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Abstract

Background: Ancestry informative markers (AIMs) are a type of genetic marker that is informative for tracing the
ancestral ethnicity of individuals. Application of AlMs has gained substantial attention in population genetics,
forensic sciences, and medical genetics. Single nucleotide polymorphisms (SNPs), the materials of AlMs, are useful
for classifying individuals from distinct continental origins but cannot discriminate individuals with subtle genetic
differences from closely related ancestral lineages. Proof-of-principle studies have shown that gene expression (GE)
also is a heritable human variation that exhibits differential intensity distributions among ethnic groups. GE supplies
ethnic information supplemental to SNPs; this motivated us to integrate SNP and GE markers to construct AlM
panels with a reduced number of required markers and provide high accuracy in ancestry inference. Few studies in
the literature have considered GE in this aspect, and none have integrated SNP and GE markers to aid classification
of samples from closely related ethnic populations.

Results: We integrated a forward variable selection procedure into flexible discriminant analysis to identify key SNP
and/or GE markers with the highest cross-validation prediction accuracy. By analyzing genome-wide SNP and/or GE
markers in 210 independent samples from four ethnic groups in the HapMap Il Project, we found that average
testing accuracies for a majority of classification analyses were quite high, except for SNP-only analyses that were
performed to discern study samples containing individuals from two close Asian populations. The average testing
accuracies ranged from 0.53 to 0.79 for SNP-only analyses and increased to around 0.90 when GE markers were
integrated together with SNP markers for the classification of samples from closely related Asian populations.
Compared to GE-only analyses, integrative analyses of SNP and GE markers showed comparable testing accuracies
and a reduced number of selected markers in AIM panels.

Conclusions: Integrative analysis of SNP and GE markers provides high-accuracy and/or cost-effective classification
results for assigning samples from closely related or distantly related ancestral lineages to their original ancestral
populations. User-friendly BIASLESS (Biomarkers Identification and Samples Subdivision) software was developed as
an efficient tool for selecting key SNP and/or GE markers and then building models for sample subdivision.
BIASLESS was programmed in R and R-GUI and is available online at http://www stat.sinica.edu.tw/hsinchou/
genetics/prediction/BIASLESS.htm.
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Background

Ancestry informative markers (AIMs) are the genetic mar-
kers carrying ancestral information for classifying samples
from a specific population or various ethnic populations
[1-12]. AIMs have been applied to various study areas, in-
cluding population genetics, forensic sciences, medical
genetics, and others. In population genetics, AIMs can be
used to estimate the genetic diversity, population differen-
tiation, and admixture proportions and thereby provide a
more detailed understanding of the genetic background of
study populations [2,4,5,7,13,14]. In forensic sciences,
AIMs can be used to infer ancestral or continental origin
and thereby assist with victim identification in a disaster
situation or criminal identification in a venue [2,15,16]. In
medical genetics, AIMs are useful for reducing false posi-
tives and false negatives in genetic association studies. On
the one hand, AIMs can assist in adjusting for potential
genetic substructures in a case—control association study
and thereby reduce false positives (i.e., diminish spurious
association) [3]. On the other hand, AIMs can also be used
to construct homogeneous sample groups in a genetic as-
sociation study and thereby reduce false negatives (i.e., di-
minish power loss) [2]. In addition, AIMs can provide
complementary information for self-reported ethnicity. In
contrast to self-reported ethnicity, which reflects an indivi-
dual’s environment and culture, AIM-determined ethnicity
inferred from genetic markers reflects genetic inheritance
and make-up. In particular, self-reported ethnicity may be
challenged when samples have been recruited from a geo-
graphic region in which the residents are highly admixed
[9]. Therefore, AIM-determined ethnicity, rather than self-
reported ethnicity, is recommended for genetic studies;
admixture mapping using AIMs is especially suitable for
highly admixed populations [17].

Short tandem repeat polymorphisms (STRPs) and sin-
gle nucleotide polymorphisms (SNPs) are the most fre-
quently used genetic markers for AIMs, and each has its
own strengths [1,9,18]. Genotyping platforms for
genome-wide STRP and SNP markers have been estab-
lished but are not specific to AIMs, and this significantly
increases the average genotyping cost for AIMs. This ur-
gent need motivates the development of AIM panels that
contain as much ancestral information as possible, while
keeping the number of AIMs as low as possible. AIM
panels with a small to moderate number of genetic mar-
kers have been constructed to discern samples from dif-
ferent populations, including Europeans [12], East
Asians [11], African Americans [17], and European
Americans [3,19], and different continents [2,4,5,9,16] at
a more reasonable price.

