7 TFs, 136 of which
are not co-OSN. Overall 281 regions are not associated
with OCT4, SOX2 or NANOG, and 97 of our Enh
candidates were not associated with any of the 12 TFs.
As a number of our Enh candidates do not overlap a
region bound by any of the 12 TFs for which ChIP-Seq
data is available in ES cells, we next investigated which
TFs may be binding these regions.

To this end we carried out a supervised motif analysis
using the Clover algorithm [27] (Table 2). As validation
of this approach, we detected motif enrichment for
critical regulatory ES cell-expressed TFs including: KLF4,
SOX2, OCT4, ESRRB and STATS3, all ranked in the top
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11 enriched motifs. The PSSM for NANOG was not
included in the query set (because it was not available in
the PSSM databases we used) and as a result was not
identified as enriched. We also detected significant en-
richment in motifs for several other ES cell-expressed
TFs including: SP1, SOX4, ZIC2, ZIC3, RARa, NRF2,
and TEADI1. The top motif enrichment candidate, SP1,
is a ubiquitously expressed transcription factor essential
for early embryonic development [57,58]. ZIC3, ranks in
the top 27% of absolute expression in mouse ES cells, is
required for maintenance of pluripotency [56], and dir-
ectly activates Nanog [59]. Interestingly the high prob-
ability enhancer candidate upstream of Zic3 is bound by
NANOG, suggesting NANOG also directly regulates
Zic3. NRF2, encoded by Nfe2l2 gene, acts as a master
regulator of the antioxidant response, and its deficiency
results in embryonic lethality and severe oxidative stress
[60]. TEAD1 binding sites have been shown to enhance
reporter gene transcription in ES cells and 2-cell
embryos [61]. Although retinoic acid treatment of ES
cells is associated with neuronal differentiation, RAR is
expressed in ES cells and ChIP-chip revealed 462 RAR

Table 2 Motif enrichment in mouse ES cell putative enhancers

Motif Raw score Max Enh prob RPKM PSSM
SP1 339 0.8099 335 (121
KLF4* 154 t 126.07 [12]
sox2* 140 1 942.79 [12]
POUSF1* 128 09487 131838 [12]
SOX4 89.6 - 37.06 (701
SOX11 86.5 06035 286 (701
ESRRB* 726 0.9999 162.78 [12]
KLF7 61 - 4.94 (701
ESRRA 37 - 402 [70]
NR4A2 337 - 0.03 [12]
STAT3* 316 05795 29.92 (121
7IC2 313 04291 13.76 [701
711 296 0.5901 0.06 [701
RARA 283 0.5909 30.28 (701
ASCL2 25.1 - 072 (701
NR2F2 19.9 05537 0.07 (701
ZIC3 14 09550 15.27 [70]
RORA 7 05016 0.13 [12]
NFE2L2 (NRF2) 6.28 05947 68.09 [12]
RXR:RAR_DR5 489 - 5.34 (Rxra) 17.55 (Rxrb) 30.28 (Rara) [12]
TEAD1 391 0.8987 66.24 [12]

The motifs of the listed TFs are significantly enriched with p < 0.01 in putative enhancer regions compared to random sequences drawn from PrL set, chr19 and
promoter 5 kb regions using the Clover algorithm [27] with TF binding matrices reported in PSSM column Raw scores from Clover algorithm are reported. “Max
Enh prob” column lists the maximum probabilities of enhancers if at least one Enh is closest to the TSS of the corresponding gene. Probabilities greater than 0.8
are underlined. RPKM column reports the absolute gene expression of the TF in mouse ES cells. T Several putative enhancer located 50 kb downstream of KIf4 are
categorized to another non protein-coding transcript. ‘#’ sign denotes the TFs with ChIP-Seq datasets in mouse ES cells.
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target loci in ES cells, most of which are specific to ES
cells [62]. We also identified motif enrichment for TFs
with limited or no expression in ES cells. These TFs play
essential roles in embryonic development and early dif-
ferentiation. Specifically, SOX11, ZIC1 and NR4A2 play
central regulatory roles for neural development and
neural protection [63-66]. This suggests that either an-
other active protein family member may have a very simi-
lar PSSM (such as SOX2 and ZIC3) or a proportion of our
enhancers are poised for regulating gene expression during
development [57,67-69].

