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Abstract

Background: Intramuscular fat (IMF) is one of the important factors influencing meat quality, however, for chickens,
the molecular regulatory mechanisms underlying this trait have not yet been determined. In this study, a systematic
identification of candidate genes and new pathways related to IMF deposition in chicken breast tissue has been
made using gene expression profiles of two distinct breeds: Beijing-you (BJY), a slow-growing Chinese breed
possessing high meat quality and Arbor Acres (AA), a commercial fast-growing broiler line.

Results: Agilent cDNA microarray analyses were conducted to determine gene expression profiles of breast muscle
sampled at different developmental stages of BJY and AA chickens. Relative to d 1 when there is no detectable IMF,
breast muscle at d 21, d 42, d 90 and d 120 (only for BJY) contained 1310 differentially expressed genes (DEGs) in BJY and
1080 DEGs in AA. Of these, 34–70 DEGs related to lipid metabolism or muscle development processes were examined
further in each breed based on Gene Ontology (GO) analysis. The expression of several DEGs was correlated, positively or
negatively, with the changing patterns of lipid content or breast weight across the ages sampled, indicating that those
genes may play key roles in these developmental processes. In addition, based on KEGG pathway analysis of DEGs in
both BJY and AA chickens, it was found that in addition to pathways affecting lipid metabolism (pathways for MAPK &
PPAR signaling), cell junction-related pathways (tight junction, ECM-receptor interaction, focal adhesion, regulation of actin
cytoskeleton), which play a prominent role in maintaining the integrity of tissues, could contribute to the IMF deposition.

Conclusion: The results of this study identified potential candidate genes associated with chicken IMF deposition and
imply that IMF deposition in chicken breast muscle is regulated and mediated not only by genes and pathways related to
lipid metabolism and muscle development, but also by others involved in cell junctions. These findings establish the
groundwork and provide new clues for deciphering the molecular mechanisms underlying IMF deposition in poultry.
Further studies at the translational and posttranslational level are now required to validate the genes and pathways
identified here.
Background
During the past decades, meat poultry breeding has been
predominantly focused on accelerating growth rate and
yields of breast and thigh meat. The impressive progress
made in these traits, however, has been accompanied by
deterioration of taste quality of the broiler meat and, in
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reproduction in any medium, provided the or
some markets, decreased acceptability of the meat by
consumers [1,2].
Intramuscular fat (IMF), located in most species in the

epimysium, perimysium and endomysium, is an import-
ant determinant of meat quality. A certain amount of
IMF can enhance meat quality traits such as the flavor,
juiciness, water holding capacity and tenderness [3-7].
Additionally, IMF can improve meat quality by reducing
the drip loss and cooking loss [8].
Compared to beef, chicken meat does not present a

marbled aspect and intramuscular fat is not visible and
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Table 2 Summary of gene expression in breast muscle of
BJY and AA chickens determined by microarray analysis

Breed Total
probes

Non-expressed
genes

Expressed
genes

Differentially
expressed genes

Known Not-known

AA 43024 8125 25446 1310 2945

BJY 8046 24749 1080 2102

BJY, Beijing-you; AA, Arbor Acres.
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not anatomically separable; a higher proportion of IMF
is represented by polar lipids, presumably within mem-
branes. Previous studies found that the IMF content of
chicken meat increased with age from d 28 to d 90 [9,10]
and may increase further after that (d 90-d 140), along
with flavor and taste of the meat [11].
For livestock IMF, studies of the molecular mechanisms

underlying IMF deposition have revealed large numbers of
DEGs and signaling pathways including ADAMST4-
signaling and insulin-signaling pathways [12-17]. Com-
pared to mammals, where most de novo synthesis of fatty
acids occurs in adipose tissue [18], chicken differs in lipid
metabolism because little fatty acid synthesis occurs in adi-
pose tissues in this species [19-21]. Until now, no system-
atic studies have been reported on the IMF development
in chicken at the molecular level, although expression pro-
files in abdominal fat tissue [22], liver [23] or muscle cells
[24] have been performed. This study provides a compre-
hensive analysis of gene expression profiles of chicken
breast using both fast- and slow-growing breeds.