Although a small to moderate number of SNPs or
STRPs could provide promising discriminative power to
distinguish a large ethnic discrepancy (e.g., subdivision
of samples from Asia, Africa, and Europe), it becomes
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very challenging to classify samples from closely related
ancestral lineage (e.g., two East-Asian populations such
as Han Chinese and Japanese) using only a small num-
ber of SNPs. In an example of a previous classification
study [20], the HapMap II Asian, African and European
samples were separated with a classification accuracy of
0.97 based on 64 SNPs on average. The number of SNPs
increased to 84 but the classification accuracy was
reduced to 0.84 on average if Han Chinese and Japanese
samples were further regarded as samples from different
sub-Asian populations and classified with African and
European samples jointly. This difficulty to classify the
samples from proximate populations could be overcome
by using a large number of genetic markers [3,21], while
genotyping cost will increase significantly.

Gene expression (GE) microarray technology has
advanced in the past 20 years. Previous studies have
shown that GE also is polymorphic and heritable vari-
ation in humans [22,23]. Importantly, GE exhibits differ-
ent genetic/genomic profiles in different ethnic
populations [24]. Similar to SNP markers, GE markers
may potentially provide ancestral information for dis-
criminating samples from different ethnic populations.
Of note, the different natures of SNP and GE markers
may mean that GE provides information that is supple-
mentary to SNP information: GE markers are quantita-
tive attributes responsible for gene regulation, and SNP
markers may act as semi-quantitative (e.g., a locus with
an additive effect) or qualitative (e.g., a locus with a
dominant or recessive effect) variables that can be attrib-
uted to DNA variation. Regarding the relationship be-
tween SNP and GE markers, the regulation of GE may
be unrelated to DNA sequences, as with epigenetic
mechanisms [25], or it may be associated with SNPs, as
with expression quantitative trait locus (eQTL) [22,26-28];
nevertheless, even in the case of an eQTL, only a limited
proportion of GE variation can be explained by the
eQTL. Therefore, in this study, we proposed that integra-
tive analysis of these two types of genetic markers (SNP
and GE markers) may provide a more promising alterna-
tive for construction of a high-accuracy and cost-
beneficial AIM panel than analysis of SNP or GE markers
alone. To the best of our knowledge, few (if any) studies
in the literature have integrated GE markers with SNP
markers to aid in subdividing samples from different eth-
nic populations. In this study, we investigated the per-
formance of SNP and GE markers in population genetics
and evaluated the plausibility of sample classification
using the combined resources of SNP and GE data.

Methods

A flowchart is provided to summarize the materials and
analysis flow in this study (Figure 1).
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Samples and genotyping/gene expression experiments

In this study, we analyzed SNP and GE data in 210 inde-
pendent samples from the International HapMap II Pro-
ject [29-32]. The samples encompassed 30 African
marriage pairs from Yoruba in Ibadan (YRI), 30 Cauca-
sian marriage pairs of European descent resided in Utah
(CEU), and 90 Asian persons including 45 Han Chinese
persons in Beijing (CHB) and 45 Japanese persons in
Tokyo (JPT). All 210 samples were genotyped using
both the Affymetrix Human Mapping 500 K and Array
6.0 (Affymetrix Inc., Santa Clara, CA, USA). The two
SNP gene chips provided genotype data for 500,568
SNPs and 906,600 SNPs, respectively, on 23 pairs of
chromosomes for each individual. The Bayesian Robust
Linear Model with Mahalanobis Distance Classifier
(BRLMM) [33] or Birdseed [34] were used for SNP
genotype call analysis of data from the Affymetrix
Human Mapping 500 K and Array 6.0, respectively. The
genotype data are publicly available (http://hapmap.ncbi.
nlm.nih.gov/). In addition, GE levels of the 210 HapMap
samples were measured using Illumina’s Sentrix Human-
6 Expression BeadChip (Illumina Inc., San Diego, CA,
USA). Each bead chip provided 47,289 transcript probes
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for the human genome [35,36]. Procedures for quantifi-
cation and normalization of GE levels are described in
Supporting Online Materials [35]. The normalized gene
expression data are publicly available in the Gene Ex-
pression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/) (Series accession number GSE6536).
Annotation of SNP data from the Affymetrix 500 K and
Array 6.0 was derived from the NetAffx annotation up-
date 30 (version: dbSNP Build 128), which is available
on the Affymetrix website (http://www.affymetrix.com/).
Annotation of GE probes was derived from the GEO an-
notation (accession number GPL2507; version: UCSC
HG 18), which is available in the GEO database.

