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Abstract

Background: Large amounts of mammalian protein-protein interaction (PPI) data have been generated and are
available for public use. From a systems biology perspective, Proteins/genes interactions encode the key
mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis.
An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive
network format with a user-friendly platform to identify key functional modules/pathways and the underlying
mechanisms of disease and toxicity.

Results: atBioNet integrates seven publicly available PPI databases into a network-specific knowledge base.
Knowledge expansion is achieved by expanding a user supplied proteins/genes list with interactions from its
integrated PPI network. The statistically significant functional modules are determined by applying a fast
network-clustering algorithm (SCAN: a Structural Clustering Algorithm for Networks). The functional modules can be
visualized either separately or together in the context of the whole network. Integration of pathway information
enables enrichment analysis and assessment of the biological function of modules. Three case studies are
presented using publicly available disease gene signatures as a basis to discover new biomarkers for acute
leukemia, systemic lupus erythematosus, and breast cancer. The results demonstrated that atBioNet can not only
identify functional modules and pathways related to the studied diseases, but this information can also be used to
hypothesize novel biomarkers for future analysis.

Conclusion: atBioNet is a free web-based network analysis tool that provides a systematic insight into proteins/
genes interactions through examining significant functional modules. The identified functional modules are useful
for determining underlying mechanisms of disease and biomarker discovery. It can be accessed at: http://www.fda.
gov/ScienceResearch/BioinformaticsTools/ucm285284.htm.

Keywords: Protein-protein interaction, Network analysis, Functional module, Disease biomarker, KEGG pathway
analysis, Visualization tool, Genomics
* Correspondence: hong.fang@fda.hhs.gov; xwxu@ualr.edu; weida.tong@fda.
hhs.gov
†Equal contributors
1ICF International at FDA's National Center for Toxicological Research, 3900
NCTR Rd, Jefferson, AR 72079, USA
2Divisions of Bioinformatics and Biostatistics, National Center for Toxicological
Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR
72079, USA
Full list of author information is available at the end of the article

© 2012 Ding et al.; licensee BioMed Central Lt
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/ucm285284.htm
mailto:hong.fang@fda.hhs.gov
mailto:xwxu@ualr.edu
mailto:weida.tong@fda.hhs.gov
mailto:weida.tong@fda.hhs.gov
http://creativecommons.org/licenses/by/2.0


Ding et al. BMC Genomics 2012, 13:325 Page 2 of 12
http://www.biomedcentral.com/1471-2164/13/325
Background
Protein-protein interaction (PPI) networks and other
network biology techniques have been widely used to
study human disease [1-3]. It is believed that perturba-
tions in cellular networks might provide insight into the
mechanisms underlying diseases. PPI network analysis,
either alone or combined with other information, has
been successfully applied in identifying disease asso-
ciated biomarkers and pathways [2]. Network-based clas-
sification has also shown promise in cancer diagnosis
and prognosis. Network-based biomarkers have not only
successfully been used for classification of metastatic
versus non-metastatic tumors, but also demonstrated
higher reproducibility compared to individual marker
genes identified by conventional approaches [4].
Omics techniques utilizing, for example, gene expres-

sion data from microarrays or next-generation sequen-
cing as well as proteomic or metabolomic data have
become a standard practice to identify candidate mo-
lecular biomarkers. The common way to interpret and
contextualize these biomarkers is with enrichment ana-
lysis using Gene Ontology [5], Kyoto Encyclopedia of
Genes and Genomes (KEGG) [6] and other similar
approaches. This type of analysis emphasizes the func-
tional relationship of markers. Alternatively, the omics
data can be interrogated based on their inherent connec-
tion and association in a network form.
Network-based analysis represents an advanced sys-

