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Abstract

Background: Many plant genes have been identified through whole genome and deep transcriptome sequencing
and other methods; yet our knowledge on the function of many of these genes remains limited. The integration
and analysis of large gene-expression datasets gives researchers the ability to formalize hypotheses concerning the
functionality and interaction between different groups of correlated genes.

Results: We applied the non-negative matrix factorization (NMF) algorithm to the AtGenExpress dataset which
consists of 783 microarray samples (29 separate experimental series) conducted on the model plant Arabidopsis
thaliana. We identified 15 metagenes, which are groups of genes with correlated expression. Functional roles of
these metagenes are established by observing the enriched gene ontology (GO) categories using gene set
enrichment analyses (GSEA). Activity levels of these metagenes in various experimental conditions are also analyzed
to associate metagenes with stimuli/conditions. A metagene correlation network, constructed based on the results
of NMF analysis, revealed many new interactions between the metagenes. Comparison of these metagenes with an
earlier large-scale clustering analysis indicates many statistically significant overlaps.

Conclusions: This study identifies a network of correlated metagenes composed of Arabidopsis genes acting in a
highly correlated fashion across a broad spectrum of experimental stimuli, which may shed some light on the
function of many of the un-annotated genes.
Background
Previous Gene Co-expression Studies
In recent years, we have witnessed a deluge of new
results coming from genome-wide microarray experi-
ments, and the torrent of data seems likely to increase
in the future. In particular, thousands of microarray data
sets from experiments on the organism Arabidopsis
thaliana based upon the Affymetrix ATH1 GeneChip
microarray platform have been accumulating in data re-
positories such as GEO [1], ArrayExpress [2], and NAS-
CArrays [3]. Gene co-expression analysis has emerged as
a powerful tool in analyzing this information. In contrast
to standard microarray experiments in which gene ex-
pression levels in a set of control and treated plants are
measured and compared to find differentially expressed
genes, co-expression analyses work on much larger
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datasets comprised of many experiments. Similar gene
expression patterns can be observed across many treat-
ments, instead of being limited to just one.
In general, gene co-expression studies fall into two

broad categories: condition dependent and condition in-
dependent [4]. Condition independent studies use as
many unique conditions as possible and a co-expression
score between gene pairs (such as the Pearson correl-
ation) is calculated. This analysis reveals underlying rela-
tionships between genes irrespective of tissue type,
experimental stimuli, or developmental stage. Condition
dependent studies are a more specific type of analysis, in
which samples in the dataset are restricted by certain
criteria such as tissue type or experimental stimuli such
as abiotic stress or hormone treatment.
In an elegant condition dependent study by Bassel

et al. [5], 138 microarray samples from imbibed mature
Arabidopsis seeds were used to investigate genes
involved with seed germination. Pearson correlations
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between gene expression profiles were calculated, and
agglomerative hierarchical clustering revealed the exist-
ence of three large clusters of gene interactions. The
gene correlation network created in the study revealed
connections between genes known to be involved in the
regulation of seed germination, with other genes whose
function was unknown.
The idea of ‘guilt by association’, forming hypotheses

concerning the biological role of genes based upon simi-
lar patterns of gene expression, plays an important role
in co-expression analysis [4]. In a study by Lee et al. [6],
a probabilistic network (AraNet) of functional associa-
tions was constructed using network-guided guilt by as-
sociation. In this study, a diverse collection of functional
genomics, proteomics, and comparative genomics data
sets for Arabidopsis were integrated together. Functional
gene relationships were then calculated based upon this
extensive experimental data to form AraNet. The bio-
logical role of new candidate genes is inferred by meas-
uring their network associations with genes in AraNet
whose functional role has been determined experimen-
tally. A similar approach was taken in a condition-
dependent study by Schmid et al. [7] which analyzed
global gene expression patterns from the AtGenExpress
data series taken from samples covering the develop-
mental stages of Arabidopsis. Results from this study in-
dicate substantial overlap in gene expression activity
between samples. Interestingly, histograms of relative
gene expression values taken from samples from the
root, leaf, apex, and pollen samples of the plant showed
marked differences.
In a condition independent study by Atias et al. [8],

gene expression profiles from 43 microarray experiments
conducted on Arabidopsis thaliana were analyzed. Their
data is comprised of 857 hybridization samples collected
under a wide variety of experimental conditions at differ-
ent times and across 37 different laboratories. Within
the microarray samples comprising each experiment in
the experimental series, they calculated the Pearson cor-
relation coefficient between all gene pairs. Only highly
correlated gene pairs appearing simultaneously in 20 of
the 43 experiments were considered for further analysis.
A novel scoring function developed for the study
allowed them to measure the degree of correlation for
gene expression profiles spanning the entire dataset.
This was then used to develop a gene correlation net-
work. An excellent discussion and overview of different
co-expression studies is presented in a study by Usadel
et al. [4].

The Model Organism Arabidopsis thaliana
Arabidopsis thaliana is popular as a model organism in
the plant sciences. It has one of the smallest genomes in
the plant kingdom (125 Mbp), approximately 28,000
genes. Currently the function of about half of these
genes are unknown. Arabidopsis fulfils the same role in
plant biology that Drosophila melanogaster and mice
play in animal science. Although Arabidopsis is not an
agriculturally useful plant, many of the genes within its
genome are homologous to genes in plants with more
complex genomes, and often play similar roles within
these organisms. It is particularly useful in studying the
biology of flowering plants. This is the primary reason
we chose to focus on Arabidopsis in our research. By
formulating biological hypotheses concerning many of
the unknown genes, we hope our research will serve as a
guide for planning future microarray experiments.

