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Abstract

Background: Clostridium thermocellum is a candidate consolidated bioprocessing biocatalyst, which is a
microorganism that expresses enzymes for both cellulose hydrolysis and its fermentation to produce fuels such as
lignocellulosic ethanol. However, C. thermocellum is relatively sensitive to ethanol compared to ethanologenic
microorganisms such as yeast and Zymomonas mobilis that are used in industrial fermentations but do not possess
native enzymes for industrial cellulose hydrolysis.

Results: In this study, C. thermocellum was grown to mid-exponential phase and then treated with ethanol to a
final concentration of 3.9 g/L to investigate its physiological and regulatory responses to ethanol stress. Samples
were taken pre-shock and 2, 12, 30, 60, 120, and 240 min post-shock, and from untreated control fermentations for
systems biology analyses. Cell growth was arrested by ethanol supplementation with intracellular accumulation of
carbon sources such as cellobiose, and sugar phosphates, including fructose-6-phosphate and glucose-6-phosphate.
The largest response of C. thermocellum to ethanol shock treatment was in genes and proteins related to nitrogen
uptake and metabolism, which is likely important for redirecting the cells physiology to overcome inhibition and
allow growth to resume.

Conclusion: This study suggests possible avenues for metabolic engineering and provides comprehensive,
integrated systems biology datasets that will be useful for future metabolic modeling and strain
development endeavors.
Background
Clostridium thermocellum is a Gram-positive, anaerobic,
thermophilic bacterium that produces large extracellular
enyzme complexes, called cellulosomes. It can rapidly
solubilize biomass and it is a candidate microorganism
for converting biomass into lignocellulosic ethanol via
a process termed consolidated bioprocessing (CBP) (see
reviews [1-5]. A targeted gene deletion system is a recent
and important development for C. thermocellum studies
and strain development [6,7], new genome sequences have
become available [8] and fundamental studies have
* Correspondence: brownsd@ornl.gov
1Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road,
Oak Ridge, Tennessee 37831, USA
2BioEnergy Science Center, Oak Ridge National Laboratory, 1 Bethel Valley
Road, Oak Ridge, Tennessee 37831, USA
Full list of author information is available at the end of the article

© 2012 Yang et al.; licensee BioMed Central Lt
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
identified where large amounts of previously unaccounted
for carbon is going during fermentations [9].
High product titer is an essential industrial consider-

ation for capital and downstream processing costs [10].
C. thermocellum strains, such as SS22, have been
selected for enhanced ethanol tolerance (64 g/L), and
ethanol concentrations between 27 to 50 g/L only inhib-
ited the growth of different strains (A1, C9, and S7) by
approximately 50% [11]. However, increased ethanol
tolerance and productivity are not necessarily linked,
with the highest concentrations of ethanol produced
reported as ≤ 30 g/L [12]. Membrane integrity has been
recognized as a key factor in ethanol tolerance [13]. In
addition, the role of compatible solutes such as trehalose,
amino acids, such as proline [14,15], in ethanol tolerance
and specific genes (e.g. [16-18]) have been investigated in
a variety of microorganisms.
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Differences in membrane proteins between C.
thermocellum wild-type and ethanol-adapted (EA)
strains have been investigated using proteomics [19].
Timmons et al. (2009) determined the fatty acid com-
position and membrane anisotropy from C. thermocellum
wild-type and EA strains. They reported that EA had more
fatty acids with chain lengths >16:0 and significantly more
16:0 plasmalogens compared to the parent and proposed a
model that strain EA ethanol tolerance is due to fatty acid
alterations that increase membrane rigidity and counter-
act the fluidizing effect of ethanol [20].
Genome resequencing was conducted for C. thermo-

cellum EA and a mutated alcohol dehydrogenase gene
(adhE) with altered cofactor specificity was identified as
a key genetic determinant for the enhanced ethanol tol-
erance phenotype [21]. Subsequently, two independent
ethanol tolerant C. thermocellum mutants named E50A
and E50C were selected using a strategy that alternated
between increasing ethanol concentrations and transfers
in medium that lacked selection pressure [22]. In con-
trast to strain EA, strains E50A and E50C grew as well
as or better than the wild-type strain and similar to
strain EA the mutations were identified in an alcohol de-
hydrogenase gene by resequencing. Common mutations
were also identified in genes involved in arginine/pyrimi-
dine biosynthetic pathways.
A detailed fundamental understanding of biological

systems under standard and altered environmental con-
ditions is important for metabolic engineering, synthetic
biology, and to advance applied goals for enhanced
biofuels production [23]. In this study, we combined
transcriptomic, proteomic and metabolic profiling
with bioinformatic analyses to elucidate the molecular
responses of wild-type C. thermocellum to ethanol stress
compared to untreated control samples. The combined
approach, which employs three of the major “omic”
technologies, endeavors to provide a deep and global
insight into the molecular mechanisms of C. thermocel-
lum ethanol stress responses. Though each analytical
technology is powerful in its own right, the application
of orthogonal “omic” measurements provides additional
support for conclusions put forth in this study and pro-
vides avenues for future studies into the different aspects
of physiology and regulation captured by the respective
technologies.

Methods
Controlled batch fermentations
C. thermocellum ATCC27405 was cultured in chemically
defined MTC medium with 5 g/L of cellobiose as the
carbon source, as described previously [24,25] at 60°C.
Batch fermentations were conducted in approximately
4.0 L of MTC medium in 7.5-L BioFlo110 bioreactors
(New Brunswick Scientific, NJ) fitted with agitation, pH,
and temperature probes and controls, as described pre-
viously [26]. Fermentors were sparged overnight with
filter-sterilized N2 gas and for approximately one hour
post-inoculation to maintain anaerobic conditions. The
agitation rate was 300 rpm in each vessel. Culture pH
was monitored using a pH electrode (Mettler-Toledo,
Columbus, OH) and the pH control set point was main-
tained at pH 7.0 by automatic titration with 3 N NaOH
or HCl. C. thermocellum was added to a serum bottle
containing 50 mL MTC broth for inoculation. The op-
tical density was measured with a spectrophotometer at
600nm and the inoculum was added to one fermentor for
the seed culture, and the culture from the seed culture
fermentor was used to inoculate three fermentors to an
initial OD600nm of approximately 0.14. Two fermenta-
tions were conducted for the wild-type C. thermocellum
controls (no ethanol supplementation) or 3.9 g/L
(or 0.5% [v/v]) ethanol shock treatment. Growth was
monitored turbidometrically by measuring optical dens-
ity (OD) at 600nm with a model 8453 spectrophotometer
(Hewlett-Packard, CA.). Samples were harvested at ap-
proximately mid-exponential phase (OD 600nm~ 0.5)
and at different time points post ethanol shock.

Extracellular metabolite analysis with High-Performance
Liquid Chromatography (HPLC)
HPLC analysis was used for the measurements of the
extracellular metabolite concentration of cellobiose,
acetate, and ethanol in 0.2 μm-filtered samples taken at
different time points during fermentation, as described
previously [26]. The fermentation samples were acidified
with 10 mM sulfuric acid, separated and quantified by
HPLC using a LaChrom Elite System (Hitachi High
Technologies America, Inc., CA). Analysis was per-
formed with the oven (Model L-2350) set at 60°C, and a
pump (Model L-2130) set with a flow rate of 0.5 mL/
min in 5 mM H2SO4. The run time for each sample was
set for 35 min (Injector Model L-2200). Eluted
compounds were registered and quantified by a refractive
index detector (Model L-2490) equipped with a computer-
powered integrator. Soluble fermentation products were
identified by comparison with retention times and peak
areas of corresponding standards. Metabolites were sepa-
rated on an Aminex HPX-87 H, 300 x 7.8 mm column
(Bio-Rad, CA).