tems biology methodology to understand and interpret
the complex omics data [7]. By considering the cross-
talking of multiple pathways, network modeling allows a
more comprehensive analysis of a complex system than
the pathway-centric approach. Additionally, the un-
supervised nature of network analysis provides oppor-
tunities for identifying novel relationships not captured
in the pre-defined pathways, and thus offers a distinct
approach for biomarker discovery [8,9]. It has been
shown that network topological properties can be used
for prioritizing candidate disease genes and predicting
novel candidate biomarkers [10], and modularity analysis
could extract relevant sub-networks related to the stud-
ied disease [11]. Therefore, network-based analysis has
played an increasing role in modern biomarker discovery
and drug development. For example, using network-
based analysis, insulin signaling and nuclear receptor
networks were found consistently to be differentially
expressed in many type 2 diabetes models of insulin re-
sistance [4], and a core network underlying the insulin
signaling pathway impaired in patients who are insulin
resistant was also identified [12].
A number of software programs have been developed

for network analysis and visualizations; a comprehensive
list was compiled by Gehlenborg et al. [13]. Some pro-
grams focus on the graphical visualization of the
network [14-19], while others also add computational
functions such as cluster analysis [20-23] and modularity
identification [24], aiding in the interpretation of the
biological functions underlying the complex networks.
Cytoscape [15], MATISSE [9], VisANT [25], PINA [2]
and Gene2Networks [11] are among a few representing
the endeavor that has been made in this field.
We developed atBioNet, a free web-based tool for gen-

omic and proteomic data, that can perform network
analysis followed by biological interpretation for a list of
seed proteins/genes (i.e., proteins/genes provided by
user). The distinct advantages of atBioNet over other
existing systems are that: (1) it is an integrated system,
where all the key steps in network analysis are combined
into a user-friendly interface; (2) atBioNet can identify
new functionally related proteins and genes in the con-
text of a PPI network built from seven popular public
databases; (3) atBioNet provides a fast network-
clustering algorithm called Structural Clustering Algo-
rithm for Networks (SCAN) to identify functional mod-
ules; and (4) KEGG pathway information has been
seamlessly connected to the atBioNet interface for the
assessment of biological functions of the modules
through enrichment analysis. Here we present details of
the atBioNet application and provide the analyses of
three example disease cases (acute leukemia, systemic
lupus erythematosus, and breast cancer) to illustrate its
utility in real-world applications.

Implementation
atBioNet was developed at the U.S. Food and Drug
Administration’s National Center for Toxicological Re-
search (NCTR). It can be accessed at: http://www.fda.gov/
ScienceResearch/BioinformaticsTools/ucm285284.htm.
The application takes a list of proteins/genes and

places them in a PPI network to identify functional mod-
ules through SCAN and enrichment analysis. For each
module, the seed proteins/genes are highlighted. Other
proteins/genes in the same module are expected to share
similar functions as the seed proteins/genes and thus
could be novel biomarkers for the disease or toxicity
associated with the seed proteins/genes. A wide variety
of protein ID or gene ID formats are supported includ-
ing Entrez Gene ID, GenBank accession, official gene
name, and many more.

PPI database
The atBioNet contains a built-in PPI database integrat-
ing seven public PPI databases, which includes BioGRID
[26], The DIPTM [27], HPRD [28], IntAct [29], MINT
[30], REACTOME [31], and SPIKE [32]. The detailed in-
formation for the seven databases is listed in Table 1.
The disparate protein IDs in different databases were

consolidated using the Entrez Gene ID, from which the
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Table 1 Information for the seven public PPI databases

Databases Description Extracted Homo sapien proteins and interactions

Number of
proteins

Number of
interactions

BioGRID
thebiogrid.org

BioGRID provides PPI data compiled through
comprehensive curation efforts from high-throughput
data sets and individual focused studies.

8204 33625

DIP
dip.doembi.ucla.edu/dip/Main.cgi

The DIPTM catalogs experimentally determined
interactions between proteins, mainly from yeast,
and includes interactions from Helicobacter pylori
and human.

1137 1509

HPRD
www.hprd.org

The HPRD provides submitted human PPI data
including mass spectrometry and protein
microarray-derived data among other data types.