Statistical methods and data analysis

This study classified samples in each of eight combina-
tions of the four ethnic populations: (1) “four popula-
tions” — CHB, JPT, CEU, and YRL (2) “three
populations” — Asian (CHB +]JPT), Caucasian (CEU),
and African (YRI); (3) “CHB and JPT”; (4) “CHB and
YRI”; (5) “CHB and CEU”; (6) “JPT and YRI”; (7) “JPT
and CEU”; and (8) “YRI and CEU”. Quality control of
SNP and GE markers was performed together with

¢ Data preparation:

persons in Tokyo (JPT).

Study samples - 210 independent samples from the International HapMap Il Project. The samples
encompassed 30 African marriage pairs from Yoruba in Ibadan (YRI), 30 Caucasian marriage pairs
European descent resided in Utah (CEU), 45 Han Chinese persons in Beijing (CHB), and 45 Japanese

Genetic markers - All 210 samples were genotyped with both the Affymetrix Human Mapping 500K
(500,568 SNPs) and Array 6.0 (906,600 SNPs), and gene expression (GE) were measured using
lllumina’s Sentrix Human-6 Expression BeadChip (47,289 transcript probes).

<L

* Eight combinations from four ethr?lgpopulations: (1) four populations — CHB, JPT, CEU, and YRI, (2)
three populations — Asian (CHB+JPT), Caucasian (CEU), and African (YRI), (3) CHB and JPT, (4) CHB
and YR, (5) CHB and CEU, (6) JPT and YRI, (7) JPT and CEU, and (8) YRI and CEU.
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* Quality Control (performed within}:gch of the eight combinations):
SNP quality control - SNPs were removed if: (a) genotyping call rate < 0.90, (b) minor allele
frequency = 0, (c) Hardy-Weinberg disequilibrium (pFDR < 0.05), or (d) non-autosomal SNPs.

GE quality control - GE transcript probes were removed for: (a) non-RefSeq probes, (b) no-
autosomal probes, or (c) probes with?_lut gene information.
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* Ten-fold cross-validation classification analysis (performed within each of the eight combinations)
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SNP and/or GE markers with the highest training accuracy based on
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each of 10
subsets has
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been analyzed

Step 3- Calculate testing accuracy}{)r the candidate model selected in
Step 2 based on the testing samplreg (in the remaining subset).

as a testing
dataset.
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among 10 candidate models.
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Step 5- Pick up the model with highest testing accuracy or highest occurrence frequency

and classification analysis are shown.

Figure 1 Flowchart of this study. A summary of data preparation, study combinations of ethnic populations, quality control of genetic markers,
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analysis for each of the eight combinations of ethnic
populations. A poor-quality SNP was removed if its
genotype call rate was lower than 0.9, its minor allele
frequency was 0, or if Hardy-Weinberg equilibrium
(HWE) was violated, where departure from HWE was
defined as a p-value that was adjusted by a false discov-
ery rate procedure [37] and that was lower than 0.05 in
a permutation-based HWE test [38]. Finally, SNPs on
sex chromosomes were removed. Quality control of GE
markers removed 21,198 non-RefSeq probes (11,622
probes from UniGene and 9,576 probes from Gnomon).
A total of 854 probes were removed from sex chromo-
somes, and 6,430 probes without gene information also
were removed. The total numbers of SNP and GE mar-
kers that remained after SNP and GE quality control are
shown (Additional file 1: Table S1).