RNA extraction and ds-cDNA synthesis
RNA was isolated essentially as described previously [26],
except that an additional bead beating step was included
for efficient Gram-positive cell lysis. Briefly, samples were
harvested by centrifugation, resuspended in TRIzol reagent
(Invitrogen, CA) and subsequently 1.0 mL aliquots were
transferred 2.0 mL screw cap tubes (#12800-200-E, MO
BIO Laboratories, Inc., CA) that contained 0.25 g of lysis
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beads from a UltraClean Microbial RNA Kit (MO BIO
Laboratories, Inc,). Cell lysis proceeded with 3 X 20 sec
bead beating treatments at 6,500 rpm in a Precellys 24
high-throughput tissue homogenizer (Bertin Technologies,
Montigny-le-Bretonneux, France). Cell lysates were trans-
ferred to fresh tubes and subsequently purified as described
previously [26]. Each total RNA preparation was treated
with RNase-free DNase I (Ambion, TX) to digest residual
chromosomal DNA and subsequently purified using the
RNeasy mini kit (Qiagen, CA). Total cellular RNA was
quantified with a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies, DE) and RNA quality was
assessed with Agilent Bioanalyzer (Agilent, CA). Purified
RNA of high quality was used as the template to gen-
erate ds-cDNA using Invitrogen ds-cDNA synthesis
kit (Invitrogen, CA).

Microarray sample labeling, hybridization, scanning,
and statistical analysis of array data
ds-cDNA was labeled, hybridized, arrays washed, and
scanned following the NimbleGen protocols. Hybridiza-
tions were conducted using an 12-bay hybridization sta-
tion (BioMicro Systems, Inc., UT), arrays dried using a
Maui wash system (BioMicro Systems, Inc.) and scanned
with a Surescan high-resolution DNA microarray scanner
(Agilent Technologies, CA), and the images were quanti-
fied using NimbleScan software (Roche NimbleGen, IN).
Statistical analyses were done with JMP Genomics 4.1 soft-
ware (SAS Institute, NC), essentially as described previ-
ously [27]. The data were normalized using the LOWESS
normalization algorithm within JMP Genomics. An ana-
lysis of variance (ANOVA) was performed to determine
differential expression levels between conditions and time
points using the False Discovery Rate (FDR) testing
method (p< 0.05). Microarray data have been deposited in
NCBI Gene Expression Omnibus (GEO) database under
accession number GSE25236. The interactions among
differentially expressed genes were investigated using
the String 8.2 pre-computed database [28], available
at http://string.embl.de/.

Quantitative-PCR (qPCR) analysis
Microarray data were validated using real-time qPCR,
as described previously [26,27], except that the Bio-
Rad MyiQ2 Two-Color Real-Time PCR Detection
System (Bio-Rad Laboratories, CA) and Roche
FastStart SYBR Green Master (Roche Applied Science,
IN) were used for this experiment. Eleven genes
representing different functional categories and range
of gene expression values based on microarray hybri-
dizations were analyzed using qPCR from cDNA
derived from different time point samples. Oligo-
nucleotide sequences of the eleven genes selected for
qPCR analysis are listed in Additional file 1.
Intracellular metabolite analysis with gas
chromatography–mass spectrometry (GC-MS)
Culture samples were rapidly pelleted by centrifugation,
supernatants removed, cell pellets snap-frozen in liquid
nitrogen and then stored at −80°C until analysis. Krall
et al. (2009) conducted a rigorous comparison of sam-
pling approaches for microbial cultures and concluded
that fast filtering and centrifugation (even at room
temperature) produced similar concentrations of meta-
bolites, even for those predicted with high turnover [29].
Metabolite analyses were performed on microbial pellets
collected in different time points suspended with 80%
ethanol (aqueous), as described previously [26]. Briefly,
cells were disrupted using a sonicator 3000 (Misonix,
Inc., NY). An internal standard of 200 μL of sorbitol
(1 mg/mL aqueous solution) was then added to each
tube and 2-mL aliquots then dried in a helium stream.
Metabolites were converted to trimethylsilyl derivatives
and analyzed with an Agilent Technologies Inc. (CA)
5975 C inert XL gas chromatograph-mass spectrometer,
fitted with an HP-5MS (5% Phenyl Methyl Silox) 30 m x
250 μm x 0.25 μm film thickness capillary column, as
described previously [30]. Two biological samples from
each condition were analyzed with metabolite data of C.
thermocellum under control and ethanol treatment con-
ditions averaged and presented as relative responses
between C. thermocellum under ethanol treatment ver-
sus C. thermocellum without ethanol treatment fermen-
tation. Statistically significant treatment differences were
determined by Students t-tests with probability values
p< 0.10 shown.

Sample preparation for 2D-LC-MS/MS
C. thermocellum pelleted cells from time point 120 min
were prepared for LC-MS analysis as follows. Cells were
lysed by a combination of SDS (4% SDS in 100 mM
Tris–HCl pH 8.0), sonic disruption at 20% amplitude
(Branson Digital Sonifier), and boiling, followed by
centrifugation at 21000 g for 10 min. Crude lysates were
assayed for protein concentration via bicinchoninic
acid assay (BCA), (Pierce, IL), adjusted to 50 mM dithio-
threitol (DTT), and incubated at 60°C for 10 min.
Trichloroacetic acid (TCA) precipitation of 2 mg of
crude protein was performed to remove bulk SDS and
other small molecules that could potentially interfere
with downstream MS measurement. Pelleted protein
was washed twice with ice-cold acetone, air-dried to re-
move residual acetone, and resuspended in 250 μL of
denaturation buffer (8 M urea, 100 mM Tris–HCl pH 8.0).
Denatured proteins were then reduced with 5 mM
DTT for 10 min at room temperature (RT), alkylated
with 10 mM iodoacetamide (IAA) for 10 min at RT
in the dark, and diluted to 4 M urea for tryptic digestion.
Proteins were digested overnight at a 1:100 trypsin to

http://string.embl.de/
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protein ratio (w/w), and again in 2 M urea for 4 h the fol-
lowing day. Resulting peptides were then adjusted to
150 mM NaCl, 0.1% formic acid, filtered through a
10 kDa spin column filter (VWR, PA), and quantified by
BCA for subsequent LC-MS analysis.

Multi-dimensional LC-MS analysis of peptides
Peptide samples were directly loaded onto a biphasic
MudPIT back column packed with 4 cm strong-cation
exchange (SCX) resin followed by 3 cm C18 reversed
phase (RP) resin (Luna and Aqua respectively, Phenom-
enex), as previously described [31,32]. Adsorbed peptides
were washed offline with solvent A (5% acetonitrile, 95%
HPLC-grade water, 0.1% formic acid) for 20 min,
followed by a 25 min gradient to solvent B (70% aceto-
nitrile, 30% HPLC-grade water, 0.1% formic acid). The
back column containing the peptides was placed in-line
with an LTQ-XL MS (Thermo Fisher Scientific Inc.,
MA) outfitted with an in-house pulled nanospray emit-
ter (100 micron ID) packed with 15 cm of C18 RP
material. Peptides were separated in two chromato-
graphic dimensions (charge and hydrophobicity) over an
11-step MudPIT analysis (salt pulses [5%, 7.5%, 10%,
12.5%, 15%, 17.5%, 20%, 25%, 35%, 50%, and 100% of
500 mM ammonium acetate] each followed by a 2 h or-
ganic gradient to 50% solvent B). Tandem mass spectra
(2 μscans) were acquired in data-dependent mode based
on full-range mass scans (2 μscans). Two technical repli-
cates were analyzed per sample.