Results
Differentially expressed gene profiles in breasts of slow-
and fast-growing chickens
To identify potential candidate genes affecting chicken
IMF deposition, gene expression profiles in breast
muscle of both Beijing-you (BJY, a slow-growing Chinese
breed) and Arbor Acres (AA, commercial fast-growing
broiler) chickens at different developmental stages were
examined using Agilent cDNA microarray technology.
Divergence of breast growth rates in BJY and AA chick-
ens are shown in Table 1. Of the target traits measured,
IMF contents and muscle weights at later ages (d 21, d
42, d 90 and d 120 just for BJY) were all higher than the
content and weight at d 1 (Table 1). Thus, for each
breed, the gene expression profile at d 1 was used as the
control and the DEGs analyses were carried out as com-
parisons with d 1 (21 vs 1, 42 vs 1, 90 vs 1 and 120 vs 1,
just for BJY). For AA chickens, 4255 genes (1310 known)
were detected as DEGs with consistent fold changes
Table 1 Changes in IMF, TG, PLIP and breast muscle weight in

Ages
and
breeds

IMF (%) TG (mg/g)

BJY AA BJY AA

1 0 0 0 0

21 1.83 ± 0.13b 2.49 ± 0.32b 5.19 ± 0.63b 10.88 ± 0.54 b

42 2.43 ± 0.25a 2.11 ± 0.36b 8.28 ± 0.92 a 8.81 ± 0.72 b

90 2.74 ± 0.15a 5.39 ± 0.88a 12.13 ± 1.27a 22.68 ± 0.65 a

120 2.67 ± 0.36a / 9.25 ± 1.11a /

Data are means ± SD (n = 6), different lowercase superscripts in each column indica
breast tissue at d 1 were too little to measure by current method and were set to “0
AA, Arbor Acres.
≥2.0, in all comparisons. In BJY chickens, 3182 genes
(1080 known) were detected as DEGs (Table 2). There
were 1746 DE genes (595 known) shared by the two
breeds, (Additional file 1, Figure 1).
Based on the known DE genes, GO analysis was

performed in each breed, and the enriched GO-terms
(P< 0.05) in the ontology classification “Biological Process”
were selected and are presented in Additional file 2. The
results showed the consistency of enriched GO-terms be-
tween the two breeds, mainly including the following pro-
cesses: muscle system, lipid metabolism, cell cycle, protein
metabolism, hormone metabolism, trans-membrane trans-
port, oxidation-reduction, regulation of cell differentiation,
regulation of immune system, blood circulation, regulation
of apoptosis and ATP biosynthesis.
To validate the microarrays, normal distribution analysis

was performed with the results of the nine microarrays,
and all of their coefficients were <0.5. Based on the 595
known genes that were shared as DEGs in both breeds,
cluster analysis of all microarrays was performed (Figure 2)
using the Cluster 3.0 software. The results demonstrated
that expression profiles of samples at different ages of the
same breed were polymerized together; the expression pat-
terns of genes at d 1 differed more than those at other ages.
To further validate the results of microarray testing, q-

PCR was used to examine the relative expression of 9
DE key genes selected in each breed at different ages.
The results showed acceptable consistency between the
results of q-PCR and the fold-change of DE genes in the
microarrays (Table 3).
two chicken breeds at different ages

PLIP (mg/g) Muscle weight (g)

BJY AA BJY AA

0 0 1.34 ± 0.17e 1.58 ± 0.13d

2.67 ± 0.30 b 0.53 ± 0.16 b 7.73 ± 0.59d 41.29 ± 1. 29c

2.82 ± 0.30 b 2.14 ± 0.26 a 15.22 ± 0.78c 132.88 ± 2.01b

3.90 ± 0.31 ab 3.42 ± 0.29 a 49.67 ± 1.52b 351.29 ± 3.89a

5.77 ± 0.30 a / 96.50 ± 1.29a /

te significant differences (P< 0.05). Content of lipids (IMF, TG, PLIP) within
”. IMF, Intramuscular fat; TG, Triglyceride; PLIP, Phospholipids; BJY, Beijing-you;



Figure 1 Numbers of genes that were differentially expressed in breast muscle between days 21, 42, 90 and 120 (BJY) versus day 1.
BJY, Beijing-you; AA, Arbor Acres.
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Key genes related to lipid metabolism and muscle
development
As IMF is located throughout skeletal muscle, and not as
discrete adipose deposits in chicken, it is reasonable to
assume that DEGs related to muscle development or
lipid metabolism in current study would contribute to its
process of deposition. The GO-term analysis showed that
known DE genes related to muscle development (34 in
BJY, 39 in AA) and genes related to lipid metabolism (59
in BJY, 70 in AA) were found (Additional file 3, Add-
itional file 4). The 19 DE genes related to muscle devel-
opment that were shared by the two breeds included
FGF4, MYH4, MYBPC1, MYH7B, MYL2, MYL10, MYL3,
Figure 2 Cluster analysis of all microarrays. Expression profiles of sampl
breed (AA and BJY marked) were polymerized together; the expression pro
Beijing-you; AA, Arbor Acres.
MYO15A, TGFA and WNT4 (Additional file 5); these
might be key genes. The 33 DEGs affecting lipid metab-
olism that were shared by BJY and AA breeds included
ACSL1, ACSS2, APOH, FABP1, FABP3, CETP, RXRA,
PPARGC1A, SNX4 and SNX30 (Additional file 5).
Genes for which the expression was significantly corre-

lated with changes in muscle development and lipid de-
position were analyzed as these genes might be directly
involved in IMF regulation. The changes in muscle
weight, the content of IMF, triglyceride (TG) and phos-
pholipids (PLIP) in breast tissue of the two breeds at dif-
ferent ages are provided in Table 1. The striking
difference between the breeds in the rate of growth of
es at different ages (1d, 21d, 42d, 90d and 120d marked) of the same
file of genes at d 1 differed more than those at other ages. BJY,