To verity binding of transcription factors at identified
motifs we used KLF4, ESRRB, and STAT3 ChIP-Seq
data from Chen et al. 2008 [5]. We compared the over-
lap of our high probability Enh regions to TF enriched
regions (defined by the top 0.5 percentile bins for KLF4,
ESRRB and STAT3). We found 519, 707 and 518 of the
1277 high probability enhancers (prob>0.8) contained
KLF4, ESRRB or STAT3 enriched regions, respectively
(p values <2.2 x 107®) confirming the motif enrichment
results for these transcription factors.

Identified enhancers are mainly active and cell type specific
Recent studies identified different classes of enhancers
marked by H3K4mel in ES cells; enhancer regions also
marked by H3K27ac were associated with increased gene
activity in ES cells and termed active, while regions
marked by H3K27me3 were associated with early devel-
opmental genes and termed poised in ES cells [68,69]. In
addition to these active and poised enhancers, another
recent study proposed an intermediate category of
enhancers marked by H3K4mel but lacking H3K27ac
and H3K27me3 [71]. We found significant overlap
between Enh candidates (prob >0.8) from our model and
the distal H3K27ac mark in ES cells (p<2.2x107°,
logOdds = 3.86; Figure 8A; Additional file 8: Figure S7A).
We found that 7404 of our 19200 predicted Enh regions
fell into the active category while 4433 and 446 fell into
the intermediate and poised categories, respectively. The
top Enh candidates were significantly enriched in
H3K27ac compared to the training set of co-OSN
regions indicating the advantage of the model in identify-
ing active enhancers (p<2.2x107'%, logOdds=0.77)
(Figure 8B). We also increased the overlap to the H3K27ac
regions compared to the training data suggesting again
that we have identified additional active enhancers not
contained in the training data. In addition, these
candidates are significantly less associated with the re-
pressive  H3K27me3 mark compared to co-OSN
regions (p=3.6x10""2, logOdds=-2.1). This significant
association with the H3K27ac suggests our modeling
preferentially identifies active rather than poised enhancer
regions. As H3K27ac overlaps with our Enh candidates
and was not included in our initial model we next
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Figure 8 Enhancer candidates overlap ES cell specific H3K27ac
and H3K4me1 modifications. (A) Venn diagram depicting overlap
of high confidence Enh candidates (probability = 0.8) with distal
(TSS +/= 1 kb removed) H3K27ac marks (active) and H3K27me3
marks (repressive). (B) Venn diagram depicting overlap of OCT4,
SOX2, NANOG co-bound training regions with distal H3K27ac marks
(active) and H3K27me3 marks (repressive). (C) The stacked bar plot
shows the percent overlap of high confidence Enh candidates with
distal H3K27ac/H3K4me1 in various cell types. The overlaps
presented allow a 500 bp gap.

investigated whether or not this mark is predictive of Enh
regions. Introducing H3K27ac into our model showed
positive weighting of H3K27ac for PrL rather than Enh
indicating that H3K27ac is a predictor of PrL rather than
Enh (Additional file 9: Figure S8).

To further investigate the cell type-specific regulatory
potential of our identified ES cell Enh candidates, we
compared distal H3K27ac and H3K4mel marks from
various cell types to our Enh candidates (Additional file
8: Figure S7B). We found significantly greater Enh
overlap to distal H3K27ac and H3K4mel in ES cells
compared to the differentiated cells indicating a significant
proportion of our Enh candidates are specific to ES cells
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(p <3x107°). We observed an increase in the overlap to
H3K27ac and H3K4mel in ES cells, and a decrease in
the overlap in the differentiated cell types for the high
probability Enh set compared to all Enh (Figure 8C
compared to Additional file 8: Figure S7B).