Database searching and semi-quantitative proteomics
data analysis
Tandem mass spectra collected for each sample were
matched to specific peptide sequences via SEQUEST [33]
utilizing a FASTA protein database containing C. thermo-
cellum (NC_009012, version 08-FEB-2007) and common
contaminant protein entries, as well as reversed decoy
sequences to assess false-discovery rates. As IAA was used
to block the reformation of disulfide linkages, a static modi-
fication present at all cysteine residues (carboxymethylation,
+57 Da) was utilized. SEQUEST-derived peptide sequence
data were then filtered with DTASelect [34] and assembled
into protein loci using the following score thresholds:
XCorr: +1=1.8, +2=2.5, +3=3.5, DeltCN 0.08, and 2 pep-
tides (1 unique) per protein identification. These criteria
were chosen to produce average protein-level FDRs be-
tween 1 and 2 percent. DTASelect-filtered data for each
sample run were then prepared for semi-quantitative ana-
lysis. Before calculation of normalized spectral abundance
factors (NSAF) [35], spectral counts (SpC) of non-unique/
redundant peptides were weighted based upon the relative
abundance of the proteins that share these sequences, as
derived by their total unique SpC. Once rebalanced, NSAF
values were calculated for each protein and imported into
JMP Genomics 4.1 (SAS, Inc., NC) for data normalization,
clustering, and significance testing. Proteomics data can
be accessed at: https://compbio.ornl.gov/mspipeline/besc/
Ctherm_EtOH_Stress/analysis/Brown/mzML/Ctherm_E-
tOH_Stress_Raw_Data.tar.gz and https://compbio.ornl.gov/
mspipeline/besc/Ctherm_EtOH_Stress/analysis/Brown/
mzML/Ctherm_ EtOH_Stress_SEQ_DTA_Data.tar.gz.

Results
The time point in mid-exponential growth at which
ethanol was added into the treatment fermentors was
designated as “ethanol-shock” or “time zero”. Samples
are either referred to as “control” for untreated control
fermentations or “treatment” or “ethanol treatment” for
those derived from fermentations that received 3.9 g/L
(0.5%< v/v>) ethanol at “time zero”.

C. thermocellum growth response to ethanol and
extracellular metabolite profiles
Culture turbidity, as measured by OD600 units, for the
ethanol-treatment fermentors prior to ethanol shock was
similar to the control fermentors (0.59±0.02 vs 0.55±0.02,
respectively) (Figure 1). The culture densities for both the
treatment and control conditions increased during the
“omics” sampling period (2 h post ethanol addition), how-
ever the supplementation of ethanol negatively influenced
C. thermocellum growth and cellobiose consumption
(Figure 1). The maximal culture density over the experi-
ment for the control fermentors was OD600 1.37±0.11,
which occurred 4 h after time zero. In contrast, the max-
imal cell density for the treatment fermentors was OD600

0.76±0.04, 6 h post ethanol treatment. The culture density
for both the treatment and control decreased as cells
entered late stationary phase.
HPLC was used to quantify and compare the kinetics

of extracellular substrate (cellobiose) consumption, and
extracellular end-product (ethanol, acetate, and lactate)
formation. The final cellobiose concentrations were
similar between the ethanol-treated and control cells
(Figure 1). However, the cellobiose consumption rate
was reduced from 0.46 g/L/h in the absence of ethanol
to 0.24 g/L/h after ethanol treatment. Ethanol produc-
tion was correlated with the cellobiose consumption
(Figure 1). At the conclusion of the experiment the
ethanol concentration in control fermentations was ap-
proximately 0.41 ± 0.08 g/L. In contrast, ethanol supple-
mentation halted its production in the treatment
fermentors and there was a slight decrease in net etha-
nol concentration to about 0.35 ± 0.013 g/L after ethanol
treatment. In addition, the acetate production rate was
reduced by half, from 0.10 g/L/h to 0.05 g/L/h, with the
supplementation of ethanol. However, the final concen-
tration of acetate was slightly higher in the ethanol-
treated cells (1.00 ± 0.03 g/L) than that of control cells
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Figure 1 C. thermocellum growth, cellobiose consumption and ethanol production in the absence or presence of 3.95 g/L
(or 0.5% [v/v]) ethanol. Arrow indicates when ethanol was added to the treatment fermentors. Samples were collected at time zero and 2, 12,
30, 60, 120, 240 min after ethanol supplementation. Final time point for control fermentors is 36 h and 33 h for treatment fermentors.
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(0.87 ± 0.06 g/L). Lactate was also produced during the
experiment, with the majority being produced after cel-
lobiose was largely consumed. The highest lactate con-
centration was found in the ethanol-treated cells
(0.035 ± 0.016 g/L), compared to 0.014 ± 0.003 g/L for
the control cells.

Intracellular metabolomic profiles reveals a reduction in
glutamic acid and accumulation of sugar phosphates
The physiological status of C. thermocellum was investi-
gated further by GC-MS analysis of the intracellular
metabolomic profiles from time zero and at different
time points post ethanol-shock (2, 12, 30, 60, 120,
240 min). Metabolomic analyses indicated that there
were few relative metabolite responses (C. thermocellum
ethanol-treated versus control cells) that were signifi-
cantly different at different time points with the number
of replicates used in this study (Additional file 2).
Ethanol-treated cells indicated a decline in glutamic acid,
with it being reduced to 19% of the controls as early as
30 min after ethanol shock. The only other significant
response in an amino acid was a 2.8-fold increase in
phenylalanine within the ethanol-treated cells that oc-
curred at 240 min (Additional file 2). These responses
were accompanied by a doubling of sugar phosphates,
including glucose-6-phosphate and fructose-6-phosphate
that were significant at 60 and 120 min post treatment,
whereas glucose-1-phosphate was unaffected (Additional
file 2). The substrate cellobiose tended to be relatively
higher in the ethanol-treated cells. The only other signifi-
cant response was a 1.2-fold increase in 3-phosphoglyceric
acid in the ethanol-stressed C. thermocellum compared to
that of untreated cells; accumulating at 240 min, but was
not significantly different earlier (Additional file 2).
Transcriptomic profile of C. thermocellum in response
to ethanol
Global view of ethanol response
Gene expression profiles for the control and ethanol-
treated fermentations were generated from samples har-
vested at time zero, 2, 12, 30, 60, 120, and 240 min post
ethanol-shock using NimbleGen microarrays. We identi-
fied significantly differentially expressed genes by com-
paring the gene expression profiles of treated cells to
that of control cells at the same time points, as well as
the time-course gene expressions for control cells or
ethanol-treated cells separately. In the absence of fold-
change filtering, more than three thousand genes were
significantly differentially expressed in at least one of the
multiple comparisons covering nearly all 3,198 predicted
C. thermocellum genes, (Figure 2, Additional file 3),
which is consistent with a recent report that detected
expression for 2,846C. thermocellum genes when the
cells were grown in either cellulose or cellobiose limited
chemostats [36].
Eleven differentially-expressed genes from the treat-

ment versus control comparison representing different
functional categories and a broad expression range
were selected for real-time quantitative PCR (qPCR)
confirmation (Figure 3, Additional file 1, and 3). Cor-
relation coefficient values of R2 = 0.97 and 0.95 were
obtained for comparisons between microarray and
qPCR for the time points of 30 and 120 min, respect-
ively (Figure 3), which indicated microarray data were
of good quality.
In this study, 326 genes showed high levels of expres-

sion with normalized expression intensity values ≥ 4000
(arbitrary units) and 361 genes with relatively low ex-
pression intensity (<1000) across all conditions (Figure 2,