The NMF Algorithm
The NMF algorithm was first introduced in 1999 by Lee
and Seung [9]. It is in the same class as other
dimensionality-reducing algorithms like Principal Com-
ponent Analysis (PCA) and Vector Quantization (VQ).
In contrast to the more holistic data representations
returned by PCA and VQ methods, the NMF algorithm
provides a local, parts-based representation of the data.
When applied to a gene expression dataset, the NMF al-
gorithm finds metagenes composed of correlated genes
representing a local or global gene expression pattern. In
contrast to more traditional clustering methods such as
hierarchical clustering, genes can appear in multiple
metagenes and are not constrained by the algorithm to
be a member of only one cluster. The NMF algorithm is
capable of finding clusters of genes co-expressed on a
small set of experiments as well as genes co-expressed
globally. More importantly, the algorithm allows genes
to be in different clusters at different activation levels,
instead of being placed in just one cluster. Both of these
features make the NMF method an ideal candidate for
analyzing the AtGenExpress dataset.
NMF has been applied with considerable success to

gene expression datasets other than Arabidopsis [10-16].
In a study by Brunet et al. [17] the NMF algorithm was
used to reveal cancer subtypes by clustering human
tumor samples, and to find metagenes involved in
leukemia and brain cancer datasets. They also developed
a novel method for finding the optimum number of
metagenes intrinsic to a dataset. We incorporated this
method into our study.

Results
The AtGenExpress Dataset
AtGenExpress is a large global research project whose
purpose is to discover the transcriptome of the model
organism Arabidopsis thaliana. The datasets were
downloaded from the NCBI Gene Expression Omnibus
[1]. The combined dataset is comprised of 783 samples
over 29 different experimental series (see Table 1). This



Table 1 AtGenExpress Experimental Series

GSE Accession
Number

Number of Samples Experiment Description Sampled Tissue

GSE5615 42 Response to bacterial-(LPS, HrpZ, Flg22)
and oomycete-(NPP1) derived elicitors

Leaf

GSE5616 18 Response to Phytophthorainfestans Leaf

GSE5617 48 Light treatments Shoot

GSE5620 36 Stress Treatments (Control plants) Root and shoot

GSE5621 24 Stress Treatments (Cold stress) Root and shoot

GSE5622 24 Stress Treatments (Osmotic stress) Root and shoot

GSE5623 24 Stress Treatments (Salt stress) Root and shoot

GSE5624 28 Stress Treatments (Drought stress) Root and shoot

GSE5625 24 Stress Treatments (Genotoxic stress) Root and shoot

GSE5626 28 Stress Treatments (UV-B stress) Root and shoot

GSE5627 28 Stress Treatments (Wounding stress) Root and shoot

GSE5628 32 Stress Treatments (Heat stress) Root and shoot

GSE5629 24 Developmental series (seedlings and whole plants) Shoot and whole plant

GSE5630 60 Developmental series (leaves) Leaf (different stages)

GSE5631 21 Developmental series (roots) Root (different stages)

GSE5632 66 Developmental series (flowers and pollen) Flower (different stages)

GSE5633 42 Developmental series (shoots and stems) Shoots and stems (different stages)

GSE5634 24 Developmental series (siliques and seeds) Siliques and seeds (different stages)

GSE5684 12 Pathogen Series: Response to Botrytis cinerea infection Mature leaf

GSE5685 32 Pathogen Series: Pseudomonas half leaf injection Stage 10–11 rosette leaf

GSE5686 48 Pathogen Series: Response to Erysipheorontii infection Mature leaf

GSE5687 4 Different temperature treatment of seeds Seed

GSE5688 22 Response to sulfate limitation Root

GSE5696 26 Effect of brassinosteroids in seedlings Whole plant

GSE5697 8 Comparison of plant hormone-related mutants Whole plant

GSE5698 12 Cytokinin treatment of seedlings Whole plant

GSE5699 6 ARR21C overexpression Whole plant

GSE700 8 Effect of ABA during seed imbibition Seed

GSE701 12 Basic hormone treatment of seeds Seed
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is a condition independent study involving many differ-
ent type of stimuli and experimental conditions. Since
NMF algorithm has been applied with much success in
gene co-expression studies on human tissue samples, we
were interested to see how it would fare when applied to
Arabidopsis. We are looking for genes co-expressed lo-
cally on specific experiments as well as globally.

Selecting the Dimensionality Reduction Parameter for the
NMF Algorithm
An important part of the NMF algorithm is that it
reduces the dimensionality of the original data space to
a much smaller dimension k. Thus it is important that
we choose the optimal value for k which decomposes
the dataset into k metagenes/encoding coefficients. In
Figure 1, the Cophenetic correlation coefficient (CCC) is
plotted against different k values in the range k= 5. . .45.
The CCC is a measure which quantifies the stability of a
dimensionality reduction parameter k. For stable values,
it will be close to 1, and for unstable values, it will be
close to 0. Peaks in the plot represent stable values, but
we were also looking for consistency (a peak followed by
a slow drop-off ). Based upon these considerations, we
felt k= 15 was an optimal choice. The method for gener-
ating this graph was adopted from the study by Brunet
et al. [17] and is explained in the Methods section.