Discussion
We present a systematic approach to assess discrimina-
tive features for enhancer identification in mouse ES
cells. We initially established the importance of feature
selection using a Naive Bayes classifier and subsequently
used LASSO regularized multinomial logistic regression
to systematically rank the feature weights. In our model
we identified 10 key signatures for distinguishing enhan-
cer regions from promoter-like regions and the rest of
the genome. The top signatures predictive of enhancers
are p300, H3K4mel, MEDI12, and NIPBL whereas we
identified CpG islands, RNAPII-ser5, CTCF, GC percent
and H3K4me3 as the top signatures for promoter identi-
fication. Our model predicts previously validated enhan-
cers as well as novel enhancers around Oct4, Sox2,
Nanog, Phcl, Leftyl, Lefty2, miR290, Tetl, and Zic3, all
of which have important regulatory roles in regulating
ES cell pluripotency. In summary, our predicted enhan-
cers appear to regulate the expression of ES cell-
expressed genes, coordinately with predicted promoters,
are significantly associated with MTL compared to both
PrL and unknown regions, enriched in motifs for pluri-
potency associated TFs and marked by tissue-specific
chromatin modifications (Additional file 10: Table S2).

The features used in our model for enhancer identifica-
tion are p300, H3K4mel, MED12 and NIPBL, ranked in
that order. We identified p300 as the top ranked enhancer
signature; in addition p300 is a strong negative predictor
for the unknown regions of the genome in our model. In
ES cells p300 has been identified as a major H3K27 acetyl-
transferase [72]; therefore, it is not surprising that we
found a high degree of overlap between our Enh candidate
regions and H3K27ac. Although p300, when used as the
sole Enh feature, ranked highly with respect to precision
of enhancer identification the ability to recall enhancers in
the training data was poor, in agreement with p300 being
an incomplete representation of enhancers [24](Figure 1,
rank 20). The incorporation of CBP, also linked to
H3K27ac in ES cells, into the model may allow for
improved enhancer identification [21]. H3K4mel, ranked
second for enhancer identification, has been used in sev-
eral other studies to identify enhancer regions, though we
find it performs quite poorly when used as the only enhan-
cer feature (Figure 1, rank 27). This is perhaps due to the
broader regions associated with H3K4mel compared to
the more discrete peaks of p300 or MED12.

MEDI12 and NIPBL are the third and fourth most
predictive features for enhancer identification. MED12 is
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part of the mediator complex and NIPBL is associated
with cohesin complex loading; many components of
these complexes have recently been identified to co-
occupy enhancers in mouse ES cells [22]. It is somewhat
surprising that MED12 and NIPBL stand out among the
other mediator and cohesin components included in the
model (MED1, SMC1A, SMC3) as peaks of all five are
apparent at key enhancers [22]. The mediator complex is
recruited by many TFs and acts as a bridge to the RNA-
PII preinitiation complex [22,73]. MED1 is part of the
core mediator module while MED12 is part of the medi-
ator kinase module [74,75]. The mediator core, when asso-
ciated with the kinase module has been implicated as a
transcriptional repressor; however, MED12 has been shown
to be required for transcriptional activation by specific tran-
scription factors, including NANOG [76]. The Drosophila
homologue of NIPBL (Nipped-B) has been shown to sup-
port enhancer-promoter communication between distant
enhancers [77,78]. Members of the cohesin complex,
SMCI1A and SMC3, in addition to being associated with en-
hancer regions, are also found at CTCF occupied regions
while the cohesin loading factor NIPBL is less associated
with CTCF [22]. CTCF is predictive of PrL in our model,
which would account for SMC1A and SMC3 being less dis-
criminatory of Enh and PrL than NIPBL.