326 genes with high levels of 
expression 

361 genes with low levels of expression  

Figure 2 Overview of ethanol shock expression responses by hierarchical clustering. Microarray probe intensity values (log2 transformed)
for treatment and control arrays were clustered using JMP Genomics. Details for gene expression values can be found in Additional file 3.
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Additional file 3). Many phage- or sporulation-related
genes and those with unknown function were among
genes that had low expression levels (Additional file 3).
In contrast, genes that were expressed at higher
levels were related to cellulosome components, pro-
tein synthesis including ribosomal proteins, electron
transfer components, and energy metabolism and a
small portion of genes of unknown function were
also highly expressed (Additional file 3). Nearly all
the 326 protein-coding genes in the abundant subset
were represented in the proteome, with only 29 that
were not detected at 120 min post-shock (Additional
files 3 and 4). In contrast, only 7 proteins of the 361
protein-coding genes expressed at low levels were
detected (Additional files 3 and 4).

Ethanol responsive genes based on treatment versus
control comparisons
When ethanol-treated cells were compared to control
cells at the same time points, i.e. 2 min (time zero un-
treated control was compared to 2 min post-shock),
12, 30, 60, 120, and 240 min, 641 genes were signifi-
cantly differentially expressed with at least a 2-fold
change (Figure 4, Additional file 5). Immediately after
ethanol-shock, the cells responded promptly by regulat-
ing their gene expression such that after only 2 min, 78
genes were significantly differentially expressed with at
least a 2-fold change (Figure 4, Additional file 5). At
12 min post ethanol-shock, expression levels for nearly
13% of the predicted genes were significantly different,
while at 30 and 60 min post-shock about 300 genes
(~9%) were differentially expressed (Figure 4, Additional
file 5). The number of genes expressed differently between
ethanol-treated cells and control cells was reduced when
the cells began to adapt to the ethanol stress condi-
tion. There were 129 and 73 differentially expressed
genes at the time points of 120 and 240 min post
ethanol-shock, respectively (Figure 4, Additional file 5).
A C. thermocellum alcohol dehydrogenase (adhE) with
altered cofactor specificity has been identified as a
key genetic determinant for enhanced ethanol toler-
ance in a mutant strain [21]. In this wild-type study,
differential adhE expression was not a predominant
response and cognate treatment/control differences
were always< 2 fold (Additional file 3), supporting
the earlier study that indicated a change in AdhE co-
factor specificity was important for ethanol tolerance
rather than the adhE over-expression [21].



Figure 4 Flowchart of gene numbers for different transcriptome comparisons used to identify ethanol-responsive genes. Samples were
taken at different time of 2, 12, 30, 60, 120, and 240 min after ethanol shock. Six time point comparisons of ethanol treated cell versus control
cells as well as time course comparison for control cells or ethanol-treated cells were done. T: all the genes identified from transcriptomics; ST:
significant genes; ST1.5: significant genes with at least 1.5-fold changes; ST2.0: significant genes with at least 2-fold changes. The numbers after
above symbols are the total number identified, and the numbers underneath the symbols are ethanol up-regulated with red color font followed
by ethanol down-regulated with blue font.
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The dynamics of ethanol responsive gene expression
Out of the 641 significantly differentially expressed ethanol-
responsive genes (Additional file 5), approximately half
were up-regulated and approximately half were down-
regulated≥2-fold in at least one time point comparison.
An overview of how different comparisons and the effect of
using different fold change stringency is presented
(Figure 4). Nine genes were constantly up-regulated and
three genes were constantly down-regulated at least 2-fold
(Additional file 5). The nine genes constitutively up-
regulated with ethanol treatment had functions in amino
acid transport and metabolism, including glutamine synthe-
tase catalytic region (Cthe_0196), glutamine amidotransfer-
ase (Cthe_0197), urease gamma subunit (Cthe_1818),
diaminopimelate epimerase (Cthe_3100), and a predicted
urea ABC transporter operon containing five genes from
Cthe_1819 to Cthe_1823 (Additional file 5). Another seven
genes were also constitutively up-regulated by ethanol
treatment, except their ratios were less than 2-fold when
compared to the earliest time point of 2 min (Additional
file 5). However, some of them clustered together and be-
long to same predicted operons of nine constitutively up-
regulated genes as discussed above (Additional file 5).
These seven genes were therefore included as constitutive
ethanol up-regulated genes. The three constitutively etha-
nol down-regulated genes include a hypothetical protein-
signal peptide (Cthe_0746) and two genes belonging to the
Ech hydrogenase operon (Cthe_3022 and Cthe_3023).
Another gene (Cthe_3024) in this predicted operon was
also down-regulated at all time points, but at time points
120 and 240 min log2 based ratio differences were −0.53
and −0.71, respectively, and these values did not meet the
stringent criteria (Additional file 5). A predicted operon
adjacent to the hypothetical gene Cthe_0746 contained
five genes (from Cthe_0747 to Cthe_0751) related to
spermidine/putrescine ABC transporter was also constitu-
tively down-regulated except that the ratios were less than
2-fold at only one time point (Additional file 5).

Ethanol responsive genes based on time course comparison
and their interactions
Temporal gene expression between the control or treat-
ment condition were used to identify the ethanol respon-
sive genes and exclude those that may be more related
to growth-phase. These are presented as supplemental
data and comprise of 158 core ethanol-responsive genes
(Figure 4, Additional file 6).
A hierarchical clustering analysis of these 158 core

ethanol-responsive genes partitioned the temporal profiles
into four clusters, each of which were further analyzed
using the STRINGS 8.2 database of pre-existing interac-
tions [28] (Figure 5; Additional file 6). The first cluster
(Cluster 1) included 17 genes, with the majority of these
constitutively up-regulated with ethanol treatment
(Figure 5; Additional file 6). Cluster 2 contained 41 genes
that were mostly up-regulated, especially in earlier time
points after ethanol treatment. Cluster 3 was represented
by 17 genes that were regulated dynamically across the
post-shock time course and Cluster 4 had 83 genes that
were down-regulated upon ethanol treatment. The 17
genes within cluster 1 encode products related to urea
utilization and likely its uptake, as well as a cysteine syn-
thase homolog (Cthe_1560) and a nitrogenase homolog
(Cthe_1565), and contain most of the genes for five pre-
dicted operons (Figure 5B) [37]. Cluster 2 contains genes
related to CRISPR and other hypothetical functions
(Figure 5B). Most gene products in Cluster 3 are likely
involved in substrate translocation and amino acid biosyn-
thesis (Figure 5B). Ethanol down-regulated genes in Clus-
ter 4 are related to energy metabolism, and include genes
for hydrogeneases, electron transport, cellulosome compo-
nents, ribosomal protein synthesis, and a member of the
LacI family of transcriptional regulators, amongst others.
(Figure 5B). In summary, expression of genes participating
in amino acid transport and metabolism were induced by
ethanol, whereas the ethanol down-regulated genes pri-
marily belonged to the categories of translation, ribosomal
structure and biogenesis (Figure 5; Additional file 3).