Table 3 Comparison of microarray and q-PCR fold-changes for selected transcripts in breast muscle of BJY or AA chickens

Breed Comparison
(days)

21 vs 1 42 vs 1 90 vs 1 120 vs 1

Microarray q-PCR Microarray q-PCR Microarray q-PCR Microarray q-PCR

BJY FABP3 −5.86 −5.99 −3.56 −5.44 −7.90 −6.51 −2.38 −3.78

RXRA 3.64 2.63 4.11 5.44 5.83 9.38 3.08 6.78

MYL10 −152.02 −20.08 −87.27 −12.47 −291.39 −69.91 −141.24 −33.06

FGF4 4.82 3.66 4.24 4.69 11.43 8.55 6.55 9.99

RBP7 4.89 3.56 9.27 6.42 7.14 9.71 2.47 3.53

ACSF3 −2.40 −2.92 −3.98 −3.26 −4.49 −4.61 −3.86 −3.77

DCK −2.49 −2.18 −11.36 −7.45 −19.25 −9.19 −44.86 −12.93

DGAT2 5.38 5.59 2.26 3.24 2.20 2.57 2.30 2.69

FABP5 −2.68 −3.11 −3.57 −3.42 −2.97 −3.07 −3.47 −3.78

AA FABP3 −4.62 −4.56 −4.78 −3.77 −5.01 −7.39 / /

RXRA 2.86 2.5 4.51 4.79 3.48 3.69 / /

MYH4 −30.21 −8.48 −50.39 −12.56 −29.66 −13.53 / /

FGF4 −11.24 −12.54 −9.05 −8.67 −3.60 −4.22 / /

FABP1 12.81 6.97 5.21 4.33 2.23 3.15 / /

PGK1 7.44 6.98 8.13 7.82 10.04 9.53 / /

PLTP 3.62 3.06 2.92 2.45 6.67 4.36 / /

RBP7 −8.04 −9.41 −12.33 −10.95 −2.50 −3.27 / /

THRSP −8.45 −7.99 −6.29 −5.46 −35.01 −19.74 / /

FABP (1, 3, 5), Fatty acid binding protein; RXRA, Retinoid X receptor-alpha; MYL10, Myosin, light chain 10; FGF4, Epidermal growth factor 4; RBP7, Retinol binding
protein 7; ACSF3, Acyl-CoA synthetase family member 3; DCK, Deoxycytidine kinase; DGAT2, Diacylglycerol O-acyltransferase homolog 2; MYH4, Myosin, heavy
polypeptide 4; PGK1, Phosphoglycerate kinase 1; PLTP, Phospholipid transfer protein; THRSP, Thyroid hormone responsive, SPOT14 homolog; BJY, Beijing-you;
AA, Arbor Acres.
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the breast muscle is apparent but growth continues
across all ages sampled.
Based on the trait measurements, relationships between

expression of DEGs and muscle development and lipid
deposition (IMF, TG, PLIP contents) were examined. The
expression of GDF3 and CAPNS1 in AA, and ANKRD1
and PLG in BJY were positively correlated (p< 0.05) with
muscle development. The expression of BMP2K and
MYBPC1 in AA, and CENPF, ELN, FGF7, FGFR1,
MYBL2, MYCN and MYBPC1 in BJY were negatively cor-
related (p< 0.05) with that of muscle development
(Table 4). For lipid deposition, CH25H, RCJMB04_10b24,
RCJMB04_13o20, SNX3, and CETP in AA, and YWHAH,
NR3C2 and CETP in BJY were positively correlated
(p< 0.05) with PLIP contents while NACA, RBP7 and
GLTPD1 in AA chickens, and LOC416618, ETFDH
and GLTPD1 in BJY chickens were negatively correlated
(p< 0.05) with PLIP contents. In the case of TG depos-
ition, HMGCLL1, THBS1, UCP3 and SNX4 in AA,
and EHHADH and SNX4 in BJY were positively corre-
lated (p< 0.05) with TG contents and SGPL1, SH3PXD2B
and THRSP in just the AA chickens were negatively cor-
related (p< 0.05) with contents of TG or IMF (Table 4).
The expression of 1 DEG (MYBPC1), common to both
breeds, was positively correlated with breast tissue weight
across ages while 3 DEGs (CETP, GLTPD1 and SNX4),
common to the two breeds, were positively or negatively
correlated with IMF, TG or PLIP contents (Table 4).
The relative abundances of MYBPC1, GLTPD1, CETP,

SNX4 transcripts in BJY chickens and in AA chickens
were further measured by q-PCR. Consistent correlation
between mRNA expression of these genes and muscle
development and lipid deposition (IMF, TG, PLIP con-
tents) were found and are shown in Figure 3.