As individual features are associated with enhancers and
promoters to various degrees, the modeling approach is
important to discriminate their relative contribution to
enhancers and promoters. The importance of feature
extraction when using chromatin signatures has been
demonstrated previously using an artificial neural network
for enhancer prediction in human ES cells [79]. In addition,
models integrating multiple data sources, including histone
modification ChIP-Seq data, have been shown to success-
fully improve cell type-specific TF binding site prediction
[36,80]. These studies used all histone modification ChIP-
Seq data available for either human or mouse ES cells to
predict TF binding sites without assessing the predictive
value of each feature. Narlikar et al. 2010 employed LASSO
regularization to identify heart-specific enhancers by using
TF binding specificities from PSSMs as features [81], our
approach in contrast used non-TF chromatin-associated
features from ChIP-Seq data to identify enhancers. Other
unsupervised approaches have been used to systematically
annotate various functional elements in the human genome
using chromatin features [82,83] while our approach fo-
cused specifically on enhancer identification.

In using minimal features (8 sequencing data sets and 2
genomic features) and avoiding the use of cell-type specific
TF signatures in the modeling we have retained the poten-
tial to apply this model to other cell types. The features
used (p300, H3K4mel, MED12 and NIPBL for Enh; CpG
islands, RNAPII-ser5, CTCE, GC percent and H3K4me3
for PrL) are genomic sequence features, ubiquitously
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expressed proteins, and histone modifications which we
expect mark enhancers and promoters in all cell types. In
fact, p300 has been used to identify enhancers in several
different cells types. In contrast to methods identifying
enhancers using p300, alone or in combination with
H3K4mel, in ES cells we found that our enhancer candi-
dates overlapped the active H3K27ac mark but not the
repressive H3K27me3 mark [68,69,71]. This significant
association with H3K27ac, and the absence of the
H3K27me3 mark in our enhancer candidates indicates that
the enhancers we identified are mainly of the active and
intermediate, but not poised type. This conclusion is fur-
ther supported by the finding that genes associated with
Enh in addition to PrL showed the highest expression
levels in mouse ES cells. These findings also suggest that
the TFs identified in motif analysis which are associated
with differentiated cell types may have been the result of
similarity in PSSMs between members of the same protein
family such as SOX2, SOX4 and SOX11.

Despite the reported association of H3K27ac with active
enhancers, introducing H3K27ac into our model showed
positive weighting of H3K27ac for PrL rather than Enh, in-
dicating that it is a predictor of promoters rather than
enhancers. This is in agreement with higher enrichment
overall of H3K27ac regions in PrL. compared to Enh;
whereas, the previously reported H3K27ac regions [68,69]
contain only the H3K27ac regions distal to genes and are
therefore more enriched in the Enh category. This dichot-
omy of H3K27ac marks is similar to RNAPII-ser5,
H3K4me3 and H3K4me2 which have been observed at
distal enhancer regions (Figure 6, S6) [20,84,85]; however,
these features are more enriched around gene TSSs com-
pared to enhancers. As our model detects the overall
trend, features enriched in both PrL and Enh either be-
come a discriminating feature of the signature in which
they are most enriched or their weights are reduced to
zero with LASSO regularization. It is possible that some of
this overlap in marks is due to chromatin looping events
which bring distal enhancers into close proximity with
gene promoters [22,86]. This close juxtaposition could
then allow for cross linking events between proteins at the
promoter and enhancer regions capturing the marks in
both locations. In addition chromatin modifying proteins
recruited to either the promoter or a distal enhancer could
act at both locations in the genome when they are juxta-
posed in a chromatin loop.