Proteomic profile of C. thermocellum in response
to ethanol
Shotgun proteomics was carried out using the 120 min
control and treated cell samples to measure the terminal
time point in the ethanol stress/control comparison and
to ascertain the overall impact on the final set of proteins
and enzymes. More than thirteen hundred proteins were
identified, which represents the largest number of C.
thermocellum proteins detected to date (Additional file 4).
Of these, 77 proteins exhibited a≥ 1.5-fold and significant
change (p≤ 0.05) in abundance (Table 1). Forty-two pro-
teins were more abundant within ethanol-treated cells,
with three specific to only ethanol-treated cells at the
120 min time point (Table 1). The corresponding gene ex-
pression profiles for ethanol-specific proteins were also
found to be significantly up-regulated (≥1.5-fold) and
included three genes (Cthe_0197, 0198, 0200) belonging
to a predicted seven gene operon related to nitrogen me-
tabolism (Table 1). Ethanol up-regulated proteins also
included several other proteins related to nitrogen metab-
olism, such as glutamine synthetase (Cthe_0196 and
Cthe_1539).
Thirty-five down-regulated proteins following ethanol

treatment included three that were specific to the con-
trol, but only one of these (Cthe_0395) trended similar
to the microarray data (≥1.5-fold change) (Table 1). Of
the other 32 ethanol down-regulated proteins, only one
exhibited a change (≥1.5-fold) in gene expression
(single-strand binding protein, Cthe_1350) (Table 1).



Figure 5 Hierarchical clustering (A), and pre-existing interaction (B) analyses of the 158 ethanol-responsive genes. Details for different
clusters can be found in Additional file6 and clustering was conducted using JMP Genomics.
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AdhE was detected and it showed significant upregula-
tion (p= 0.028) after treatment, but only at low levels
(1.4 fold) (Additional file 4). In general, smaller differ-
ences in relative protein abundance levels were observed
for proteins that were more prevalent within the cells,
compared to those that had few spectra normalized
counts (nSpC) (Additional file 4). A bivariate fit of rela-
tive fold changes (Treatment/Control) for the 120 min
proteomics and transcriptomics profiles generated a cor-
relation coefficient of R2= 0.34.

Ethanol effect on expression for cellulosome components
There are greater than 70C. thermocellum cellulosome
related proteins [38-40] (Additional file 7). Microarray
results indicate that cellulosome genes were up-regulated,
especially in the earlier time points (before 1 h) and that
the most dramatic changes occurred within 12 min
post-shock (Additional file 3 and Additional file 7). At
120 min post-shock, about forty cellulosome proteins were
detected by proteomics (Additional file 5), and none of
these proteins were identified as differentially expressed.
Hierarchical clustering identified thirteen cellulosome
component genes (e.g. cipA, olpA, and celA, B, F, G, K, S)
that had high levels of constitutive expression for both
control and treatment conditions, and similarly high
protein abundances (Additional file 7). In the case of
cipA and celS, recent genetic studies have affirmed
their importance in cellulose degradation [6,41] and
they are among the most highly C. thermocellum
expressed genes with cellulose or cellobiose substrates
in chemostat culture [36].
Twelve cellulosome related genes with low levels of gene

expression were not detected via proteomics, and these
are primarily dockerin components. In addition, within
the 158 ethanol-responsive genes, six cellulosome genes
were defined as ethanol-responsive (Additional file 6).
Only one gene Cthe_3078 (olpB) was down-regulated,
although this result was not reflected by proteomics at
120 min time point (Additional file 5). Five ethanol-
induced genes were Cthe_2811 (ManA), Cthe_0745
(CelW), Cthe_0274 (CelP), Cthe_0246 (carbohydrate bind-
ing family 6 protein, putative pectinase), and Cthe_2950
(pectate lyase), which were up-regulated at earlier stages
and had no or few peptides detected following ethanol
treatment (Additional file 7).
Nine genes have been reported to be related to cellulo-

some regulation as anti-sigma factors recently (Cthe_0059,
Cthe_0260, Cthe_0267, Cthe_0316, Cthe_0404, Cthe_1273,
Cthe_2119, Cthe_2522, and Cthe_2974) [42]. Cthe_2119
has been examined for its carbohydrate-binding and
enzymatic performance of the GH9 module and the
possibility as a biomass sensor [43]. In this study, the
microarray results indicated only Cthe_2522 as an
ethanol-responsive gene under the conditions used in
this experiment and it was down-regulated after etha-
nol treatment (Additional file 3), but not detected by
proteomics. However, two other proteins (Cthe_0267
and Cthe_2119) were detected by LC-MS/MS but only
at low, non-quantifiable levels (Additional file 4). The cellu-
losome components with high gene expression levels had
no significant differences between control and treatment at
120 min post-shock. Differences in gene expression were
primarily from genes with low expression values.

Ethanol effect on carbon metabolism, glycolysis and
pyruvate catabolism
In our proteomic study, proteins related to glycolysis and
pyruvate metabolism were among the most abundant that



Table 1 C. thermocellum proteins different between ethanol treatment and control

Gene Product Protein relative fold change
(Treatment/Control)

Array relative fold change
(Treatment/Control)

Proteomics
p-value

Array
p-value

Array Sig
Index

Cthe_0042 small GTP-binding protein 1.8 1.6 5.0E-03 1.1E-02 1

Cthe_0076 hypothetical protein 1.5 1.2 5.0E-02 3.3E-01 0

Cthe_0087 maf protein 0.04 0.9 2.0E-02 3.2E-01 0

Cthe_0129 metal dependent phosphohydrolase 0.58 1.3 4.0E-03 9.1E-07 1

Cthe_0196 glutamine synthetase, catalytic region 2.4 2.5 2.0E-05 3.0E-11 1

Cthe_0197 glutamine amidotransferase, class-II 38 4.3 4.0E-07 1.5E-14 1

Cthe_0198 Glutamate synthase (NADPH) 7.6 4.1 1.0E-02 3.5E-14 1

Cthe_0200 FAD-dependent pyridine nucleotide-disulphide oxidoreductase 46 1.4 2.0E-02 3.4E-05 1

Cthe_0266 methyl-accepting chemotaxis sensory transducer 0.66 1 2.0E-02 9.8E-01 0

Cthe_0362 transcriptional regulator, AsnC family 0.64 1 7.0E-03 7.8E-01 0

Cthe_0363 aminotransferase, class I and II 0.64 0.9 9.0E-03 4.9E-01 0

Cthe_0395 RbsD or FucU transport 0.02 0.8 2.0E-02 1.9E-02 1

Cthe_0402 copper amine oxidase-like protein 1.6 1.3 2.0E-03 1.3E-03 1

Cthe_0550 heat shock protein Hsp90 0.62 1.1 2.0E-02 6.9E-01 0

Cthe_0559 single-strand binding protein/Primosomal replication protein n 0.33 1.1 2.0E-02 3.0E-01 0

Cthe_0567 peptide deformylase 0.59 1.3 2.0E-02 3.1E-04 1

Cthe_0626 hypothetical protein 0.62 1.1 2.0E-02 1.9E-02 1

Cthe_0681 IMP dehydrogenase/GMP reductase 0.63 1 2.0E-02 3.4E-01 0

Cthe_0715 Adenosylmethionine decarboxylase 0.02 0.5 4.0E-04 7.6E-04 1

Cthe_0849 3-dehydroquinate dehydratase, type II 4.6 2 3.0E-02 3.1E-16 1

Cthe_0902 3-methyl-2-oxobutanoate hydroxymethyltransferase 1.7 1.2 2.0E-03 2.7E-03 1