9553 38802

IntAct
www.ebi.ac.uk/intact/main.xhtml

IntAct contains PPI data with full descriptions of
the experimental conditions; data is derived from
literature curation or direct user submissions.

7495 30965

MINT
mint.bio.uniroma2.it/mint/
Welcome.do

MINT focuses on experimentally verified PPIs
classified as human, domain–peptide,
and virus–virus/host. Data is mined from the
scientific literature by expert curators.

5230 15353

REACTOME
www.reactome.org

REACTOME collects manually curated and
peer-reviewed pathway data for all species.

3599 74490

SPIKE
www.cs.tau.ac.il/~spike/

SPIKE focuses on highly curated human
signaling pathways.

6927 23224
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seven databases were combined. There are two database
options to choose from in our application, correspond-
ing to two different approaches of combining the seven
databases. The default option is “Human Database” that
took a union of human proteins from the seven data-
bases. This database consists of 12043 human proteins
and 132605 interactions. A more stringent option “K2
Human Subset Database” only considers a smaller and
more robust database with 9104 proteins and 36088
interactions obtained by the integration of the seven ori-
ginal databases using the k-votes approach, presented in
our previous publication, with k= 2 indicating that PPIs
must appear in at least two of the seven original data-
bases [33].

PPI network
A PPI network is a collection of nodes (i.e., proteins/
genes) and edges (interactions). There are several ways
to generate a PPI network in atBioNet. By default, the
network is created by adding proteins/genes from the
PPI database that directly interact with the seed pro-
teins/genes when the number of input nodes is less than
1000. Edges are added in the network only for pairs of
nodes where at least one node represents a seed pro-
teins/genes. However, when a user begins with a large
number of input proteins/genes, more stringent options
can be used, such as including only proteins/genes that
connect to more than two seed proteins/genes, or using
only input nodes. Currently, “use only input nodes” is
the default option when the number of input proteins/
genes is greater than 1000. The aforementioned options
are provided in atBioNet so that the user can select the
scope of the generated PPI network.
Functional modules
Once the PPI network is established, atBioNet provides an
on-the-fly network algorithm to analyze the network. The
algorithm is based on SCAN, which identifies statistically
significant clusters or functional modules based on the
structural similarity of a pair of vertices connected by an
edge [34]. Structural similarity is calculated based on their
common neighbors. The algorithm aims to assign a vertex
to a cluster where it shares many common neighbors with
other members of the cluster. SCAN runs linearly in terms
of the size of the network, which allows the user to
analyze large networks with a much shorter time in com-
parison with most other algorithms. Another key feature
of SCAN is the identification of nodes with special roles in
the network such as hubs and outliers. Hubs are nodes
that bridge different modules, thus the hub proteins/genes
could play multiple roles related to the mechanisms repre-
sented in the connected modules. Outliers are nodes that
have weak or no connection to all the modules, and thus
the outlier proteins/genes may hold a distinct role in biol-
ogy. Various statistical network measures can be calcu-
lated, including Page Rank, Degree Centrality, HITS, and
BETWEENNESS. These measures can be exported in sev-
eral formats such as tab delimited and GUESS’s GDF for-
mat [35].
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Figure 1 (See legend on next page.)
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(See figure on previous page.)
Figure 1 atBioNet interface. The network visualization for the systemic lupus erythematosus data in atBioNet’s interface for both the top 6
modules (A) and the entire network (B). Square nodes represent seed proteins/genes and circles are added by the network.
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atBioNet visualization
The graphical network in atBioNet is generated using
GUESS, an open source network visualization and ex-
ploration tool (provided by Eytan Adar at the University
of Michigan) [35]. The network layout algorithm used is
a Generalized Expectation-Maximization (GEM) algo-
rithm described by Arne et al. [36].
The interface of atBioNet is shown in Figure 1. The

default setting is to display the six top modules as separ-
ate entities (Figure 1A), allowing the user to focus on
the most significant modules of the network. Depending
on the user’s goals, the modules can be ranked either by
the number of seed proteins/genes, or the total number
of proteins/genes in the module, or Mark Newman’s
modularity score [37]. Mark Newman’s modularity score
is originally defined as a quality measure of the whole
clustering. We generalized Mark Newman’s modularity
for each module as a quality measure. For a complete
view, the entire network (the largest 6 modules retain
their coloring) can be shown as well (Figure 1B).