The Metagenes and Encoding Coefficients
Analysis of the dataset involved applying the NMF algo-
rithm to reduce the dimensionality of the data to a set of



Figure 1 Cophenetic Correlation Coefficient for the determination of optimal number of metagenes k. Peaks in this plot represent stable
k values, but we were also looking for consistency. The value k= 15 was chosen for this study because it is a high peak with a slow drop-off.
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metagenes, and associated encoding coefficients. Each
metagene represents a collection of genes behaving in a
functionally correlated fashion within the genome. The
encoding coefficients express the degree of activation of
each metagene on each sample within the dataset. See
the Methods section for details.
Each gene within a metagene has an activation level

which represents the degree to which that gene is
expressed. The metagenes were sorted in descending
order according to the activation levels of their genes,
and the genes within each metagene were also sorted in
Table 2 The top 20 Most Signficant Genes for Metagene 1

TAIR ID GenBank ID Description

At1g80840 BAA87058 Transcription metagene, put

At1g05575 — Expressed protein

At1g19180 — Unknown protein

At4g29780 Hypothetical protein

At1g27730 CAA64820 Salt-tolerance zinc finger pro

At4g34410 — Putative protein ethylene-re

At1g76650 CAA56517 Putative calmodulin similar

At2g34600 — Hypothetical protein predict

At2g26530 D88743 AR781, similar to yeast pher

At1g19020 — Expressed protein ; supporte

At4g24570 — Putative mitochondrial unco

At4g17490 — Ethylene responsive elemen

At3g55980 — Putative protein zinc finger

At3g01830 CAB42906 Hypothetical protein similar

At5g42380 — Putative protein contains sim

At1g72520 CAB56692 Putative lipoxygenase simila

At2g32210 — Unknown protein

At3g25780 — Unknown protein ; supporte

At1g61340 — Late embryogenesis abunda

At4g30280 — xyloglucan endo-1,4-beta-D
descending order. Metagene 1 represents the most
highly expressed metagene within the dataset, and Meta-
gene 15 the least highly expressed. Some of the genes in
the metagenes have been well-studied, while others have
not been annotated at all. Table 2 below displays the top
20 genes involved in metagene 1. A list of all the meta-
genes is given in Additional file 1.

Metagene Involvement in Experimental Series
The encoding coefficients returned by the NMF algo-
rithm measure the degree to which each metagene is
ative similar to WRKY transcription metagene

tein identical to salt-tolerance zinc finger

sponsive element binding protein homolog, Stylosantheshamata, U91857

to calmodulin

ed by genscan

omone receptor

d by full-length cDNA: Ceres: 31015

upling protein mitochondrial uncoupling protein

t binding metagene-like protein (AtERF6)

transcription metagene (PEI1)

to calmodulin-like protein

ilarity to calmodulin

r to lipoxygenase

d by full-length cDNA: Ceres:3457

nt protein, putative similar to late embryogenesis abundant protein

-glucanase-like protein



Figure 2 Metagene Activity in Experimental Series. This heat map shows the z-values for all metagenes for each experimental series in the
dataset. Red indicates a metagene is more active in an experimental series, and green indicates it is suppressed.
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active in each of the 783 samples within the dataset.
Multiple samples comprise an experiment, and through
an application of the Kruskal-Wallis test [18], it is pos-
sible to determine on which series of experiments each
metagene is active on. Figure 2 is a heat map of the z-
values returned by the Kruskal-Wallis test for each ex-
periment in the AtGenExpress dataset. Information
about how this figure was generated can be found in the
Methods section.
One striking feature in Figure 2 is that metagenes 1, 3

and 5 are the dominant metagenes involved in the stress
series of experiments, and appear to suppress the other
metagenes in that series. These metagenes also represent
the most actively expressed metagenes our analysis
uncovered. Results from examining their functional
annotation in DAVID (http://david.abcc.ncifcrf.gov/)
[19,20] appear to confirm this. The top five most highly
enriched categories for the three metagenes are shown
in Table 3. Metagenes 1 and 5 are primarily involved in
responses to stimuli (chemical or otherwise). Metagene
3 is involved in photosynthetic responses related to light
stimuli, as well as the generation of precursor metabo-
lites used in catabolic and anabolic pathways to generate
ATP or in the synthesis of more complicated organic
chemicals such as lipids, amino acids, and nucleotides.
Another interesting feature of Figure 2 is that metagenes