We have shown that Enh candidates are significantly fur-
ther from gene TSSs than PrL candidates, and the absolute
expression distribution of genes associated with Enh and
PrL candidates is significantly higher than that of genes
associated with PrL alone, indicating additional activation of
gene expression by Enh candidates. These results are con-
sistent with the enhancer/promoter DNA looping model
which promotes cell-type specific gene activation
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[3,4,6,10,22,87,88]. Furthermore, we have also found that
putative enhancer regions identified in our work are signifi-
cantly enriched with MTL and that higher probability Enh
are associated with an increased number of bound TFs.
This finding reveals the utility of our model in identifying
high confidence regions bound by multiple TFs which are
more likely associated with gene regulation [5,24]. More-
over, as only 41% of the top candidates are co-bound by
OCT4, SOX2 and NANOG, enhancers identified from our
approach are not limited to the training set of co-OSN
regions. To further identify novel enhancer-bound TFs that
may play major roles in mouse ES cells, we performed
motif enrichment analysis on enhancer candidates.
Although motif enrichment analysis is limited by the
PSSM available, we have successfully identified motif en-
richment of several known ES cell-regulating TFs, includ-
ing: KLF4, SOX2, OCT4, ESRRB, STAT3 and ZIC3. In
addition, we identified SP1, previously reported to regulate
Oct4 and Nanog gene expression through binding to their
proximal promoters [89,90]. Binding motifs for NRF2 and
TEAD1 were also identified as enriched in the Enh
regions. Both of these TFs are associated with regulatory
roles during early development and are expressed in ES
cells [60,61]. Interestingly, we have also identified enhancer
regions closest to genes of almost all of these regulatory
TFs. In agreement with this we found that genes associated
with Enh candidates are more exclusively enriched in GO
terms related to DNA binding and transcriptional regula-
tion, while the PrL genes are associated with DNA binding
as well as more basal cellular functions. Together these
findings suggest that enhancers tend to locate around
genes involved in transcriptional regulation in ES cells,
and work coordinately with PrL candidates. The combin-
ation of regulation by a distal enhancer and proximal basal
promoter perhaps allows gene expression to be fine tuned
in a cell-type specific manner.

Conclusions

We identified a widely applicable set of features to identify
regulatory enhancers and promoter regions in a given cell
type. Use of these features yields enhancer regions
associated with increased gene expression of neighbouring
genes and ES cell-specific histone modifications consistent
with active enhancers.

Methods

The bioinformatics analyses were done in R 2.12.0 (http://
www.r-project.org/) and Bioconductor [91] unless other-
wise stated.

Feature and TF datasets

Thirty public domain ChIP-Seq raw data sets in mouse
ES cells were obtained from Gene Expression Omnibus
(GEO) [92]: 12 TFs [5], 8 histone modifications [29], 3
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polymerase occupancy [30] and 7 chromatin associated
proteins [5,22,28] (Table 1). Although not listed in the
table, five ChIP-Seq controls corresponding to the above
features were also downloaded. Processed RNA-Seq data
from Guttman et al. 2010 was obtained for expression
analysis [32]. Other genomic features such as Phastcons
most conserved regions [31,33], CpG islands [34], GC
contents, SNP and repeats were downloaded from UCSC
genome annotation database in mouse mm9 build [35].
We used Ensembl transcripts for gene annotation and
UCSC Genes for figure illustration.

Data pre-processing

Reads from ChIP-Seq data were aligned to mouse mm9
assembly using Bowtie alignment [93] by suppressing
alignments to only 1 best reportable alignment with a
maximum number of 2 mismatches within 28 nucleotides
in the high quality sequencing end. The mouse genome
was segmented into 1 kb bins, and target tag count within
each bin was normalized by dividing by the control tag
count plus 3 (the rounded average median tag count
within a bin for all ChIP-Seq data), to reduce the effect of
low input count in generating extreme ratios. Format
conversion was done using the Vancouver Short Read Ana-
lysis Package (http://vancouvershortr.sourceforge.net/). The
same procedure was done for all ChIP-Seq data sets to ob-
tain a vector of values for each protein or TF. While ChIP-
Seq data files for each TF in the same experimental setting
were combined, exact duplicate tags were removed to
avoid PCR amplification bias generated in the sequencing
library preparation. As the control ChIP-Seq data sets were
not uniformly distributed throughout the genome, 180
bins with read counts in top 0.5 percentile for all 5 con-
trols were first excluded from the analysis. The genomic
features were subsequently quantified in each bin using
counts without normalization, eg. number of CpG islands
within each bin. In enhancer candidate plots, significant
TF binding peaks (p < 0.001) predicted with SISSRs algo-
rithm (v1.4) [94] are labeled in order to show binding
peaks defined from another source.