Cthe_0904 protein-export membrane protein SecD 0.62 0.8 2.0E-02 1.8E-04 1

Cthe_0949 carbamoyl-phosphate synthase, large subunit 1.8 0.7 2.0E-04 1.3E-07 1

Cthe_0951 orotidine 5'-phosphate decarboxylase 1.8 0.7 1.0E-02 1.8E-04 1

Cthe_0953 aspartate carbamoyltransferase 1.9 0.6 1.0E-02 2.0E-02 1

Cthe_0954 Uracil phosphoribosyltransferase 1.5 0.9 4.0E-02 3.5E-02 0

Cthe_0961 aspartate-semialdehyde dehydrogenase 1.8 1.2 3.0E-04 1.1E-03 1

Cthe_1102 fimbrial assembly protein 0.35 1.1 3.0E-02 2.3E-01 0

Cthe_1104 prepilin-type cleavage/methylation 0.61 1 2.0E-02 7.8E-01 0

Cthe_1165 YbbR-like protein 0.49 0.8 6.0E-03 9.5E-02 0

Cthe_1178 isochorismatase hydrolase 1.7 1.6 1.0E-02 1.3E-02 1

Cthe_1212 hypothetical protein 1.8 0.7 9.0E-03 1.0E-05 1
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Table 1 C. thermocellum proteins different between ethanol treatment and control (Continued)

Cthe_1222 RNA methyltransferase, TrmH family, group 3 2.7 1.2 3.0E-02 4.8E-01 0

Cthe_1286 peptidase S1 and S6, chymotrypsin/Hap 2.1 1.1 2.0E-03 6.6E-02 0

Cthe_1326 small GTP-binding protein 0.48 1.1 8.0E-03 2.2E-01 0

Cthe_1329 putative CoA-substrate-specific enzyme activase 0.62 0.9 5.0E-03 1.9E-01 0

Cthe_1350 single-strand binding protein 0.49 0.6 2.0E-02 1.8E-05 1

Cthe_1383 Tetratricopeptide TPR_2 7 0.9 5.0E-03 4.2E-02 0

Cthe_1391 2-isopropylmalate synthase 2.4 0.6 3.0E-03 7.1E-17 1

Cthe_1433 short-chain dehydrogenase/reductase SDR 1.7 1 5.0E-03 3.0E-01 0

Cthe_1539 glutamine synthetase, catalytic region 2.4 3.7 4.0E-03 1.5E-25 1

Cthe_1556 binding-protein-dependent transport systems inner membrane component 0.26 1.2 4.0E-02 1.1E-04 1

Cthe_1570 extracellular solute-binding protein, family 3 0.59 1.6 1.0E-02 7.1E-05 1

Cthe_1605 phosphate ABC transporter (binding protein)-like protein 1.7 1.1 6.0E-03 7.1E-01 0

Cthe_1773 peptidase S16, lon-like protein 0.14 1 6.0E-03 9.3E-01 0

Cthe_1778 copper amine oxidase-like protein 5.1 1.5 2.0E-02 7.1E-03 1

Cthe_1801 ABC transporter related protein 1.9 0.5 8.0E-03 5.0E-15 1

Cthe_1823 Extracellular ligand-binding receptor 49 6.2 1.0E-07 2.5E-28 1

Cthe_1844 transcriptional regulator, BadM/Rrf2 family 0.22 1.2 3.0E-02 1.8E-03 1

Cthe_1911 Carbohydrate binding family 6 2.1 1.1 4.0E-02 1.9E-01 0

Cthe_1912 copper amine oxidase-like protein 1.6 0.9 2.0E-02 6.0E-01 0

Cthe_1922 hypothetical protein 1.7 1.1 5.0E-02 6.9E-01 0

Cthe_1955 RNA binding S1 0.6 1 4.0E-02 7.1E-01 0

Cthe_2095 hydrolase, TatD family 1.6 0.7 5.0E-02 6.8E-07 1

Cthe_2166 putative PAS/PAC sensor protein 0.2 0.7 1.0E-02 2.1E-08 1

Cthe_2171 type III restriction enzyme, res subunit 0.62 1.5 6.0E-03 6.6E-07 1

Cthe_2333 two component transcriptional regulator, winged helix family 0.55 0.9 3.0E-02 4.9E-01 0

Cthe_2403 4-diphosphocytidyl-2 C-methyl-D-erythritol kinase 0.65 1.4 2.0E-02 2.4E-08 1

Cthe_2423 hypothetical protein 2.9 0.9 1.0E-03 7.6E-01 0

Cthe_2424 copper amine oxidase-like protein 3.3 1 6.0E-03 8.9E-01 0

Cthe_2517 acetolactate synthase, small subunit 0.62 0.9 3.0E-02 2.0E-02 1

Cthe_2531 sulfate ABC transporter, periplasmic sulfate-binding protein 1.6 4.4 2.0E-02 1.0E-11 1

Cthe_2706 ABC transporter related protein 1.5 1.2 3.0E-02 4.3E-02 0

Cthe_2819 methyl-accepting chemotaxis sensory transducer 0.21 0.7 2.0E-02 7.2E-06 1

Cthe_2875 sigma 54 modulation protein/ribosomal protein S30EA 1.5 1 9.0E-03 7.9E-01 0

Cthe_2880 histidyl-tRNA synthetase 2.5 1.1 3.0E-03 8.1E-01 0
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Table 1 C. thermocellum proteins different between ethanol treatment and control (Continued)

Cthe_2882 Histidinol dehydrogenase 1.7 0.8 1.0E-02 4.1E-02 0

Cthe_2883 histidinol-phosphate aminotransferase 1.9 0.8 2.0E-04 1.4E-02 1

Cthe_2889 phosphoribosyl-AMP cyclohydrolase 1.8 1.1 1.0E-02 3.2E-01 0

Cthe_2907 ribosomal protein S19 0.65 0.8 3.0E-02 2.5E-02 0

Cthe_3062 signal transduction histidine kinase regulating citrate/malate metabolism 0.63 0.8 3.0E-02 5.4E-03 1

Cthe_3076 Radical SAM 0.45 0.9 8.0E-03 4.7E-01 0

Cthe_3100 Diaminopimelate epimerase 1.6 3.3 1.0E-02 2.1E-07 1

Cthe_3101 aminotransferase, class I and II 1.8 2.2 2.0E-02 3.7E-06 1

Cthe_3107 Radical SAM 0.59 1.4 4.0E-02 2.0E-02 1

Cthe_3157 pyruvate carboxyltransferase 1.5 1.9 3.0E-03 3.0E-17 1

Cthe_3183 TrkA-N 0.04 0.9 2.0E-02 3.6E-01 0

Array significance determined by p-value (p< 0.05) and a significant array different is represented by a 1 in the Array Sig Index column and a 0 is not consider significantly different for a given gene at this time
point comparison.
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were detected and had the greatest number of normalized
spectral counts compared to other proteins identified
(Additional file 4). Forty proteins were detected that had
total normalized spectral counts (the sum of two bio-
logical and two technical replicates) greater than 1,000 in
either condition, and fifteen of them were related to
glycolysis, pyruvate catabolism and central metabolism, in-
cluding Cthe_0137 (Gap), Cthe_0138 (Pgk), Cthe_0143
(Eno), Cthe_0347 (Pfk), Cthe_0349 (Fba), Fe hydrogenases
Cthe_0341-2 and Cthe_0429-30, iron-containing alcohol
dehydrogenase Cthe_0394, bifunctional acetaldehyde-CoA
/alcohol dehydrogenase Cthe_0423, NADP-dependent
isocitrate dehydrogenase Cthe_0285, malate dehydrogen-
ase Cthe_0344, and pyruvate flavodoxin/ferredoxin oxi-
doreductase complex genes Cthe_2392 and Cthe_2393
(Additional file 4).
Growth and metabolomic data indicated that the etha-

nol shock arrested cell growth and led to the intracellu-
lar accumulation of the substrate (cellobiose) as well as
its glycolytic intermediates, i.e. glucose-6-P, fructose-6-P,
and 3-P-glycerate (Additional file 2). Transcriptomic data
were consistent with metabolomic results, as several
genes (Cthe_0347, Cthe_0946, Cthe_2390, Cthe_2393,
Cthe_3020, Cthe_3021, Cthe_3120) related to glycoly-
sis and pyruvate metabolism were down-regulated in
the ethanol treatment condition, as well as the pta
(Cthe_1028) and ack (Cthe_1029) genes for acetate
production (Additional file 3).