http://david.abcc.ncifcrf.gov/


Table 3 Top 5 Most Enriched GO-BP categories for Metagenes 1, 3, 5

Biological Process P-Value FDR Metagene

Response to chitin 4.08E-13 5.13E-10 1

Response to chemical stimulus 2.82E-12 3.55E-09 1

Response to stimulus 2.39E-11 3.00E-08 1

Response to carbohydrate stimulus 2.40E-11 3.02E-08 1

Response to stress 8.84E-11 1.11E-07 1

Photosynthesis 1.71E-74 2.62E-71 3

Photosynthesis, light reaction 2.53E-39 3.88E-36 3

Generation of precursor metabolites 3.01E-31 4.60E-28 3

Photosynthesis, light harvesting 1.49E-20 2.29E-17 3

Photosynthetic electron transport in photosystem I 1.49E-16 1.67E-13 3

Response to stimulus 1.83E-12 2.78E-09 5

Response to stress 9.95E-09 1.52E-05 5

Response to chemical stimulus 2.74E-08 4.17E-05 5

Photosynthesis 7.35E-07 1.12E-03 5

Response to abiotic stimulus 9.79E-07 1.49E-03 5

Wilson et al. BMC Genomics 2012, 13:237 Page 6 of 14
http://www.biomedcentral.com/1471-2164/13/237
8, 12, 9 and 15 appear very active in the Developmental
series related to shoots and stems, while all of the other
metagenes are suppressed.
Functional Characterization of Metagenes Using Gene Set
Enrichment Analysis
GSEA [21] was applied to the metagenes returned by
NMF. The GSEA algorithm accepts as one of its inputs
a ranked list of genes. The ranking scheme is specified
by the researcher to highlight some feature they are
interested in. Since the coefficient of a gene in a meta-
gene correlates to a general degree of expression within
that metagene (the higher the coefficient value, the more
active the gene), the metagene coefficients provided a
useful way to rank the genes in the metagenes for input
into GSEA.
Metagene involvement in three gene ontologies (mo-

lecular functions, cellular components, and biological
processes) was examined and the results for the bio-
logical processes ontology are summarized in Figure 3.
Only gene ontologies enriched with a nominal p-value of
less than 0.01 were examined.
The NES (Nominal Enrichment Score) is a measure of

the enrichment of a metagene within a gene ontology –
and is the value plotted in Figure 3. The interpretation
of this measurement is discussed in the Methods section
on GSEA, and the spreadsheets from which this heat
map was generated (as well as the other two gene ontol-
ogies investigated) are included in Additional file 2, 3,
and 4. Results for the cellular components and molecu-
lar functions ontology are summarized in Additional file
5: Figure S9 and S10, respectively.
In Figure 3, some metagenes appear to be involved in
a number of different biological processes, while others
are involved in only a few. Metagene 3 is active on bio-
logical process ontologies involving responses to light, as
well as those involved with defense responses to bacter-
ium and funguses. It is also active in a variety ontologies
related to stress response experiments such as water
deprivation and response to wounding. An examination
of Figure 2 reveals that it is a dominant metagene
involved in the stress series of experiments. In contrast
to this, metagene 2 is involved only in three different
biological process ontologies (photosynthesis, defense re-
sponse to fungus, and oligopeptide transport). Looking
at Figure 2 reveals that it is strongly suppressed on the
developmental series of experiments related to shoots
and stems, but expressed on experiments for responses
to bacterial derived elicitors. It is not very active on the
other experimental series.

Metagenes 1, 3 and 5
We observed in Figure 2 that metagenes 1, 3, 5 were the
principal metagenes involved in the stress series of
experiments. A closer look at the GSEA analysis for
these metagenes appears to confirm this.
In Figure 4, metagene 3 is enriched in a number of

defense responses and responses to a wide variety of
stimuli. Moreover, metagene 5 is involved in a number
of defense responses and responses to stimuli, and is
also enriched in categories such as ribosome biogenesis
and photosynthesis. Metagene 1 is heavily enriched in
lipid transport and catabolic processes involved in the
breakdown of toxins – which would certainly make
sense if it was active in the stress series of experiments.



Figure 3 Metagene GSEA Enrichment in Biological Processes. The NES score plotted in this heat map is a measure of metagene enrichment
within a specific gene ontology involved with biological processes. Bright red cells indicate high enrichment.
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Metagene Correlation Network
To determine how the metagenes interact with each
other, a Spearman correlation matrix C was calculated
by computing all pair-wise correlations between the
metagenes.

1. Each network node represents a metagene.
2. The size of each node is proportional to the

metagene activity within the dataset.
3. A line is drawn between a pair of nodes if the p-value

of their Spearman correlation is less than 10-12.
a. Positive correlations are denoted by red lines
b. Negative correlations are denoted by green lines
c. The width of the line is proportional to the
strength of the correlation.

4. The pie slices within each node represent the
amount of enrichment for specific gene ontologies
as determined by GSEA.

In the correlation network of Figure 5, metagene 1 is
comprised of genes which are the most actively
expressed across all samples within the dataset. It has a
very strong positive correlation with metagenes 3 and
10. Metagenes 9 and 10 have a strong positive correl-
ation. A close examination of the Kruskal-Wallis z-
values for these two metagenes confirms this. Metagene



Figure 4 Metagene 1,3 and 5 Activity in Biological Processes. This heat map shows the biological process NES score for metagenes 1, 3
and 5. Bright red cells indicate high enrichment within an ontology. Metagene 3 is highly enriched with respect to different responses related to
chemical and mechanical stimulus. Metagene 5 is enriched with respect to defense responses such as light and bacterial infection. Metagene 1
is also enriched in catabolic processes related to toxin removal, which one would expect for a metagene active under the stress series
of experiments.
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9 is strongly expressed when metagene 10 is the most
active during the stress series of experiments, and both
metagenes are suppressed during the pathogen and de-
velopmental series of experiments. Correlation networks
for the gene ontologies of cellular components and mo-
lecular functions are available in Additional file 5: Figure
S5 and Figure S6, respectively.