Training data sets

Binding regions of each TF used as training data were
defined to be regions with number of tags in the top 0.5
percentile. As ChIP-Seq co-bound regions of the pluripo-
tency transcription factors OCT4, SOX2 and NANOG
were confirmed to have enhancer activity in 25/25 cases
and ChIP-Seq co-bound regions of MYC or MYCN were
shown to have very weak or no ES-cell-specific enhancer
activity in luciferase assays [5], these co-bound regions
were used as Enh and PrL training sets respectively
using TF independent features. More specifically, 1291
co-bound regions of OCT4/SOX2/NANOG (co-OSN)
without either of MYC/MYCN binding were taken as the
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Enh training set; whereas 4465 co-bound regions of MYC
and MYCN (co-MYC) without either of OSN were taken
as the PrL training set. Due to the promoter-like nature of
the co-MYC cluster (Figure 1a), 5000 random regions were
drawn from non co-OSN and non co-MYC regions to be
the third category called ‘unknown’.

Feature combination assessment using Naive Bayes

Naive Bayes classifiers with various feature combinations
were used to classify 1 kb genome bins into the three
categories. Due to limited amount of training data, 10-
fold cross validation was performed to the training data
set by randomly leaving 10% of the data as a validation
set. Classifier assessment was carried out using the mean
of area under curve (AUC), precision, modified preci-
sion, and recall values computed from the validation set.
AUC is the area under ROC curve. Precision, normally
given by true positive over sum of true positive and false
positive, was modified to report the percentage of co-
OSN regions out of putative enhancers that were origin-
ally Enh or PrL. This was done to avoid penalizing
potential Enh candidates in the unknown validation
set. Recall, given by true positive over sum of true
positive and false negative, measures the percentage of
all co-OSN regions predicted to be enhancers. These
indices provide different aspects on model assessment.
Ranking of the classifiers with different feature combina-
tions were sorted by the average ranking of all indices.

Feature extraction and weighting with LASSO regularized
multinomial logistic regression

All the features were first standardized by subtracting the
mean and dividing by the standard deviation in order to
prevent biased shrinkage of feature weights. Multinomial
logistic regression was applied to model sequence features,
chromatin features, and associated proteins to predict the
genome-wide location of enhancers. Cross entropy was
used as the error function for multi-group classification.
To assess predictability of features, LASSO regularization
was used to introduce extra penalization with a power
raised on the weight vector [2526]. Using LASSO
regularization, feature weights of less significance shrink
to 0 as lambda increases and the lambda, exp(-4), is
subsequently obtained through comparison of average
multinomial deviances from 10-fold cross validation.

Correlations of Enh and PrL sets with absolute gene
expression in mouse ES cells

RPKM, the number of reads per kilobase of exon region
per million mapped reads derived from RNA-Seq data
has been shown to be approximately proportional to the
absolute abundance of mRNAs in cell [95]. We obtained
formerly computed RPKM values by Ouyang et al. [96]
from a mouse ES cell RNA-Seq data set [97]. The Enh and
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PrL candidates were assigned to Ensembl genes of the
closest TSSs without taking the degree of transcription into
account. The distributions of absolute expression (RPKM)
were shown in box plots, and one-sided Kolmogorov-
Smirnov tests were performed to assess the differences in
empirical cumulative distributions of gene sets.