Pathway analysis
The KEGG pathway database [38] has been integrated
into atBioNet to support further data interpretation. The
number of pathways for each network module created
from the seed proteins/genes is listed within atBioNet. A
pathway summary ranked by Fisher’s exact test p-value
D. Interpret functional modules

Functional
Modules

Pathway analysis

Verified from literatures
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A. Input protein/gene seeds

Proteins/genes
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Figure 2 atBioNet workflow. Flowchart of an example use case of atBioN
ranked in order of significance (C); and then the results are interpreted for
showing the relevant seed proteins/genes and category
for each KEGG pathway is available for each individual
module. In addition, the identified pathways are directly
linked to its detailed view on the KEGG website high-
lighting the present proteins/genes within the module.

Results
The flowchart in Figure 2 depicts one common work-
flow using atBioNet for data analysis. First, a list of pro-
teins/genes that the user is interested in is inputted into
atBioNet as the network seeds. Then, the database is
searched for other proteins/genes known to directly
interact with the network seeds, and the network is built.
The clustering algorithm SCAN is used to identify func-
tional modules based on the network structural similar-
ity, and then these modules are ranked according to
their significance, i.e., the number of seed nodes, total
number of nodes, or modularity score. Finally, the data
presented in the network can be used for various appli-
cations such as finding associated pathways, validating
current literature findings, and discovering new biomarkers.
We present three case studies below to demonstrate

the utility of atBioNet in clinical applications: the differ-
entiation of acute myeloid leukemia from acute lympho-
blastic leukemia [39], diagnosis of systemic lupus
erythematosus [40], and prognosis of breast cancer [41].
The initial publication for each of these studies provided
. Rank modules according to significance
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PPI database
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Network
base
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Seeds
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et. The user inputs a Proteins/genes list (A); a network is created (B);
their biological significance (D).



Table 2 Summary of the gene counts from the three case studies

Study case [reference] Acute leukemia [39] Lupus [40] Breast cancer [41]

Original published genes 50 37 70

# inputted as seed genes in atBioNet 46 37 65

Mapped genes from atBioNet 44 37 50

Added genes from atBioNet 1362 1312 856

Added edges from atBioNet 1671 2160 1089
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a list of genes (biomarkers), which were inputted into
atBioNet (see Additional file 1). The gene count sum-
mary for three case studies is shown in Table 2, and the
top 2 modules and top 10 pathways per module are
shown in Table 3.

Case study 1: differentiation of acute myeloid leukemia
(AML) from acute lymphoblastic leukemia (ALL)
Acute leukemia is a cancer of the blood cells, with two
predominant forms known as ALL (acute lymphoblastic
leukemia, arising from lymphoid precursors) and AML
(acute myeloid leukemia, arising from myeloid precursor)
[39]. Distinguishing ALL from AML is critical for suc-
cessful treatment, since the chemotherapy regimens for
ALL are different from those for AML [39]. By decreas-
ing the misdiagnosis rate of AML and ALL, unwarranted
toxicities will be reduced and cure rates will be increased.
A signature with 50 genes to distinguish AML and

ALL were identified and published by Golub et al. [39].
Forty-six genes were matched using GenBank from the
National Center for Biotechnology Information (NCBI)
based on the gene name provided. They were inputted
into atBioNet as seeds to generate significant modules.
Two distinct modules were identified (Table 3).
In module 1, top ten KEGG pathways were listed