A Comparison of Metagenes with Atias et al.
In the study by Atias et al. [8] a scoring function was
developed that measures the correlation between gene
pairs across different experimental series. The method-
ology for selecting and clustering genes in the Atias
study is fundamentally different than those employed
here, so comparing the results from Atias with ours is
useful to verifying the results of this study.
Atias created three different gene correlation networks

based on the scoring threshold. For the 0.3-threshold
network, gene pairs with a score less than 0.3 were fil-
tered out of the analysis. Using graph theoretic methods
encapsulated within the MCODE plug-in for Cytoscape
[22], 38 clusters of genes were identified. The same
process was repeated to create the 0.4-threshold network
(which was smaller), and identified 35 clusters. A network
generated from the pathogen series of experiments within
their dataset was also created. This data subset includes
microarray samples from 8 of the 43 Arabidopsis experi-
ments involved with pathogen treatments. Within this
network, MCODE identified 15 gene clusters.
A hypergeometric test was used to determine the degree of

intersection between the metagenes in this study, and the
clusters identified in the 0.3-threshold and pathogen net-
works of Atias. See the Methods section for details. A matrix
of p-values for each of the networks was calculated. Hierarch-
ical clustering analysis on both metagenes/clusters from Atias
was then performed. The p-values in the heat maps shown in
Figures 6–7 were log10 transformed, and the bright green
squares correspond to p-values less than or equal to 10-10.
The Atias network with a score threshold of 0.3 con-

tains 1372 genes. Of these, 1118 genes are also contained
within the metagenes discovered in this analysis. Signifi-
cant statistical overlaps were observed (see Figure 6)



Figure 5 Metagene Correlation Network for Biological Processes. Each node in this network represents a metagene. The size of each node is
proportional to the activity of the metagene within the dataset. The width of lines between a pair of nodes is proportional to the strength of the
correlation between them. Positive correlations are denoted by red lines, and negative correlations by green lines. Only Spearman correlations
with a p-value less than 10-12 are visible. The pie slices within each node represent the amount of enrichment for specific gene ontologies
(the NES score).
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between metagenes 1 and 4, and clusters 1–3. Overlaps
also occur between metagenes 2 and 10, and cluster 20.
Metagene 3 exhibits strong overlaps between clusters 2, 3,
8, 10, 13, and 17 (the most of any metagene in our group).
Most significantly (for the purpose of validating this
study), metagenes 1–4 (the most significant metagenes
identified in our analysis), exhibited very strong overlaps
with a large number of clusters identified by Atias.
In both the study by Atias and our study, portions of

each dataset are comprised of microarray samples involved
in pathogen experiments. In this study, metagenes 6, 7, 8,
and 13 are actively expressed in at least two out of the
three pathogen series (with metagene 6 being involved in
all three). See Additional file 5: Figure S7 for a heat map
showing metagene involvement in the pathogen series.
Examining the p-values of intersection for these meta-

genes with the clusters from the pathogen network in
the Atias study reveals many significant overlaps. Not
surprisingly, metagene 6 intersects with the most clus-
ters. See Additional file 5: Figure S8.

Discussion
The three primary steps of the analysis conducted in this
paper are:

1. Filtering genes of interest based upon their
expression activity on the samples.

2. Finding the optimal number of metagenes intrinsic to
the dataset and applying NMF. Using the results of
NMF to construct a metagene correlation network.

3. Determining the functionality of the metagenes by
applying GSEA, and using NMF results to provide a
ranking for the genes within each metagene.

In the study by Lee and colleagues [23], as well as the
study by Atias et al. [8], step 1 was accomplished by rank-
ing gene-pairs based on their frequency of correlation
within experiments in the dataset. The benefit of using this
approach is that differences in scale/resolution between
different experiments are no longer an issue because the
Pearson correlation between two variables is invariant (up
to a sign) to changes in location and scale of each variable.
A drawback to this approach (and the reason we did not
use it in this study) is that it preferentially selects genes
which are highly correlated with other genes across a large
number of samples. Genes which have correlated expres-
sion patterns with other genes on a small number of
experiments could potentially be filtered out. The NMF al-
gorithm is adept at finding genes like this, and so we chose
a filtering scheme based on expression activity across all of
the samples. Despite using a different methodology for
gene selection, significant overlaps between genes in the
Atias study and this one were observed.
A benefit of using the NMF algorithm instead of other

algorithms such as hierarchical clustering, PCA, or VQ
methods is that it does not constrain genes to belong exclu-
sively to one cluster, so the method realistically models the
way in which many genes perform different functional roles
within the genome. There is also a way to approximate an
optimum number of metagenes (see [17] and the Methods
section), which is not true of many other clustering methods.
In Figure 1 in which the Cophenetic correlation coeffi-

cient is plotted for different values of the k parameter,
more than one peak was observed (representing a stable
clustering). A promising area of future research could be
to calculate metagenes for different stable k-values and
examine differences between them. It would also be
interesting to see if applying GSEA analysis to meta-
genes resulting from higher k-values results in more
functionally specific metagenes than smaller k-values.