Pathways and a regulatory network for IMF content in
chickens
The regulation of IMF is possibly a function of complex
pathway interactions involving muscle, fat and connect-
ive tissue [25], so examining regulatory networks is the
preferred method of analysis. After KEGG pathway ana-
lysis of the known DEGs related to muscle development
and lipid metabolism, 24 metabolic pathways were iden-
tified in each breed, with 15 being shared by BJY and AA
chickens (Additional file 6). Well known pathways affect-
ing lipid metabolism (MAPK- and PPAR-signaling) were
enriched in both breeds; the ErbB signaling pathway
probably plays a role upstream of MAPK signaling.
These analyses also demonstrate that pathways related to
cell junctions (tight junction, ECM-receptor interaction,
focal adhesion, regulation of actin cytoskeleton) were
also enriched and might form a network with pathways



Table 4 Key genes1 related to breast muscle development or lipid metabolism in two breeds of chickens

Breed Symbol Gene Coefficient Regulation Trait

AA BMP2K BMP-2-inducible protein kinase −0.97 - Breast muscle

CAPNS1 Calpain, small subunit 1 1.00 +

GDF3 Growth differentiation factor 3 1.00 +

CH25H Cholesterol 25-hydroxylase 0.92 + PLIP

HMGCLL1 3-hydroxymethyl-3-methylglutaryl- Coenzyme A lyase-like 1 0.97 or 0.97 + TG or IMF

NACA Nascent polypeptide-associated complex alpha subunit −1.00 - PLIP

RBP7 Retinol binding protein 7 −0.95 - PLIP

RCJMB04_10b24 membrane bound O-acyltransferase domain containing 1.00 + PLIP

RCJMB04_13o20 NSFL1 (p97) cofactor (p47) 1.00 + PLIP

SGPL1 Sphingosine-1-phosphate lyase 1 −1.00 or −1.00 - TG or IMF

SH3PXD2B SH3 and PX domains 2B −0.95 or −0.96 - TG or IMF

SNX3 Sorting nexin 3 0.96 + PLIP

THBS1 Thrombospondin-1 1.00 or 1.00 + TG or IMF

THRSP Thyroid hormone responsive, SPOT14 homolog −0.86 or −0.85 - TG or IMF

UCP3 Uncoupling protein 3 1.00 or 1.00 + TG or IMF

BJY ANKRD1 Ankyrin repeat domain 1 0.94 + Breast muscle

CENPF Centromere protein F −0.77 -

ELN Elastin −0.92 -

FGF7 Fibroblast growth factor 7 −0.99 -

FGFR1 Fibroblast growth factor receptor 1 −0.98 -

PLG Plasminogen 0.96 +

MYBL2 V-myb myeloblastosis viral oncogene homolog (avian)-like 2 −0.97 -

MYCN V-myc myelocytomatosis viral related oncogene,
neuroblastoma derived

−0.94 -

YWHAH Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
activation protein

0.99 + PLIP

NR3C2 Nuclear receptor subfamily 3, group C, member 2 0.95 + PLIP

LOC416618 NAD(P) dependent steroid dehydrogenase-like −0.74 - PLIP

EHHADH Enoyl-Coenzyme A, hydratase/3-hydroxyacyl
Coenzyme A dehydrogenase

0.90 or 0.85 + TG or IMF

ETFDH Electron-transferring-flavoprotein dehydrogenase −0.95 - PLIP

AA/BJY2 MYBPC1 Myosin binding protein C, slow type 0.96/0.96 + Breast muscle

CETP Cholesteryl ester transfer protein 0.98/0.80 + PLIP

GLTPD1 Glycolipid transfer protein domain containing 1 −1.00/-0.96 - PLIP

SNX4 Sorting nexin 4 0.95/1.00 or 0.94/0.90 + TG or IMF

All correlations were significant (p< 0.05 or p< 0.01). 1Key gene were defined as its expression determined by microarray was significantly correlated (p< 0.05 or
p< 0.01) with changes in breast muscle weight or in content of IMF, TG or PLTP across the sampled ages. 2Common to both BJY and AA breeds, the expression of
genes was significantly correlated with target traits across ages. “+” represents up-regulated effect; “-” represents down-regulated effect. d = day. IMF, Intramuscular
fat; TG, Triglyceride; PLIP, Phospholipids; BJY, Beijing-you; AA, Arbor Acres.
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related to lipid metabolism to influence the deposition of
IMF (Figure 4).