(Table 3), most of them related to cancer development
and progression. The chronic myeloid leukemia pathway
was identified in this module, implying that module 1 is
AML-specific. For example, four genes (i.e., GRB2,
HDAC1, HDAC2, and TP53) identified in the chronic
myeloid leukemia pathway are known to be distinguish
AML from ALL, indicating that other genes in this mod-
ule might also be potential biomarkers for AML.
Immune response is one of major factors influencing eti-

ology of acute leukemia [42]. Many genes in the second
module are involved in the function of the immune system;
the enriched pathways in this module were also associated
with the immune system, including primary immunodefi-
ciency, natural killer cell mediated cytotoxicity, T cell recep-
tor signaling pathway, and chemokine signaling pathway.

Case study 2: diagnosis of systemic lupus erythematosus
(SLE)
SLE is a chronic inflammatory autoimmune disease in
which antibodies attack self-antigens leading to damage
in many organ systems, including the bones, joints, kid-
neys, and central nervous system. Inflammation and the
production of auto-antibodies play an important role in
the pathogenesis of SLE [43].
A 37-gene meta-signature biomarker panel for SLE

[40] was used as the seed genes in atBioNet, and the
resulting top two modules are shown in Table 3. The
first module was related to inflammatory processes. In
this module, 28 of 69 genes were involved in the MAPK
signaling pathway, which regulates the synthesis of in-
flammatory mediators at the level of transcription and
translation [44]. Genes such as IL1B, TLR3, and
TICAM1 from the Toll-like receptor signaling pathway
and CASP1, IL1B from the NOD-like receptor signaling
pathway, which are vital for generating mature pro-
inflammatory cytokines, were also identified in this mod-
ule [45,46].
The second module was related to immune activity. It

included osteoclastogenesis, which is mainly regulated
by signaling pathways activated by immune receptors.
The JAK–STAT, which is a signaling pathway with an
important role in the control of immune responses, was
also implicated. Dysregulation of the JAK-STAT pathway
is associated with various immune disorders; because
biomarkers may not be unique to a specific disease, they
are good candidates for further investigation [47].
A total of 14 genes, five in the first module and nine

in the second module (highlighted in Figure 3), have
previously been identified in the literature as possible
biomarkers for SLE. For example, deletion of the
Gadd45a gene (Figure 3A) in mice is associated with the
development of an autoimmune disease similar to human
SLE, suggesting this gene plays a vital role in SLE devel-
opment [48]. Similarly, variants of many genes found in
the second module (Figure 3B), including ETS1, STAT6,
VDR, and TYK2, were found to be associated with SLE
[49-53]. Details for the 14 literature-confirmed potential
SLE biomarkers are listed in Additional file 2.

Case study 3: prognosis of breast cancer
Breast cancer is the most common malignant disease in
Western women. Adjuvant chemotherapy has made a
significant contribution to the improvement of breast
cancer survival rates. However, considering the toxic
effects and high cost associated with chemotherapy,



Table 3 Top 10 KEGG pathways ranked by p-value for the top two modules in the three disease case studies

Disease Functional
Modules
(# gene)

Map Title in KEGG # of genes
mapped in
the pathway

Fisher
P value

Acute leukemias Module #1:
Leukemia module
(n = 44)

Huntington's disease(hsa05016) 6 <0.0001

Cell cycle(hsa04110) 5 0.00015

Chronic myeloid leukemia(hsa05220) 4 0.00021

Prostate cancer(hsa05215) 4 0.00045

Notch signaling pathway(hsa04330) 3 0.00092

Pathways in cancer(hsa05200) 6 0.00184

Measles(hsa05162) 4 0.00209

Neuroactive ligand-receptor interaction(hsa04080) 5 0.00465

Primary immunodeficiency(hsa05340) 2 0.00913

Endometrial cancer(hsa05213) 2 0.01948

Module #2:
Immune module
(n = 32)