Conclusions
NMF analysis of the AtGenExpress dataset revealed 15
metagenes representing collections of genes with



Figure 6 Heat map of intersection p-values for the 0.3-threshold network. The intersection between clusters in the Atias study for the 0.3
threshold-network, and the metagenes in this study are visualized as a heat map, with cells representing log-10 transformed p-values from a
hypergeometric test. Bright green values indicate significant statistical overlap (very low p-values).
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correlated expression patterns (both globally with re-
spect to all of the experiments in the data series, and lo-
cally with respect to a smaller subset of the
experiments). By combining the NMF results with z-
values returned by the Kruskal-Wallis test, interesting
interactions between the metagenes were revealed. Some
of the metagenes appear to act in concert to suppress
other metagenes for some of the experiments while they
are active (such as metagenes 1, 3, 5 over the stress
series of experiments). A metagene correlation network
also revealed similar trends. Application of GSEA
showed many interesting specializations of functions
among the different metagenes, and it is hoped that the
analysis presented here provides useful insight for plan-
ning future experiments.
Methods
Pre-processing
The AtGenExpress data files were downloaded from the
NCBI Gene Expression Omnibus (http://www.ncbi.nlm.
nih.gov/gds) [1]. The microarray platform the sample data
comes from is the AffymetrixGeneChip Arabidopsis ATH1
Genome array. Each sample file contains gene expression
information for 22,811 genes. The Robust Multi-array Aver-
age (RMA) algorithm provided by the Bioconductor pack-
age [24] available for R [25] was used to pre-process the
CEL files from the dataset. RMA expression values for each
of the 29 experiments in the data series were then com-
bined into one data matrix of dimension N×P where N =
22,811 is the number of genes on the ATH1 array, and P =
783 is the number of samples.

http://www.ncbi.nlm.nih.gov/gds
http://www.ncbi.nlm.nih.gov/gds


Figure 7 Heat map of intersection p-values for the pathogen
network. Intersection p-values between clusters in the pathogen
network from Atias, and the metagenes in this study. Bright green
cells represent significant statistical overlap. The intensity of the cells
represents a log-10-transformed p-value returned by the
hypergeometric test.
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Filtering
Filtering of the dataset was conducted in two stages. For
the first stage, the Wilcoxon sign-based present/absence
detection algorithm available in Bioconductor [24] was
applied to the data matrix. This is a statistical test that
determines whether a gene expression signal is absent,
present, or marginal. Genes for which 80 % or more of
their expression values were determined to be absent or
marginal were filtered from the dataset. The mean for
each gene across all sample expressions was then sub-
tracted row-wise to account for differences in magnitude
of expression value due to probe sensitivity and mRNA
levels.
The second level of filtering was applied by ranking all of

the genes using the L2 norm. Let gi, i ¼ 1 . . . P , where P ¼
number of samplesf g, represent the RMA expression value

of gene g for Sample i. The L2 norm of g is defined to be:

gk k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1ð Þ2 þ g2ð Þ2 þ⋯þ gp

� �2q
This measure assigns a value to each gene based upon

its overall degree of gene expression with respect to all
of the samples in the dataset. The top 7000 genes ranked
according to their L2 norm values were selected for fur-
ther analysis.

Adjusting for Batch Effects
After normalizing the dataset, it was necessary to adjust
for the problem of batch effects. An Empirical Bayes (EB)
method [26] was used to correct batch effects between
samples. The EB method corrects for batch effects by
making estimates of batch effect noise based on informa-
tion gathered across all genes and experimental conditions
within the data. It is also robust to outliers within batches
of small sizes. The dataset for this study contains some
experiments with a small number of samples, so this was
an important factor in choosing this method.
To adjust for batch effects, the batches have to be first

defined. Samples were grouped into the same batch if
they were from the same experiment – resulting in 29
different batches.
The influence of batch effects on the data can be inferred

by selecting two rows of the dataset at random. Each row
represents a gene and its vector of expression values across
all samples in the dataset. In the absence of batch effects, it
is expected that the Pearson correlation coefficient between
two randomly selected genes will be very close to zero.
To assess the effectiveness of the Empirical Bayes

method, 1000 genes (rows) were selected at random from
the dataset, and a plot of the standard deviation versus the
average Pearson correlation between each gene and every
other gene in the random sample was calculated. The plot
of this graph is available as Additional file 5: Figure S1.

Non-negative Matrix Factorization
After standard normalization, adjusting for batch effects,
and filtering, the dataset consists of gene expression
values for 7000 genes in 783 samples. It is represented
by a matrix V of dimension N x P, where N= {number of
genes}, P= {number of samples}.
Non-negative matrix factorization factors V into the

product of two matrices W and H, where W has dimen-
sion N×k, and H has dimension k×P:

V � WH ð1Þ

k is chosen so that k is much smaller than N. The NMF
factorization imposes a non-negativity constraint on W
and H, so entries in both matrices are greater than 0.
The method begins by randomly initializing W and H. It
then iteratively updates the matrices to minimize a cost
function (usually related to the measure: V �WHk k ).
At each iteration, W and H are updated by multiplying
them by some factor which improves the quality of the
approximation in Equation 1.
In this study, the alternate non-negative least squares

using projected gradient NMF method first proposed by
Lin [27] was chosen because of its speed and robustness.
The algorithm was implemented in Matlab using the
NMF: DTU toolbox available at: http://cogsys.imm.dtu.
dk/toolbox/nmf/index.html [28].