Discussion
cDNA array analysis
Fat deposition in chickens takes place mainly in visceral
adipose tissue and in muscle. The latter, IMF, is very im-
portant for sensory aspects of meat quality and there is
increasing interest in improving quality, perhaps using
marker-assisted selection for IMF. Although global gene
expression surveys have been performed on visceral tis-
sues [22], this study is the first to systematically explore
gene expression profiles in breast tissue using two
distinct breeds across their development. The present
objective was to identify global genes and pathways
affecting chicken IMF deposition.
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Figure 3 Correlation analysis between the mRNA expression of MYBPC1 (Myosin binding protein C, slow type), GLTPD1(Glycolipid
transfer protein domain containing 1), CETP (Cholesteryl ester transfer protein) or SNX4(Sorting nexin 4) genes determined by q-PCR
and the breast muscle weight, PLIP, IMF or TG contents in BJY or AA chickens. The r value indicates Spearman’s Correlation. IMF,
Intramuscular fat; TG, Triglyceride; PLIP, Phospholipids; BJY, Beijing-you; AA, Arbor Acres.
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Figure 4 Proposed regulatory network for chicken IMF based on significantly different GO terms and KEGG pathways. This network is
involved in several cellular functions including lipid metabolism (pathways for ErbB, MAPK & PPAR signaling) and cell junction (tight junction,
ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton). Whether or not cell junction related pathways function on IMF
deposition through lipid metabolism related pathways (dotted lines) needs further study. FGF & FGFR, Fibroblast growth factor and its receptor;
PPAR, Peroxisome proliferator-activated receptor; ECM, Extracellular matrix.
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Chicken microarrays were employed, each using pooled
RNA samples (n= 6 birds, within each of two breeds and
at 4 or 5 ages; 9 arrays in all). Such a pooling strategy can
dramatically improve accuracy when only one array is
available in each biological condition [26]. Potential candi-
date DEGs related to IMF deposition were rigorously
defined, requiring their expression to differ across all com-
parisons conducted (21 vs 1, 42 vs 1, 90 vs 1 and 120 vs 1,
just for BJY). To confirm results from the microarrays,
more than 100 tests were done with q-PCR, involving 12–
13 genes in breast tissue at 4 or 5 sampled ages in each
breed. As shown in Figure 5, fold-changes in gene expres-
sion between the two methods were correlated in both BJY
(r2 = 0.85) and AA (r2 = 0.72) chickens.
Function of key DEGs affecting IMF and muscle development
The data obtained here indicate that three key genes
related to lipid metabolism were shared by the two
breeds (CETP, GLTPD1 and SNX4) and showed consist-
ent trends with the changes in IMF, TG or PLIP contents
across the ages examined (Table 4). Cholesteryl ester
transfer protein (CETP) functions in the reversible trans-
port/exchange of cholesteryl esters from high-density
lipoproteins (HDL) and triglycerides from very-low-
density (VLDL) or low-density (LDL) lipoproteins. The
SNX4 gene encodes a member of the sorting nexin
family which associates with a variety of receptors, in-
cluding those for insulin, EGF and leptin [27]. Glycolipid
transfer protein D1 (GLTPD1) is a cytosolic protein that
transfers glycolipids between different intracellular mem-
branes [28]; its precise biological function is not known.
For key candidate genes affecting muscle development,

one gene common to the two breeds (MYBPC1) changed
consistently with the changing patterns of breast tissue
weight (Table 4). The MYBPC1 gene encodes a slow
form(s) of MyBP C found in skeletal muscle and func-
tions in the assembly and stabilization of sarcomeric M-
and A-bands and regulates the contractile properties of
actomyosin filaments. In chickens, increased levels of
MyBP-C slow are found in dystrophic skeletal muscles
[29]. Further research is required to understand the mo-
lecular mechanisms that lead to the anticipated effects of
this candidate gene on lipid metabolism and muscle de-
velopment in chickens.
Function of novel pathways related to IMF
GO-term analysis was used to explore the function of
DEGs and KEGG pathway analysis was used to explore
the regulatory network underlying chicken IMF depos-
ition. As expected, several well-known pathways related
to lipid metabolism were found, including the MAPK
and PPAR signaling pathways [30]. Large numbers of