JAK-STAT signaling pathway(hsa04630) 12 <0.0001

B cell receptor signaling pathway(hsa04662) 8 <0.0001

Primary immunodeficiency(hsa05340) 8 <0.0001

Measles(hsa05162) 7 <0.0001

Natural killer cell mediated cytotoxicity(hsa04650) 7 <0.0001

Osteoclast differentiation(hsa04380) 6 <0.0001

Hematopoietic cell lineage(hsa04640) 5 <0.0001

T cell receptor signaling pathway(hsa04660) 5 0.00012

Chemokine signaling pathway(hsa04062) 6 0.00019

Chronic myeloid leukemia(hsa05220) 4 0.00033

Lupus Module #1:
Inflammatory Module
(n = 69)

MAPK signaling pathway(hsa04010) 28 <0.0001

Cell cycle(hsa04110) 12 <0.0001

Osteoclast differentiation(hsa04380) 15 <0.0001

Toll-like receptor signaling pathway(hsa04620) 16 <0.0001

NOD-like receptor signaling pathway(hsa04621) 14 <0.0001

GnRH signaling pathway(hsa04912) 12 <0.0001

Pertussis(hsa05133) 12 <0.0001

Leishmaniasis(hsa05140) 10 <0.0001

Chagas disease (American trypanosomiasis)(hsa05142) 11 <0.0001

Toxoplasmosis(hsa05145) 13 <0.0001

Module #2:
Immune module
(n = 49)

Osteoclast differentiation(hsa04380) 13 <0.0001

JAK-STAT signaling pathway(hsa04630) 12 <0.0001

Measles(hsa05162) 10 <0.0001

Influenza A(hsa05164) 12 <0.0001

Pathways in cancer(hsa05200) 13 <0.0001

Hepatitis C(hsa05160) 8 <0.0001

Leishmaniasis(hsa05140) 5 <0.0001

Basal transcription factors(hsa03022) 4 0.00025

Toll-like receptor signaling pathway(hsa04620) 5 0.00028

Acute myeloid leukemia(hsa05221) 4 0.00033

Breast cancer Module #1:
Proliferative module
(n = 192)

DNA replication(hsa03030) 16 <0.0001

Nucleotide excision repair(hsa03420) 13 <0.0001

ErbB signaling pathway(hsa04012) 15 <0.0001
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Table 3 Top 10 KEGG pathways ranked by p-value for the top two modules in the three disease case studies
(Continued)

Cell cycle(hsa04110) 41 <0.0001

Pathways in cancer(hsa05200) 28 <0.0001

Renal cell carcinoma(hsa05211) 13 <0.0001

Pancreatic cancer(hsa05212) 13 <0.0001

Chronic myeloid leukemia(hsa05220) 16 <0.0001

Focal adhesion(hsa04510) 20 <0.0001

Measles(hsa05162) 14 <0.0001

Module #2:
Metastasis module
(n = 74)

Focal adhesion(hsa04510) 17 <0.0001

ECM-receptor interaction(hsa04512) 15 <0.0001

Amoebiasis(hsa05146) 11 <0.0001

Pathways in cancer(hsa05200) 14 <0.0001

Protein digestion and absorption(hsa04974) 8 <0.0001

Small cell lung cancer(hsa05222) 7 <0.0001

Bladder cancer(hsa05219) 4 0.00019

Malaria(hsa05144) 4 0.00041

Rheumatoid arthritis(hsa05323) 5 0.00041

Cytokine-cytokine receptor interaction(hsa04060) 8 0.00042
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developing better prognostic biomarkers that identify
which breast cancer patients do not need additional
chemotherapy is still a pressing clinical challenge for the
management of breast cancer patients [54].
The 70-gene signature used in MammaPrintW for

breast cancer prognosis was analyzed, and 65 of these
genes were found in GenBank. These genes were
imported into atBioNet to create a breast cancer prog-
nosis related network, and several modules were identi-
fied. The top module shown in Table 3 was a cancer cell
proliferation module. Most of the pathways in the first
module were related to the proliferation of cancer cells,
e.g., DNA replication, nucleotide excision repair, ErbB
signaling pathway, and cell cycle regulation.
The second module shown in Table 3 reflects the

invasive aspect related to cancer metastasis. The first
two pathways (i.e., focal adhesion and ECM-receptor
interaction) reflect the invasive capacity of the tumor
cell to escape from their primary site. These two
pathways could not be statistically enriched by the
seed genes, providing additional evidence that atBi-
oNet can identify novel mechanisms related to the
studied disease.