Finding the Optimal Number of Metagenes
Although the factor k which controls the number of meta-
genes in Equation 1 is specified by the user, there is a way
to determine an optimal value of k which is determined by
the structure of the dataset itself [17]. The matrix H in

http://cogsys.imm.dtu.dk/toolbox/nmf/index.html
http://cogsys.imm.dtu.dk/toolbox/nmf/index.html
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Equation 1 was used to group the P samples into k differ-
ent clusters. Explicitly, if hij is the largest value in column
j of H, then sample j was placed in cluster i.
The NMF algorithm does not always converge to the

same solution each time it is run. However, if we have
chosen a stable value for k, then the assignment of P
samples into k clusters should not change significantly
from one run to the next.
For each run, the sample clustering can be represented

by a connectivity matrix C of dimension P×P. Set cij ¼ 1 if
samples i and j belong to the same cluster, and cij ¼ 0 if
they belong to different clusters. The consensus matrix �C
is defined as the average connectivity matrix after many
runs. The entries �cij of �C express the probability that sam-
ples i and j cluster together after many runs. For a cluster-
ing that is stable, we expect that most entries in �C would
be distributed near 0 or 1. The dispersion of entries in �C
serves as a metric which can be used to assess the stability
of our choice of clustering parameter k. The heat maps of
consensus matrices for different choices of k are displayed
in Additional file 5: Figures S2-S3.
The stability of a clustering for a given value of k is

quantified using the Cophenetic correlation coefficient
(CCC) of the consensus matrix: ρk �Cð Þ. ρk is calculated by
computing the Pearson correlation coefficient between
two distance matrices. The first distance matrix represents
the distance between samples of �C after applying hierarch-
ical clustering. The second distance matrix is I � �C and
represents the distance between samples in the original
consensus matrix. In a perfect clustering, all entries would
be equal to 0 or 1 in the consensus matrix and ρk �Cð Þ ¼ 1.
In a more realistic consensus matrix, the entries are dis-
persed between 0 and 1, and ρk �Cð Þ < 1.
Consensus matrices were computed for k= 5. . .45. For

each value of k, the NMF algorithm was run 50 times
and the consensus matrix was computed by taking the
average of these runs. The CCC was calculated for each
value of k, and a plot of the CCC versus k values gener-
ated (see Figure 1). Peaks in the graph represent stable
choices for k, but we were also looking for consistency
(a peak with a slow drop-off ). Based upon these consid-
erations, k= 15 seemed like an optimum choice.

The Metagenes
Each column of W in (1) represents a metagene. A
metagene is a set of genes behaving in a functionally cor-
related manner within the genome. Entry wij represents
the coefficient of gene i in metagene j. Genes which are
more active in the genome have higher coefficient
values. The expression pattern of genes in V are approxi-
mated by a linear combination of the k metagenes in W.
To compare the activity of the metagenes, the column

sums of the coefficient values were calculated, and the
columns sorted in descending order according to their
column sums. So the first column of W represents the
most active metagene, and the last column the least
active.
A cut-off threshold of δ = 0.2 was set, so that gene coef-

ficients with a value less than this were filtered out. Genes
with coefficients greater than δ were included in the meta-
genes. Additional file 1 is a spreadsheet containing the list
of metagenes and their genes, and Additional file 5: Figure
S4 displays a histogram of the coefficient values for the
metagenes, showing where the cut-off was made.

Comparison with the result of Atias et al.
The hypergeometric p-value returned by testing for statis-
tical overlap between a gene cluster in the Atias study and a
metagene in this one was calculated using Equation 2 below:

p value ¼
Xcs
i¼x

ms
i

� �
N�ms
cs�i

� �
N
cs

� � ð2Þ

where:
N= 7000 (the number of genes in our filtered dataset)
ms=number of genes in the metagene
cs=number of genes in cluster from Atias study
x=number of genes in metagene which match genes

in the Atias cluster
All calculations were carried out in R [25].

Creating the Metagene Correlation Network
To determine how the metagenes interact with each
other, a correlation matrix C was calculated by comput-
ing all pair-wise correlations between the rows of H.
Entry Cij in C represents the Spearman correlationbetw-
een metagene i and metagene j. A cut-off threshold of α
= 10-12 was set, and a connection was drawn between
two nodes i and j if the p-value of the Spearman correl-
ation between metagenes i and j was less than α.
The Spearman p-value was approximated using a two-

sided Student's t-test. Specifically, if r is the Spearman correl-
ation, and given that n = 783, the test-statistic t is given by:

t ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2
1� r2

r
ð3Þ

This statistic approximately follows a Student-t distribu-
tion with 781 degrees of freedom under the null hypothesis.
The pie chart representation of the network nodes,

showing enrichment in gene ontologies, was created
using the software library ggplot2 [29] in R [25]. The
metagenes were enriched in more ontologies than it was
possible to display in the network graphs, so many of the
ontologies were collapsed into their higher-level parents.
Complete information on enrichment in all of the ontologies
can be found in Additional files 2, 3, and 4. Correlations



Wilson et al. BMC Genomics 2012, 13:237 Page 13 of 14
http://www.biomedcentral.com/1471-2164/13/237
between nodes were computed using the corr function in
Matlab. The network graph was created in Cytoscape [30].