GO functional enrichment analysis and MTL association
Candidates were first assigned to genes through identifying
the closest TSSs. 469 Enh candidates (Enh prob >0.9) and
2239 PrL candidates (PrL prob>0.99) were used to carry
out the analysis. The discrepancy in probability cut-offs be-
tween sets was due to the large number of high confidence
PrL candidates. DAVID functional annotation website was
used to assess functional enrichment on both Enh and PrL
candidate sets compared to all genes in the mouse genome
[42,43]. As genes can have more than one nearby candi-
date within each set, only the unique genes within each set
were subjected to GO analysis. The molecular functions
and biological processes significantly enriched in each set
were subsequently reported (FDR<0.1). For better
visualization of the enrichment functions, Enrichment
map plug-in of Cytoscape was used to cluster functions
sharing the same genes [44,98].

To determine if the putative enhancer candidates are
enriched in MTL, we separate Enh, PrL. and unknown
candidates, and all genome bins into 3 groups: 0 TF peak
enrichment, enrichment of 1 to 3 TFs, and enrichment
of over 4 TFs (MTL) within the bin. The MTL
enrichment of Enh is assessed using Chi-squared statistics
of the counts of the last two bins in comparison to that of
PrL, unknown and genomic bin sets.

Supervised motif analysis

Clover algorithm [27] was used to screen a set of given
DNA sequences against transcription factor weight
matrices, and assess whether any motifs are over- or
under-represented in the given sequences by comparing
to random sequences drawn from chrl9 (42.7% C+ Q)
and 5 kb upstream of TSSs (45.7% C+ G). For a more
stringent motif screening, we also tested the significance
of the Enh regions compared to 2222 PrL regions (PrL
prob>0.99; 61% C+ Q). Motif and sequence shuffling
were also used to account for G+ C content biases. 467
putative enhancer regions with Enh probability greater
than 0.9 (45% C+ G) were used in the motif analysis to
narrow down the search. We obtained the human and
mouse PSSMs from the JASPAR mammalian database
[12] and mouse protein-binding microarray data [70].

Binding region comparison with other datasets

Significantly enriched regions of H3K4mel, H3K27ac
and p300 in ES, adult liver, progenitor B and neural
progenitor cells were obtained from [69], and genomic
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coordinates were updated to mm9 using the UCSC
genome browser liftOver tool [35]. 10479 and 2916
CHD7 binding peaks from medium and high thresholds
were obtained from [37], and the genome coordinates
were also updated to mm9 built. Venn diagrams are
drawn on the basis of putative enhancers allowing
500 bp gaps between regions.

Additional files

Additional file 1: Table S1. Predicted enhancer and promoter-like
candidates. The Enh and PrL candidates in mouse ES cells are listed.
Columns represent the chromosome location (Chr, start and end), Enh /
PrL probability (Enh.prob / PrL.prob), gene symbol of the closest Ensembl
transcript (geneName), the location relative to genes (location), the
distance of the enhancer to the closest transcript (distance2Transcript),
the previously validated enhancers that overlap with Enh from Chen et al.
2008 (Validated), and whether the candidate overlaps an exon
(OverlapExon).

Additional file 2: Figure S1. Heatmap of features used in LASSO
regression for top 50 enhancer and promoter-like candidates. The dark
red and blue side bar on the left denotes putative Enh and PrL kb
genome bins, whereas the dark red and blue side bar on top denotes
indicative Enh and PrL feature sets. Feature values are scaled to exhibit
the contrast between the Enh and PrL.

Additional file 3: Figure S2. Genomic distribution of categories and
relative position to TSS (The entire set). (A) Pie charts representing the
genomic distributions of the co-OSN and co-MYC training sets as well as
all Enh and PrL candidates. Intergenic regions are defined to be regions
2 10kb away from the closest TSS or transcription end site; whereas
upstream regions are regions within 10kb upstream of TSSs. (B) Violin
plots demonstrating the distances to TSSs of the closest transcript for
each set.