To explore the genetic discrepancy and sample subdi-
visions among the four HapMap II populations, an
exploratory unsupervised analysis was performed, fol-
lowed by an intensive supervised classification analysis.
Both analyses used genome-wide SNP and GE markers.
First, to understand whether genome-wide SNP and GE
markers provide sufficient information for subdividing
samples in HapMap II populations, a preliminary un-
supervised classification analysis was performed by
drawing allele frequency biplots and gene expression
biplots based on genome-wide SNP and GE markers, re-
spectively. The analysis was performed using ALOHA
software [21], which is available on the ALOHA website
(http://www.stat.sinica.edu.tw/hsinchou/genetics/aloha/
ALOHA. htm). Afterward, intensive supervised classifica-
tion analyses were performed to identify key SNP and/or
GE markers to study subdivisions of samples from the
HapMap II populations. A five-step discriminant analysis
was developed to identify key SNP and/or GE markers
with the highest prediction accuracy for the separation
of samples from different populations as follows. First,
samples in each study population were randomly parti-
tioned into 10 subsets for cross-validation. Second, a
flexible discriminant analysis (FDA) using optimal scor-
ing [39] was applied to training sets (i.e., samples in nine
of 10 subsets). Given the existing markers in a classifica-
tion model, new SNP or GE markers with the maximum
increment of training accuracy were added sequentially
to the model. The marker with the minimum SSW/SSB
was selected if more than one marker or marker set had
the same training accuracy, where SSW and SSB indicate
the within-population and between-population sum of
squares for genotypic values or gene expression levels,
respectively. The procedure continued until the training
accuracy reached 1.0 or its increment was less than a
threshold such as 0.001 in this study. Third, genetic
markers with the highest training accuracy were used to
classify individuals in the testing dataset (i.e., samples in
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the remaining subset) and the testing accuracy then was
calculated. Fourth, the first three steps were repeated
until each of the 10 subsets had been analyzed as a test-
ing dataset, resulting in 10 classification candidate mod-
els. Finally, among the 10 classification models, the one
with the highest testing accuracy or highest cross-
validation consistency was selected as the best classifica-
tion model. The aforementioned classification analysis
was performed for each of the eight ethnic population
combinations using only GE markers (“GE-only ana-
lysis”), only SNP markers on Affymetrix 500 K (“500 K-
only analysis”), only SNP markers on Affymetrix Array
6.0 (“Array6.0-only analysis”), both GE markers and
SNPs on Affymetrix 500 K (“500 K+ GE analysis”), and
both GE markers and SNPs on Affymetrix Array6.0
(“Array6.0 + GE analysis”). The analysis was performed
using our developed software, BIASLESS (Biomarkers
Identification and Samples Subdivision), which can be
downloaded for free at http://www.stat.sinica.edu.tw/
hsinchou/genetics/prediction/BIASLESS. htm.

Results

Unsupervised classification analysis using genome-wide
SNP or GE markers

The genome-wide SNP-based classification analysis
clearly separated samples from ethnic populations using
allele frequency profiling of genome-wide SNPs interro-
gated on Affymetrix 500 K (Additional file 2: Figure S1)
or Affymetrix Array 6.0 (Figure 2). Samples from CHB,
JPT, CEU, and YRI were classified into three genetically
distant ethnic groups, African, Caucasian, and Asian.
The Asian group consisted of two genetically close
populations (CHB and JPT) (Additional file 2: Figure
S1A and Figure 2A) that were separated further by
within-group analysis of Asian populations (Additional
file 2: Figure S1B and Figure 2B). All two-population
analyses accurately separated samples from different
populations (Additional file 2: Figures S1B-G and
Figure 2B—@G). In general, the results of the Affymetrix
500 K and Affymetrix Array 6.0 analyses were very simi-
lar (Additional file 2: Figure S1 and Figure 2). In contrast
to the genome-wide SNP-based analysis, a non-
negligible proportion of samples could not be separated
correctly with genome-wide GE markers (Figure 3).
These results were found not only for samples from the
four populations (Figure 3A) but also for samples from
any two populations (Figure 3B —G).

Supervised classification analysis by selecting key
predictive SNP and/or GE markers from genome-wide
SNP and GE markers

Ten classification models were established in each of the
GE-only, 500 K-only, Array6.0-only, 500 K+ GE, and
Array6.0 + GE analyses, which independently identified a
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Figure 2 Classification of HapMap samples using whole-genome SNPs of the Affymetrix Array 6.0 set. All samples were superimposed
onto a two-dimensional plane in an AF biplot. (A) CHB, JPT, CEU, and YRI, (B) CHB and JPT, (C) CHB and YRI, (D) CHB and CEU, (E) JPT and YRI, (F)
JPT and CEU, and (@) YRI and CEU. Red line with a B symbol indicates CHB samples; blue line with a J symbol indicates JPT samples; gray line
with a Y symbol indicates YRI samples; green line with an E symbol indicates CEU samples.