Figure 5 Technical validation of microarray results by q-PCR by correlation: (a) BJY and (b) AA chickens. The r value indicates Spearman’s
Correlation between the two methods.
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DEGs involved in PPAR signaling pathways here have
been proven to be functional in lipid metabolism, such
as FABP family genes (FABP1, FABP5, FABP6), ACSL4,
CD36, PLTP [31-33]. This is partially consistent with our
previous studies where mRNA expression of adipocyte
FABP and heart-type FABP genes and SNP markers from
these genes were found to be associated with IMF con-
tent in Chinese chickens [34,35]. Several DEGs (FGF1,
FGF4, FGF7, FGF16, FGFR1 and FGFR2) belonging to
the FGF family and receptors were reflected in the
MAPK signaling pathway.
Of special interest, these GO and KEGG analyses pro-

vide the first demonstration that a series of pathways
related to cell junctions might contribute to the depos-
ition of IMF. DEGs related to muscle development
included well-known genes (MYBPC1, MYBPC2, MYH4,
MYH7B, MYL10, MYL2, MYL3, MYO15A and MY01F)
related to the biosynthesis of myosin, of which MYL10
and MYL2 encode proteins involved in the formation of
tight junctions, focal adhesions and regulation of the
actin cytoskeleton. Additionally, the CTNNB1 gene
encodes β-catenin, one of the proteins constituting adhe-
rens junctions, and anchoring the actin cytoskeleton
[36,37]; ACTB encodes beta-actin, one of the non-
muscle cytoskeletal actins playing a central role in shape
determination, cytokinesis, and cell motility, along with
cell-cell and cell-matrix interactions [38,39]. In addition,
DEGs of the FGF family and their receptors (FGF1,
FGF4, FGF7, FGF16, FGFR1 and FGFR2) were reflected
in the regulation of the actin cytoskeleton and may
modulate morphogenetic processes involving cellular
rearrangements and tissue remodeling [40,41]. The genes
THBS1 and CD36 are involved in extracellular matrix
(ECM)-receptor interaction [42,43] and influence, dir-
ectly or indirectly, cellular activities such as adhesion
and migration. In support of this, previous studies have
shown that changes in cytoskeletal organization and its
contacts with the ECM are essential in the morphogen-
esis of fibroblastic preadipocytes to rounded, mature adi-
pocytes [44], while the expression of actin, integrins and
several cytoskeletal proteins is down-regulated during
adipogenesis [45,46]. Taken together, cell junctions in-
cluding the interaction of the ECM and cytoskeleton
might participate in accumulation of IMF during chicken
development.
The KEGG analysis implicated the MAPK signaling

pathway in processes involving tight junctions, focal ad-
hesion and regulation of the actin cytoskeleton. This is
also consistent with studies showing that activation of
MAPK activity resulted in the disruption of tight junc-
tions, and that inhibition of MAPK activation prevented
this process [47,48]. We suggest that processes related to
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cell junctions might interact with pathways related to
lipid metabolism, mainly through MAPK activity, to in-
fluence the deposition of IMF. The proposed molecular
regulatory network affecting IMF deposition during
chicken development is presented in Figure 4. This novel
suggestion of IMF regulation and its detailed mechanism
through pathways related to cell junctions in addition to
lipid metabolism needs further examination.
The present approach has used gene expression profil-

ing to elucidate molecular mechanisms of post-hatch
IMF deposition in chickens. Possible regulation by trans-
lational mechanisms and posttranslational modifications
may also contribute. A more complete understanding of
IMF development in chickens should include further
examination of the expression and function of the pro-
teins encoded by the genes identified here in both em-
bryonic and post-hatch stages of development.

Conclusions
With aim of identifing global candidate genes and new
pathways related to IMF deposition in chicken breast,
Agilent cDNA microarray analyses were performed with
both fast- and slow- growing breeds. Gene expression
profiles of breast muscle sampled at different develop-
mental stages of BJY and AA chickens were determined.
Relative to d 1, breast muscle at d 21, d 42, d 90 and d
120 (only for BJY) contained 1310 DEGs in BJY and
1080 DEGs in AA. Several DEGs (MYBPC1, CETP,
GLTPD1 and SNX4) may play key roles in IMF develop-
mental processes because their expressions were corre-
lated with the changing patterns of lipid content or
breast weight across the ages sampled in both two
breeds. In addition, the results of KEGG pathway ana-
lysis imply that IMF deposition in chickens is regulated
and mediated not only by genes and pathways related to
lipid metabolism and muscle development, but also by
others involved in cell junctions with the function in
maintaining the integrity of tissues and signal transduc-
tion. These findings establish the groundwork and
provide new clues for deciphering the molecular
mechanisms underlying IMF deposition in poultry. Add-
itional studies of translational and posttranslational
effects will be required to complement these mRNA ex-
pression analyses.