Additional file 4: Figure S3. Gene Ontology analysis of the Enh and
PrL candidate sets. Enriched functions of Enh (A) and (B) PrL identified
from DAVID (FDR<0.1) and plotted using Cytoscape Enrichment map
plug-in. Functions are further circled and grouped into general categories
labeled aside. Line thickness between nodes is proportional to number of
genes shared between nodes. Colors are used for the purpose of
visualization contrast between functional groups.

Additional file 5: Figure S4. Four known mouse ES cells enhancers
that interact with nearby promoters through looping mechanisms. Plot
showing previously validated enhancers around Pou5f1 (Oct4), Nanog,
Phcl, and Leftyl. The Enh and PrL probabilities of 1kb bins are shown in
red and blue bars, respectively. Only probabilities greater than 0.8 are
shown for higher stringency (n=1277 for Enh; n=21581 for PrL), and the
y-axis scale is from 0.5 to 1. Transcription factors peaks identified using
the SISSRs algorithm are illustrated in rectangle boxes to demonstrate
overlaps of the enhancers with TFs.

Additional file 6: Figure S5. LincRNA downstream of Sox2. Plot
showing novel putative enhancers downstream of the Sox2 gene. The
Enh and PrL probabilities of 1kb bins are shown in red and blue bars,
respectively. Only bins with probabilities greater than 0.8 are displayed for
higher stringency, and the y-axis scale is from 0.5 to 1. A lincRNA
approximately 100kb downstream of Sox2 near a distal enhancer cluster
is shown. Transcription factors peaks identified using the SISSRs algorithm
are illustrated in rectangle boxes to demonstrate overlaps of the
enhancers with TFs. The coverage plot for RNA-Seq data in ES cells is
shown at the bottom.

Additional file 7: Figure S6. Detailed plots for novel putative enhancer
regions. Detailed coverage plots of novel enhancer regions identified
including (A) multiple putative enhancers upstream of miR-290 cluster, (B)
multiple contiguous enhancer regions upstream of Tet! and around a
non-coding small nuclear RNA, U6, (C) two putative enhancers around
Zic3, and d) the putative enhancer region located 10kb upstream
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of C80913. The Enh and PrL probabilities of kb bins are shown in red
and blue bars, respectively. Only bins with probabilities greater than 0.8
are displayed for higher stringency, and the y-axis scale is from 0.5 to 1.
Transcription factors peaks identified using the SISSRs algorithm are
illustrated in rectangle boxes to demonstrate overlaps of the enhancers
with TFs.

Additional file 8: Figure S7. Active enhancers and cell specificity of all
enhancer candidates. (A) Venn diagrams of all enhancer candidates with
distal (TSS +/- kb removed) H3K27ac marks (active) and H3K27me3
marks (repressive). (B) The stacked bar plot shows the percent overlaps of
all enhancers with distal H3K27ac / H3K4me1 in various cell types. All
overlaps presented here allow a 500 bp gap.

Additional file 9: Figure S8. Feature coefficients determined from Lasso
regularization (H3K27ac included). The plot shows feature weights in each
class with respect to logged lambda, the penalization parameter, in LASSO
regularized multinomial logistic regression. Weights of features less
discriminative of the three categories shrink to 0 as the lambda is increased.
H3K27ac, a positive predictor of PrL group, is highlighted in a blue box.

Additional file 10: Table S2. Features found at predicted enhancer and
promoter-like candidates. The numbers of predicted Enh and PrL regions
that overlapped with the indicated features are shown. Both the full set of
predictions and the probability >0.8 set are shown as well as the overlaps
with the unknown regions. P300, H3K4me1 and H3K27ac data are from
Creyghton et al. 2010, CHD7 data is from Schnetz et al. 2010. * Data not
shown as peaks overlapping TSS were removed from Creyghton et al. 2010
data and PrL frequently overlap TSS. Transcription factor peaks includes:
KLF4, STAT3, SMAD1, E2F1, TFCP2L1, ZFX, and ESRRB ChIP-Seq data from
mouse ES cells. LincRNA (large intergenic non-coding RNA).
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