small number of key predictive SNP and/or GE markers
to classify samples for each of the eight ethnic popula-
tion combinations that we studied. The distributions of
testing accuracy and number of predictive markers are
presented in box-whisker plots (Figure 4). The majority
of the classification analyses produced an average testing
accuracy, calculated over 10 cross-validation datasets,
greater than or close to 90%, with the exception of two
SNP-only analyses; the 500 K-only and Array6.0-only
analyses had relatively low testing accuracies for the
classification of samples from two closely related ethnic
populations, CHB and JPT. In the 500 K-only analysis,
the average testing accuracies were only 0.53 and 0.70
for classifying samples from “CHB and JPT” and from
“four populations”, respectively. Similarly, in the
Array6.0-only analysis, the average testing accuracies
were only 0.70 and 0.79 for the classification of samples
from “CHB and JPT” and “four populations”, respect-
ively. However, if GE markers also were integrated

together with SNP markers for the classification of sam-
ples from “CHB and JPT” and “four populations”, the
average testing accuracies increased to 0.89 and 0.92, re-
spectively, in the 500 K+ GE analysis and to 0.92 and
091 in the Array6.0 + GE analysis. In comparison with
the integrative analyses of SNP and GE markers, the GE-
only analysis presented a larger variation of testing ac-
curacy and required about twice the number of markers
to accurately classify samples from “JPT and YRI”, “YRI
and CEU”, “three populations” and “four populations”.
We established the best classification models in the
GE-only, 500 K-only, Array6.0-only, 500 K+ GE, and
Array6.0 + GE analyses for each of the eight ethnic popu-
lation combinations we studied (Additional file 3: Table S2).
The best models of the integrative analysis of SNP
and GE markers attained a testing accuracy of 100%
in all eight population combinations that we studied.
Only a few markers were needed for good sample
classification. In the 500 K+ GE analysis, the number
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of predictive markers was five for “four populations”,
three for “three populations”, three for “CHB and
JPT”, two for “JPT and CEU”, and one for the
remaining population combinations; in the Array6.0 +
GE analysis, the number of predictive markers required in
the best model was five for “four populations”, three for
“three populations”, three for “CHB and JPT”, and one for
the remaining population combinations.

Notably, the best models in the 500 K+ GE and
Array6.0 + GE analyses only required 1 or 2 SNPs to cor-
rectly classify samples from genetically distant popula-
tions, including “CHB and YRI”, “CHB and CEU”, “JPT
and YRI”, “JPT and CEU”, and “YRI and CEU”. The
results show the existence of ancestry informative or
population-specific SNPs; namely, the SNP-only analysis
already provided key information, and GE markers
were redundant in this situation, as follows: SNP rs11051
(G/A) for “CHB and YRI”, rs489095 (T/C) for “CHB and
CEU”, rs6546753 (G/T) for “JPT and YRI”, rs6437783

(C/T) for “JPT and CEU”, and rs735480 (C/T) for “YRI
and CEU” (Figure 5 and Additional file 4: Table S3). One
or two SNPs already provided sufficient information for
classifying ethnically distant samples, but this was not
the case for classifying samples from ethnically close
populations such as CHB and JPT. In the latter situation,
the integrative analyses of SNP and GE markers indeed
provided much richer information than the SNP-only
analyses. The best model of the Affy500K + GE analysis,
which was composed of GI_4506928-S (on SH3GLI),
GI_37540521-S (on ORI3CS5), and rs11986045, signifi-
cantly improved the testing accuracy of the Affy500K
analysis when classifying samples from CHB and JPT;
the testing accuracy of the best model increased from
0.89 to 1 (Additional file 3: Table S2). The best model of
the Array6.0 + GE analysis, which was composed of
GI_4506928-S (on SH3GLI), GI_37540521-S (on
OR13C5), and rs10485803, significantly improved the
testing accuracy of the Array6.0 analysis; the testing
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accuracy of the best model increased from 0.89 to 1
(Additional file 3: Table S2).

All samples from the four study populations could also
be classified correctly with the best models of the inte-
grative analyses of SNP and GE markers. In comparison
with the SNP-only and GE-only analyses, the best inte-
grative model of SNP and GE markers used only four
SNP markers and one GE marker to perfectly classify
samples from the four populations that we studied
(Additional file 3: Table S2). The 500 K+ GE analysis
prioritized rs2736306, GI_41281459-S (on CENTBI),
rs12063564, rs2725379 (on PURG), and rs2250072 as
the key predictive markers; the Array6.0+ GE analysis
identified rs6546753, GI_4506928-S (on SH3GLI),
rs1986420, rs6560625 and rs12632185 as the key pre-
dictive markers in the best classification model.