Methods
Animals
All experimental procedures, using female Beijing-You
chickens (BJY, the Institute of Animal Sciences, Chinese
Academy of Agricultural Sciences, Beijing, China) and
Arbor Acres (AA, Dadongliu broiler Company, Beijing,
China), were performed in accordance with the Guide-
lines for Experimental Animals established by the Minis-
try of Science and Technology (Beijing, China).
Individuals within each breed had the same genetic back-
ground. Birds (60 BJY and 48 AA) were reared in stair-
step caging under continuous lighting using standard
conditions of temperature, humidity and ventilation.
Chickens used for sample collection at d 1 were not fed.
The same diet was fed to all chickens and was formu-
lated to be intermediate between recommendations for
the two breeds [49,50]. The starter ration (d 1 to d 21)
with 20% crude protein and 2.87 MC/kg differed only
slightly from that used in the grower (after d 22) phase;
19% crude protein and 3.0 MC/Kg. Feed and water were
provided ad libitum during the experiment.

Sample collection
At each sampling age, d 1, d 21, d 42, d 90, and d 120
(only for BJY), six birds of similar weight from each
breed were sacrificed for tissue collection. Samples of the
left pectoralis major muscle were excised, snap-frozen in
liquid nitrogen and stored at −80°C. The entire right
breast was collected and stored at −20°C for trait
measurements.

Trait measurements
Intramuscular fat (IMF) content of breast muscle was
determined by extraction with petroleum ether in a Soxh-
let apparatus [51,52] and expressed as percentages of the
dry weight of the muscle.
Samples of the right pectoralis major muscle were homo-

genized using the method of Folch [53]. The contents of
triglyceride (TG) and phospholipids (PLIP) in the solvent
phase, after centrifugation, were analyzed with TG [54,55]
and PLIP [56,57] kits (Deliman Biochemical technology
Co., LTD, Beijing, China).

Total RNA preparation and microarray hybridization and
analysis
Total RNA was isolated from breast muscle samples using
Trizol reagent (Invitrogen, USA) according to the manu-
facturer's instructions and dissolved in RNase-free water at
a final 2.0 μg/μl concentration. RNA from Pectoralis major
collected at each sampling age were extracted, and pooled
within days and breeds for testing with microarrays. Micro-
array hybridization was carried out by GeneTech Biotech-
nology Limited Company (Shanghai, China) using Agilent
Chicken Gene Chips (ID: 015068) with 42034 probes.
Array scanning and data extraction were carried out fol-
lowing the standard protocol.
The normal distribution of signal plots in every chip

was determined. Clustering was performed based on the
DE genes in each chicken breed, using un-centered Pear-
son correlations and average linkage cluster 3.0, and was
displayed in TreeView. Normalized fluorescence intensity
values of each dye-swapped experiment were averaged
separately for sample and reference channels. Thereafter,
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for each probe, averaged sample and reference fluores-
cence values were log2-transformed. Average linkage
hierarchical clustering was performed using the Eucli-
dian metric. In heat-maps, the color of features (probes)
was determined by log2 (reference/sample).

Analysis of gene expression profile and differentially
expressed genes
The distribution of expressed genes was analyzed by
JMP4.0 according to their expression level. If the flag of
a gene was “A” by the scanner according to the data
normalization and results of Agilent Microarray Suite 4.0
software, it was considered to be "not detected", and
hence "not expressed" in this study. Similarly, the genes
with “P” flags were considered to be “expressed tran-
scripts”. Expressed transcripts were defined as being
present in samples of at least one sampled age and were
used for all following studies. The expression value of
each probe set was normalized and calibrated using the
RMA method.
Screening of differentially expressed genes (DEGs) was

performed on the basis of differences in the IMF, TG
and PLIP contents at different ages in each breed. Ex-
pression at d 1 was used as the controls, and compari-
sons were made within each breed at d 21, 42, 90 and
120 (only for BJY). Genes were considered to be DEGs
only when the fold-change in abundance for all compari-
sons exceeded 2.0.

Quantitative real time RT-PCR (q-PCR)
To avoid amplification of any residual genomic DNA, all
PCR primers were placed at or just outside the exon/
exon junctions and specificity was determined with
BLASTN (Additional file 7). After a general reverse tran-
scription reaction, PCR analyses were performed in 20 ul
amplification reactions containing 10 ul of 2× SYBR
Green PCR Master Mix (Tiangen Biological Technology
Co., Ltd, Beijing, China), 20 ng cDNA and 0.5 μl
(10 mM) of each primer using the following conditions
according to the manufacturer's instructions: 95°C for
10 minutes for 1 cycle, 40 cycles at 95°C for 15 seconds
and then at 63°C for 45 seconds.
Quantification of the transcripts was determined using

standard curves with 10-fold serial dilutions of cDNA
(10-7 to 10-12 g). Melting curves were constructed to verify
that only a single PCR product was amplified. Within runs,
samples were assayed in triplicate with standard deviations
of threshold cycle (CT) values not exceeding 0.5, and each
q-PCR run was repeated at least twice. Negative (without
template) reactions were performed within each assay.