Discussion
We reported a user-friendly network analysis and inter-
pretation tool called atBioNet and described three case
studies using atBioNet to identify key functional modules
and provide hypotheses for the underlying mechanisms
of diseases based on proteins/genes lists comprising can-
didate biomarkers from omics technologies. atBioNet
leverages existing knowledge from seven publicly avail-
able PPI databases and adds powerful network analysis
and visualization tools. The system has the capability to
expand knowledge based on a list of seed proteins/genes
through analysis of the resulting functional modules. The
functional modules were identified by using SCAN, a fast
structural clustering method, and annotated with KEGG
pathways.
Recent advances in omics technologies have generated

huge amounts of publicly available PPI data. Several
visualization and network analysis tools have been devel-
oped to leverage this data for different purposes.
VisANT [55] is an integrative framework for the ana-
lysis, mining, and visualization of pathways and inte-
grated omics data. VisANT generates networks for use
in systems biology research from input proteins/genes
by querying integrated PPI data from multiple sources
[56]. The resulting network is annotated by using infor-
mation from KEGG[57] and GO[58]. PINA [2] is an-
other network construction, analysis, and visualization
tool that contains information from six public PPI data-
bases. It contains ~2400 pre-determined modules. Given
a input proteins/genes, PINA determined the over-
expressed modules by performing an enrichment test
and then offer biological context to the modules that are
annotated with GO, KEGG, protein domains, and
MsigDB [59]. Unlike PINA, atBioNet constructs mod-
ules at the time of the query, which is dynamic and
allows novel modules to be generated based on the input
proteins/genes. NAViGaTOR [19] mainly focuses on 2D
or 3D visualization of PPI networks as well as GO



(A)

(B)

Figure 3 Known and potential SLE biomarkers found by atBioNet. Additional SLE biomarker genes found based on the 37 seed genes using
atBioNet. Module 1 (A) and module 2 (B) are shown. The red squares represent the seed genes, and the light blue circles represent the identified
SLE biomarker genes that are confirmed by literatures.
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annotation of the nodes. Cytoscape [60] allows users to
build a customized pipeline to analyze PPI data by using
different plug-ins and annotation tools, but the effective
use of Cytoscape requires a thorough understanding of
the tools and plug-ins available and expertise in organiz-
ing and interpreting the output.
atBioNet performs functional module analysis and bio-

marker identification by integrating public PPI data
sources. atBioNet begins from the hypothesis that
proteins/genes in the same module are likely involved in
the same biological functions or processes. This ap-
proach allows un-annotated proteins/genes to be used as
potential biomarkers for the same human disease that
the input proteins/genes are associated with. Further-
more, sub networks are detected using the SCAN algo-
rithm [34], which has been demonstrated to be a
powerful tool for large-scale network analysis from both
statistical and biological points of views.
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More specifically, the SCAN algorithm quickly, effi-
ciently, and accurately analyzes networks. SCAN’s run-
time scales linearly with the size of the network, which
makes it a scalable approach for extremely large net-
works with hundreds of thousands or even millions of
nodes. Moreover, SCAN accurately finds clusters, and
also identifies nodes playing crucial roles with only one
traverse of the network. The power of SCAN has been
demonstrated in applications including PPI networks
[33,61] and social networks [62,63] in addition to the
three study cases we have examined in this study.
From a clinical point of view, the rationale behind the