BIASLESS software

The developed classification algorithm is packaged into-
BIASLESS software with a user friendly interface pro-
grammed in language R and R-GUI (http://www.r-project.

org/) (Additional file 5: Figure S2). Programs, test exam-
ples, and the user guide are available at the BIASLESS
website (http://www.stat.sinica.edu.tw/hsinchou/genet-
ics/prediction/BIASLESS.htm). Before using BIASLESS
software, users are encouraged to read the user guide
for software installation, initialization, working director-
ies, functions, operation, and format of input/output
data. BIASLESS is structured by the following five main
components:

(1) Input/Output settings: Users can choose between
two types of data input formats (for markers). Users
can click the browse buttons to specify the data
input directory (for markers), data input directory
(for a trait), and result output directory. All results
will be saved automatically in the user-specified
output directories. Users should fill in a notation or
code to indicate any missing values in their marker
data and trait data.

(2) Cross-validation: (a) Seed for cross-validations:
users can use a random seed or provide a fixed seed
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Figure 5 Genotype frequencies of key predictive SNPs in the best model for the classification of samples from ethnically distant
populations. Bar charts show the genotype frequencies of the key predictive SNPs in the 500 K-only (first field), Array6.0-only (second field),

500 K+ GE (third field), and Array6.0 + GE (fourth field) analyses for classification of samples from “CHB and YRI" (first panel), “CHB and CEU"
(second panel), “JPT and YRI” (third panel), “JPT and CEU" (fourth panel), and “YRI and CEU" (fifth panel). Legends for the two scenarios, a single
key predictive SNP or two key predictive SNPs, are shown. For the scenario of a single key predictive SNP, the proportion of blue, green, and
brown reflects the genotype frequencies of AA, AB and BB of the SNP, respectively. The proportions range from 0 to 1 and sum to 1. For the
scenario of two key predictive SNPs, nine colors are used to indicate nine possible genotype combinations for two SNPs. Again, the proportion of
colored bars indicates the frequencies of genotype combinations, and the proportions range from 0 to 1 and sum to 1.

(a real value between -65535 and 65535) for
partitioning samples into the training dataset and
testing dataset. (b) Fold size: users can select the
number of cross-validations (e.g., “10” denotes a
10-fold cross-validation).

(3) Marker selection (Stop if any of the following three

value of the accuracy) by cross-validation datasets.
(b) Parallel coordinates plot: the number of markers
selected, training accuracy, and testing accuracy
over cross-validation datasets are presented in a
parallel coordinates plot. (c) Multidimensional
scaling plot: the study samples and selected markers

procedures stop): (a) Continue until the number of
markers in the model increases to a specified value.
(b) Continue until the training/testing accuracy
increases to a specified value. (c) Continue until the
increment of training/testing accuracy is reduced to
a specified value.

(4) Graphical output: (a) Overlay line graph: the curves
of training accuracy and testing accuracy are
overlaid in a plot (the horizontal axis is the number
of markers in the model and the vertical axis is the

in the final classification model with the highest
testing accuracy are presented in a
multidimensional scaling plot. (d) Stacked-bar/box-
whisker plot: genotypic distributions (AA call —
blue color, AB call — green color, and BB call -
brown color) of SNPs and expression distributions
(pink color) of genes selected in the classification
model are displayed. (e) Sample misclassification
plot: states of correct classification or
misclassification in training and testing samples in
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each of 10-fold cross-validations are shown.
Misclassification proportion across all cross-
validations is shown for each individual in training
and testing samples. Misclassification proportions
across all training samples and all testing samples
also are shown respectively for each step of marker
selection in each of 10-fold cross-validations. (f)
Marker impact plot: states of markers selected (red
color) or unselected (blue color) in training samples
in each of 10-fold cross-validations are shown. The
figure also provides the selection times of the
identified markers across all cross-validations and
which step a marker is selected in a forward
variable selection procedure. Graphical outputs in
the test example of BIASLESS are provided
(Additional file 6: Figure S3).