Gene ontology enrichment analysis and visualization
Gene Ontology enrichment analysis was performed for
features corresponding to DEG in each breed using the
GOEAST software toolkit. The significance level of GO
term enrichment was set as FDR-adjusted p-value less
than 0.05 by the Yekutieli method.

Screening of the key DE genes
Correlation analysis was performed between the key DE
genes related to muscle development or lipid metabolism
with changes in lipid content or breast muscle weight
across the sampled ages within each breed. If the expres-
sion of a given gene was significantly correlated (p< 0.05)
with breast tissue weight, or content of IMF, TG or PLIP,
this gene was considered to be a key DE gene.

KEGG pathway analysis
KEGG pathway [58-60] information was used in this
analysis. Probeset IDs of each category were first mapped
to NCBI Entrez gene IDs according to the Agilent
Chicken Array annotation file, and then were mapped to
KEGG gene IDs according to the KEGG gene cross-
reference file. Pathways that were significantly enriched
with DEGs were identified by a hypergeometric test
using R packages (p< 0.01, FDR adjusted). Pathways
with< 3 known chicken genes were discarded. Graphical
pathway maps were downloaded from the KEGG FTP
server, and DEGs were then highlighted in them accord-
ing to the coordinate description in the XML files at the
KEGG FTP server, using Perl GD, XML:Parser and
XML:LibXML modules.

Additional files

Additional file 1: Annotation and changing of 1746 common DE genes
in AA and BJY chickens.

Additional file 2: Common Enriched GO terms among the differentially
expressed genes in both AA and BYJ chickens.

Additional file 3: Key genes related to lipid metabolism and muscle
development in BJY chicken.

Additional file 4: Key genes related to lipid metabolism and muscle
development in AA chicken.

Additional file 5: Common DE genes related to muscle development or
lipid metabolism in AA and BJY.

Additional file 6: Identification of enriched KEGG pathways based on
known DEGs related to muscle development and lipid metabolism in AA
and BJY chickens.

Additional file 7: Selected qPCR primer sequences and accession
numbers.

Abbreviations
ACSF3: Acyl-CoA synthetase family member 3; ACSL1: Acyl-CoA synthetase
long-chain family member 1; ACSS(1&2): Acyl-CoA synthetase short-chain
family member; ACTB: Actin, beta; ADAMST4: A disintegrin and
metalloproteinase with thrombospondin motif 4; ANKRD1: Ankyrin repeat
domain 1; APOH: Apolipoprotein H; BMP(4,7): Bone morphogenetic protein;
BMP2K: BMP-2-inducible protein kinase; CAMs: Cell adhesion molecules;
CAPNS1: calpain, small subunit 1; CD36: Cluster of Differentiation 36;
CD44: CD44-like protein; CENPF: Centromere protein F; CETP: Cholesteryl
ester transfer protein; CH25H: Cholesterol 25-hydroxylase; CTNNB1: Catenin

http://www.biomedcentral.com/content/supplementary/1471-2164-13-213-S1.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-213-S2.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-213-S3.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-213-S4.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-213-S5.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-213-S6.xls
http://www.biomedcentral.com/content/supplementary/1471-2164-13-213-S7.xls


Cui et al. BMC Genomics 2012, 13:213 Page 11 of 12
http://www.biomedcentral.com/1471-2164/13/213
(cadherin-associated protein), beta 1; CYP17A1: Cytochrome P450, family 17,
subfamily A, polypeptide 1; DCK: Deoxycytidine kinase; DGAT2: Diacylglycerol
O-acyltransferase homolog 2; ECM: Extracellular matrix; EGF: Epidermal
growth factor; EHHADH: Enoyl-Coenzyme A, hydratase/3-hydroxyacyl
Coenzyme A dehydrogenase; ELN: Elastin; ErbB: Erythroblastic Leukemia Viral
Ongene Homolog; ETFDH: Electron-transferring-flavoprotein dehydrogenase;
FABP(13, 5, 6, A/Adipocyte, H/Heart): Fatty acid binding protein; FGF(47,
16): Fibroblast growth factor; FGFR: Fibroblast growth factor receptor;
GDF3: Growth differentiation factor 3; GLTPD1: Glycolipid transfer protein
domain containing 1; HMGCLL1: 3-hydroxymethyl-3-methylglutaryl-
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