Metagene Involvement in Experimental Series
The rows of H in (1) are the encoding coefficients for the k
metagenes of W. Entry hij in H represents the activity level of
metagene i in sample j of the dataset. While the columns of
W provide us with functionally correlated groups of genes,
each row of H represents the activation levels of one meta-
gene across all samples. There are 783 samples in our dataset,
divided into 29 different experimental series (see Table 1).
Through a convenient application of the Kruskal-Wallis

test we can determine on which series of experiments each
metagene is active on. The Kruskal-Wallis test is a non-
parametric method for testing the equality of different
population medians between groups [18]. The groups in
our study are the 29 different experimental series in Table 1.
The test is identical to a one-way analysis of variance test,
except that the data values are replaced by ranks. It does
not assume the data is drawn from a normal distribution.
Data measurements are converted to ranks before the test

is applied. Given one row of H, the lowest activation level
would be assigned a rank of 1, and the highest a rank of 783.
Given a row of H corresponding to one of the k meta-

genes, the z-value for group j, j = 1...29, is given by:

zj ¼
�Rj � �Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nþ1ð Þ N

Nj
�1

� �
12

s ð4Þ

where:

�Rj ¼ meanrank of group jf g
�R ¼ meanof all ranksf g
N ¼ Total number of samplesf g
Nj ¼ Number of samples ingroup jf g:

The z-values are used to measure the activity level of
each metagene on each of the 29 experimental series. They
indicate the difference in the mean rank of the group from
the mean rank of all observations. A positive z-value
means that the metagene is active on that experiment, and
a negative value indicates that it is suppressed. Storing the
z-values representing metagene activity on each of the 29
different experimental series resulted in a 15×29 matrix.
The result is displayed as a heat map (see Figure 2), and the
spreadsheet is available as Additional file 6. Calculations for
the Kruskal-Wallis test were carried out in Minitab.

Gene Set Enrichment Analysis
The GSEA software package available from The Broad
Institute (http://www.broadinstitute.org/gsea/index.jsp)
[21,31], was used to functionally annotate the metagenes
returned by NMF.
The GSEA algorithm takes as inputs two sets of gene lists:

1. A pre-defined set of genes S (such as genes sharing
the same metabolic pathways)

2. A list of genes L ordered according to some ranking
criteria of importance to the researcher.

In this study, we used the columns of W in the NMF
factorization V � WH to rank the genes. Entry wij of W
represents the rank of gene i in metagene j. Since the
metagenes represent local groups of highly correlated
genes, it was felt that this was the best way to rank them.
Three databases of Arabidopsis gene sets involved in

the gene ontologies of biological processes, cellular com-
ponents, and molecular functions were used to function-
ally annotate the metagenes.
Additional files

Additional file 1: metagenes. Excel spreadsheet containing the gene
lists for each metagene as well as the gene ranks returned by NMF.

Additional file 2: GOBP. Excel spreadsheet containing GSEA
Enrichment results for Biological Processes.

Additional file 3: GOCC. Excel spreadsheet containing GSEA
Enrichment results for Cellular Components.

Additional file 4: GOMF. Excel spreadsheet containing GSEA
Enrichment results for Molecular Functions.

Additional file 5: Figure S1. A plot showing the average correlation for
1000 randomly selected genes before and after the Empirical Bayes
method was applied to adjust for batch effects. S2. A plot showing heat
maps of the consensus matrix for k = {5,10,15,20}. S3. A plot showing
heat maps of the consensus matrix for k = {30,35,40,45}. S4. A histogram
of metagene coefficients, showing the δ=0.2 cut-off. Genes with
coefficients greater than δ were included in the metagenes, and those
with coefficients less than this were excluded. S5. Metagene correlation
network for the gene ontology: cellular components. Each node in this
network represents a metagene. The size of each node is proportional to
the activity of the metagene within the dataset. The width of lines
between a pair of nodes is proportional to the strength of the correlation
between them. Positive correlations are denoted by red lines, and
negative correlations by green lines. Only Spearman correlations with a
p-value less than 10-12 are visible. The pie slices within each node
represent the amount of enrichment for specific gene ontologies (the
NES score). S6. Metagene correlation network for the gene ontology:
molecular functions. Each node in this network represents a metagene.
The size of each node is proportional to the activity of the metagene
within the dataset. The width of lines between a pair of nodes is
proportional to the strength of the correlation between them. Positive
correlations are denoted by red lines, and negative correlations by green
lines. Only Spearman correlations with a p-value less than 10-12 are
visible. The pie slices within each node represent the amount of
enrichment for specific gene ontologies (the NES score). S7. This heat
map shows the z-values for all metagenes for the pathogen series in the
dataset. Red indicates a metagene is more active in an experimental
series, and green indicates it is suppressed. S8. Intersection p-values
between clusters in the pathogen network from Atias, and the
metagenes active in the pathogen series of the AtGenExpress dataset.
Bright green cells represent significant statistical overlap. The intensity of
the cells represents a log-10-transformed p-value returned by the
hypergeometric test. S9. The NES score plotted in this heat map is a
measure of metagene enrichment within a specific gene ontology

http://www.broadinstitute.org/gsea/index.jsp
http://www.biomedcentral.com/content/supplementary/1471-2164-13-237-S1.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-13-237-S2.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-13-237-S3.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-13-237-S4.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-13-237-S5.docx


Wilson et al. BMC Genomics 2012, 13:237 Page 14 of 14
http://www.biomedcentral.com/1471-2164/13/237
involved with cellular components. Bright red cells indicate high
enrichment. S10. The NES score plotted in this heat map is a measure of
metagene enrichment within a specific gene ontology involved with
molecular functions. Bright red cells indicate high enrichment.

Additional file 6: kruskal_wallis. Excel spreadsheet containing z-values
returned by the Kruskal-Wallis test on the encoding coefficients.
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