Ethanol effect on nitrogen metabolism
Urea ABC transport components were up-regulated after
ethanol treatment at the gene (Cthe_1819 to Cthe_1823)
and protein levels (Cthe_1823) (Table 1, Additional files 3
and 5), which likely facilitates C. thermocellum urea
uptake in this experiment (urea and NH4Cl are provided
in the medium). The urease gene cluster (Cthe_1813 to
Cthe_1818) was also up-regulated after ethanol stress and
is likely responsible for converting accumulated urea into
ammonia for anabolism (Additional file 5). There was less
glutamate within the ethanol-treated cells compared to
that of control cells (Additional file 2). Genes related to
glutamate-specific aminoacyl-tRNA biosynthesis, such as
glutamyl-tRNA synthetase, glutaminyl-tRNA synthetase,
and aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase
were relatively less abundant and down-regulated with the
ethanol treatment (Additional file 3). Genes related to glu-
tamate metabolism, however, were up-regulated with the
ethanol treatment. For example, genes encoding the glu-
tamine synthetase (Cthe_1539, Cthe_0196-8) were always
up-regulated in ethanol-treated cells compared to control
cells. Other glutamate metabolism related genes such as
glutamate dehydrogenase (Cthe_0374) were also up-
regulated in the ethanol treatment condition. Cthe_0374
was the most abundant transcript related to glutamate
metabolism (Additional file 3). In accordance with the
transcriptomic data, the proteomic data indicate that
the same genes related to glutamate metabolism
(Cthe_0196, Cthe_0197, Cthe_0198, Cthe_0200 &
Cthe_1539) were also up-regulated after treatment
(Table 1, Additional file 3).

Discussion
Ethanol stress inhibits glycolysis
After ethanol treatment, culture growth was slowed but
not completely halted under pH controlled conditions
(Figure 1). Nutrient exhaustion or a decrease in pH from
acid formation have been suggested as more important
factors in growth inhibition than direct end-product ac-
cumulation [44]. Rydzak et al. (2011) have shown that
changes in enzyme activities in response to exogenous
end product additions (including ethanol) did not correl-
ate with final end-product yields and suggested that
end-product yields may be governed by thermodynamic
considerations.
The rate of acetate production, whose biosynthesis

generates an ATP [11], was reduced by about one half in
the treated cultures and having less ATP available likely
contributed to lower growth rates for the treated cul-
tures (Figure 1). However, the final concentration of
acetate was not dramatically different between the
treated and control fermentations at the end of the ex-
periment (Figure 1). Likewise, final net ethanol con-
centrations (~ 0.41 or 0.35 g/L for control/treatment
fermentations, respectively) were similar between con-
ditions and in keeping with prior studies [44,45].
In this study, we examined the impact of ethanol

addition on metabolism. Glycolysis and pyruvate catabol-
ism were arrested after ethanol treatment, which led to
the accumulation of the substrate cellobiose and glycolytic
intermediates within the ethanol-treated cells (Additional
file 2) and end-product formation was linked to cellobiose
consumption, as has been observed previously [45,46].
Enzymes involved in glycolysis and pyruvate catabolism
were among the most abundant proteins identified in both
the control and ethanol-treated cells (Additional file4), in-
dicative of their pivotal role in cellular metabolism [46]. In
this study, we assayed the relative abundances and correla-
tions of many important C. thermocellum genes, proteins,
and metabolites for the first time. Glyceraldehyde-3-
phosphate dehydrogenase (Cthe_0137), phosphoglycerate
kinase (Cthe_0138), fructose-1,6-bisphosphate aldolase
(Cthe_0349), and bifunctional acetaldehyde-CoA/alcohol
dehydrogenase (Cthe_0423) had the greatest number of
normalized spectral counts relative to other detected pro-
teins. Though highly abundant, these enzymes did not
show large, significant differences and many showed no
significant differences between the ethanol treatment and
control samples at 120 min post ethanol stress (Table 1).
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The overall correlation (R2=0.34) between array and pro-
teomics was in keeping with previous studies for different
microorganisms [47] (Table 1, Additional file 8).
Several key genes involved in the glycolysis pathway were

down-regulated upon addition of ethanol, although their
values were less than the 2-fold cut-off value and were thus
not included in the significantly differentially expressed
ethanol-responsive gene list (Additional file 3). We did not
investigate allosteric regulation in this study. Inhibition of
glycolysis would lead to less reducing power (in the form of
NADH) being available for downstream electron transport
and ethanol production. The decrease in ethanol produc-
tion and reduced electron flux may generate insufficient
NAD+ to ensure normal cellular metabolism. Cells may
overcome this deficiency with lactate biosynthesis generat-
ing more NAD+, which may also explain the increase of
lactate production from 0.014±0.003 g/L in control cells to
0.035±0.016 g/L in ethanol-treated cells to in this study.

Hydrogenases and energy metabolism
Carbon and nitrogen metabolism were affected by etha-
nol stress and proteins related to electron flow were also
impacted. There is surprising diversity amongst clostrid-
ial hydrogenases, and a better understanding of hydroge-
nases will facilitate their application and manipulation
for bioenergy requirements [48]. C. thermocellum ATCC
27405 contains six hydrogenases, a NiFe energy convert-
ing hydrogenase and five FeFe containing enzymes [48].
Transcription of NiFe and FeFe hydrogenases in C.
thermocellum has been confirmed by RT-PCR [49].
Most FeFe hydrogenases were up-regulated in response

to ethanol shock, except for a hydrogenase encoded by
Cthe_0340-2 (Additional file 8). In contrast to hydrogenase
Cthe_0335, other FeFe hydrogenases were growth-phase
dependent and down-regulated in the stationary phase,
which is consistent with earlier data [49]. Interestingly,
the Fe only hydrogenase subunit Cthe_3003 contains a
glutamate synthase binding domain. Cthe_3004 is a puta-
tive ferredoxin containing a NADPH binding domain and a
pyridine nucleotide-disulphide oxidoreductase binding do-
main [48,49], and was induced with ethanol treatment. The
hydrogenase subunits (Cthe_3003 and Cthe_3004) and the
NADPH-dependent glutamate synthase Cthe_0198 showed
similar profiles, being all up-regulated by ethanol and with
lower abundance within cells under the conditions used in
this study (Additional file 8).
The multi-subunit membrane-associated NiFe hydro-