functional module analysis and biomarker discovery per-
formed by atBioNet is to find effective and robust bio-
markers for a disease. When the number of candidate
genes is too small to identify functional module, add-
itional proteins/genes can be added from atBioNet's
database to expand the network. In contrast, when there
is a large amount of input proteins/genes associated with
a phenotype, atBioNet focuses on detecting functional
modules, the hub genes (e.g., transcription factors or
regulatory genes), and outlier genes based solely on the
list of seed proteins/genes. Thus, potential biomarkers
that are important to multiple biological processes,
mechanisms, or functions can be identified.
The three case studies presented here each used the

default network parameters and the results were consist-
ent with the knowledge about these diseases. atBioNet
provides several options for network analysis, such as
the choice of the starting PPI database, control of the
stringency of node additions during network construc-
tion, etc. The particular options used will depend on
specific research questions and scenarios; for example,
for a very large list of seed proteins/genes, the user may
choose to construct a network using only the seed pro-
teins/genes without adding any additional nodes. To
build a more reliable network, the user can choose to
use a smaller, more stringent database [33].
Moreover, all three case studies are based on single

genomic signature as a seed for network analysis. Actu-
ally, the network approach will be more powerful by
using multiple signatures reported in different literature
studies for a particular disease to enhance the accuracy
of the functional modules interpreting the underlying
mechanisms of the disease. It has been well-documented
that different studies of the same disease often produce
gene signatures with few overlapping elements [64], but
they might reflect different mechanisms associated with
the disease. Using atBioNet, different signatures can be
integrated into the genome-wide network view, which
can be used to further our understanding of biomarker
specificity and broadening the search space and thus po-
tentially offering a more comprehensive view of the PPI
networks underlying the disease.
Another potential use of atBioNet is to study the
mechanisms related to therapeutic use of drug combina-
tions, which have become very effective due to medicinal
research advancements in recent years [65]. We can
combine the signature genes associated with each drug
and use the union list as a seed for network analysis.
While individual drugs may affect a set of regulatory
genes or pathways, combining drug actions in the con-
text of biological mechanisms underlying the disease
condition could lead to more effective therapies for a
complicated clinical situation.
In the current version, atBioNet contains only human

protein-protein interactions. Our next major revision
will expand the available data to include the STRING
and NCBI PID databases as well as covering PPI data
from other species. Another limitation of the current
atBioNet is that the biological annotation is exclusively
relied on KEGG. We will add other biological annotation
sources in the future such as GO, Biocarta pathways,
disease-centric databases, and more. Additionally, owing
to memory constraints in Java, there is an upper limit of
approximately 3000 seed proteins/genes when using the
“add all directly connected nodes” option in atBioNet.
Nevertheless, the user is able to allocate more memory
to the application to allow network analysis for a larger
number of seed proteins/genes.

Conclusions
We implemented atBioNet as a web-based tool that pro-
vides a convenient platform for human-specific network
analysis with a focus on identifying biologically relevant
functional modules. The three case studies presented
here demonstrate the utility of atBioNet in discovering
biomarkers and mechanisms in human diseases. The
power of integrating the SCAN algorithm, custom PPI
database, visualization, and user friendly interface to
allows atBioNet users to build biologically meaningful
interpretations of the relationships among the proteins/
genes implicated in the constructed networks. Finally,
atBioNet will undergo continual development and will
potentially be expanded to handle omics data and sys-
tems biology studies.

Availability and requirements
Project name: atBioNet.
Project home page: http://www.fda.gov/ScienceRe-

search/BioinformaticsTools/ucm285284.htm.
Operating system(s): Platform independent; tested on

Windows XP/Vista/7, Linux/Ubuntu/Redhat, and Mac
(with an Intel core2 duo or better).
Programming language: Java.
Other requirements: Java 1.6 or higher, 1 GB RAM.
License: None required.
Any restrictions to use by non-academics: No.
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Additional file 2: The 14 literature-identified potential SLE
biomarkers in case study 2.
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