genase complex (EchA-F) is encoded by the Cthe_3019-
24 genes, which were repressed by the ethanol treatment
dramatically and the response occurred rapidly after
ethanol shock (Additional file 8). The differential expres-
sion of these hydrogenase genes may indicate that they
play a role in rebalancing the cells redox state after etha-
nol stress. Except for subunit EchE (Cthe_3020) that had
only a few spectra assigned, no peptides were detected
for the remaining five subunits in 120 min post-shock
(Additional file 8). The hydrogenase assembly and mat-
uration genes (Cthe_3013-8) are adjacent to NiFe hydro-
genase and form a putative operon with Cthe_3019
(4Fe-4S ferredoxin iron-sulfur binding domain-
containing protein). The Cthe_3013-8 genes were also
down-regulated in response to ethanol shock, and except
for hydrogenase accessory protein HypB (Cthe_3017)
with 10 spectra detected, other hydrogenase accessory
proteins were not detected in the proteomic studies in
120 min post-shock (Additional file 8). The lack of spec-
tra may indicate a limitation in detection of these mem-
brane proteins.
Recently, a genome-scale metabolic analysis of C. ther-

mocellum for bioethanol production has been reported
[50], and the in silico metabolic modeling results indicated
that the deletion of nine non-essential genes affecting
redox balance or acetate production could possibly in-
crease ethanol production. Of these, seven genes are
involved in energy metabolism and redox balance, includ-
ing the potential operon RnfCDGEAB and hydrogenase
Cthe_3003 [50]. In this study, the Rnf type membrane-
associated NADH:ubiqinone oxidoreductase RnfCDGEAB
encoded by a potential operon (Cthe_2430-5) [49] was
also down-regulated with ethanol treatment and the re-
sponse was instantaneous (Additional file 8). Except for
subunit A (RnfA), all other subunits were detected by LC-
MS/MS. An association of RnfCDGEAB with the NiFe
hydrogenase for energy generation is further suggested by
their co-expression patterns in this study. Differential
expression for genes such as Cthe_1559 (Cystathio-
nine gamma-synthase) and Cthe_1560 (Pyridoxal-5'-
phosphate-dependent enzyme, beta subunit) may indi-
cate pathways to rebalance energy and requirements
for new amino acids although further studies are
required (Additional file 3).

Nitrogen assimilation and metabolism
Bacteria are able to use a range of different nitrogen com-
pounds, depending upon environmental availability and
cellular requirements. In the case of industrial, solvent-
producing Clostridium species, the source of nitrogen
affects solvent yield and when nitrogen deficient molasses
replaced historical corn mash as a feed stock, nitrogenous
compounds had to be added to the fermentation [51].
In this study, genes involved in nitrogen metabolism

were among the most significantly up-regulated after
ethanol treatment. The majority of urea ABC transport
(Cthe_1819-1823) and urease (Cthe_1812-1818) genes
were significantly up-regulated immediately post-shock
and remained high, relative to the control, at all
remaining points in the time course (Additional file 6).
Staphylococci aureus urease genes have also been
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reported to show greater expression following ethanol
stress and play a key role in pathogenesis [52]. Here,
urea was provided as a major nitrogen source in the
medium likely triggered the urea ABC transport and
urease gene expression upon stress conditions. The high
levels of differential gene expression for genes involved
in nitrogen metabolism may indicate a requirement for
biosynthesis of new amino acids. Media composition
and engineering urease genes in Thermoanaerobacter-
ium saccharolyticum were reported to be among the
most important parameters for strain improvement [53],
which may point to future directions for C. thermocel-
lum improvements for biotechnology.
Glutamate was depleted in ethanol-treated cells soon

after ethanol addition and glutamine synthetases
(Cthe_0196, Cthe_1539), both at the gene and protein
levels (Table 1), were up-regulated following ethanol stress.
In contrast, glutamyl-tRNA and glutiminyl-tRNA synthe-
tase genes were down-regulated. LC-MS/MS proteomics
identified several proteins related to glutamine metabolism,
for example Cthe_1867, Cthe_1868, Cthe_0949, Cthe_0950,
Cthe_1162 and Cthe_1249, however only carbamoyl-
phosphate synthase large chain 1 (Cthe_0949) was up-
regulated by ethanol treatment. It is possible that a major
fraction of glutamine may flow into the biosynthesis of
carbamoyl-P, leading to changes in pyrimidine metabolism
as well as arginine and proline metabolism. Furthermore,
the aspartate carbamoyltransferase gene (Cthe_0953) was
also induced with the ethanol treatment, with gene expres-
sion up-regulated in the early time point of 12 min
post-shock and then down-regulated (Additional file 3). C.
thermocellum ethanol tolerant mutant strains have been
found with nonsynonymous SNPs in Cthe_0953 [22]. In
this study, proteomics data indicated an increased abun-
dance of Cthe_0953 (and proteins encoded by adjacent
genes) within the ethanol-treated cells, which may also lead
to synthesis of building blocks through aspartate (Asp).
Urea cycle intermediates and urea are known to react
with ethanol and form inhibitory compounds [22].
Cthe_0556 (asparagine synthase, glutamine-hydrolyzing)
and Cthe_0069 (Aspartate–ammonia ligase) had similar
levels between control and treatment. Up-regulation of
the Cthe_3158, Cthe_2874 and Cthe_0755 genes and
the possible absence of asparagine (Asn) synthesis from
aspartate therefore may provide the aspartate substrate
for the down-stream N-carbamoyl-L-aspartate synthesis.
The extent to which C. thermocellum is rebalancing its
metabolism in response to ethanol specifically or as a
general stress response can likely be answered best by
examining other C. thermocellum stress responses.

Conclusion
The inhibition of glycolysis and pyruvate catabolism, to-
gether with the induction of nitrogen uptake and
metabolic genes indicates that C. thermocellum redirects
carbon and nitrogen flux to generate required building
blocks to overcome cell arrest and reestablish growth.
Further work is needed to examine the cross talk be-
tween carbon and nitrogen metabolism and access to
newly developed C. thermocellum genetic systems will
facilitate these analyses in the future. These data will as-
sist others as they begin to examine respective transcript
and protein levels in C. thermocellum metabolic engin-
eering, considering useful promoters as an example. A
greater number of systematic and more detailed studies
that examine physiology at various “omics” levels are
required to realize the potential application of synthetic
biology approaches in important microorganisms such
as C. thermocellum.
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Additional file 2: Metabolomic profiling of C. thermocellum
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fold-change responses of ethanol treatment compared to that of control
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Additional file 3: All 3047 differently expressed genes. Genes
significantly differentially expressed with ratio greater than 2-fold within
at least one comparison of ethanol treatment versus control and time
course studies of both ethanol-treated and control cells.

Additional file 4: Proteins with peptide hits identified from a shot-
gun proteomics study for both ethanol-treated and control cells at
120 min post ethanol-shock. Raw and normalized spectral counts for
peptides identified 1317 proteins. Relative differences between
conditions and significance values are shown.

Additional file 5: Significantly differentially expressed with at least
a 2-fold change for ethanol-treated cells compared to control cells
at same time points. A total of 641 genes were differentially expressed
for time point comparisons at 2, 12, 30, 60, 120, and 240 min.

Additional file 6: Potential ethanol-responsive genes. A total of 158
ethanol-responsive genes were identified by treatment versus control
comparisons and treatment time series comparisons that where control
time series comparisons were not responsive.

Additional file 7: Comparison among proteomics, transcriptomics
and literature results for 70 genes related to cellulosomes.
Examination of trends across different omics datasets for cellulosome
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and literature results for 17 genes related to hydrogenases.
Examination of trends across different omics datasets for hydrogenase
components.
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