Discussion

The concept conveyed by the proposed integrative ana-
lysis of SNP and GE markers also is applicable to pre-
dicting disease status in biomedical studies and drug
response in pharmacogenomics studies. Genome-wide
association studies that identify disease susceptibility
genes using a large number of SNPs suffer from the
problem of missing heritability and are limited in
explaining the etiology of complex diseases [40-42].
However, with the aid of GE, it is possible to increase
the proportion of explained genetic variations which
then elevates prediction accuracy. In view of the poten-
tial importance of integrative analysis of SNP and GE
markers in the population genetics, forensic sciences,
and medical genetics, we developed BIASLESS software.
BIASLESS, which is useful for selecting important pre-
dictive marker sets from large numbers of biomarkers
for inferences of ethnic groups, disease groups, and drug
response groups, is a free, publicly available, and user-
friendly analysis tool.

The method and software introduced in this paper can
be used to construct high-accuracy and cost-beneficial
AIM panels. Nevertheless, rather than the construction
of AIM panels, the main focus of this paper is to intro-
duce an integrative analysis of SNP and GE markers for
the discrimination of samples from various populations,
especially for closely related ancestral lineages. We don’t
intend for the AIMs identified in this study to take the
place of the AIMs found earlier for CEU, CHB, JPT, and
YRI populations. Some of the AIMs identified in this
study may be limited by the small to moderate number
of samples in the HapMap II project; therefore, the gen-
erality of the identified AIMs should be further exam-
ined by using more independent samples and confirmed
by biological verifications such as real-time reverse-
transcription polymerase chain reaction before the AIMs
applying to practical studies.
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Although GE markers, which are more variable com-
pared to SNPs, may change by population-specific food
preferences or environmental exposures, previous stud-
ies did disclose the evidences of the genetic basis of glo-
bal GE [28,36,43,44]. Moreover, this study analyzed the
GE data from the total RNA samples extracted from
Epstein Barr virus (EBV)-transformed lymphoblastoid
cell lines of study individuals [35]. The GE variation of
lymphoblastoid cell lines, which are important materials
for dissecting genetic basis of GE variation of human
populations [23,26,27,35,36,45], reflects a substantially
higher proportion of genetic effect compared to the ef-
fect of food preferences or environmental exposures
[46]. The finding of genetics of global GE can also be
supported by previous studies. An important genomic
study of global GE variation validated the genetic contri-
bution of the discrepancy of GE between Asian and Cau-
casian samples, not an artifact due to life styles. This
study showed that 24 Han Chinese residing in Los
Angeles had much more similar GE profiles to the 82
HapMap CHB +JPT samples than to the 60 HapMap
CEU samples [44]. The other important genomic study
of GE also uncovered the genetic contribution on global
patterns of GE after adjusting potential confounding fac-
tors that may influence GE. This study analyzed GE data
of 270 individuals from four HapMap II populations and
found GE variation differentiated in population compari-
sons in agreement with earlier studies [36].

The GE variation may also be influenced by the type
of biological specimen, attributes related to the time and
other circumstances of taking the biological samples, or
GE microarray platform. This study provides a proof-of-
concept method for construction of AIM panels by inte-
grating SNP and GE markers but the current results are
still limited by the use of single cell type (lymphoblastoid
cell lines), fixed time/circumstances of taking the bio-
logical samples, and single microarray platform (Illumi-
na’s Sentrix Human-6 Expression BeadChip). More
investigations should be carried out to understand the
proportions of the identified AIMs specific to the cur-
rently used conditions or transferable to more general
conditions. For practical applications, we also plan to in-
tegrate SNP and GE variation from global genomic stud-
ies and construct larger reference database for
normalizing GE data. SNP and GE markers will be inte-
grated to identify AIMs and establish robust discrimin-
ant models using BIASLESS software. Biological
specimen from a tested individual are collected and used
to genotype/measure the identified and confirmed AIMs.
Finally, SNP genotypes and GE levels of the tested indi-
vidual are plugged into the discriminant models to de-
termine the correct ethnic group.

Regarding the supervised classification method, two
points are important to discuss. First, we modified the
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efficient and broadly used FDA algorithm and integrated
forward variable selection and cross-validation proce-
dures with FDA to select key predictive markers from
enormous numbers of SNP and GE markers, and we
then built accurate classification models for sample sub-
division. Our supervised classification procedure pro-
vides multiple candidate models (e.g., 10 in a 10-fold
cross-validation). Choosing a model with the highest
testing accuracy is recommended but should not be the
only criterion for model selection. Other optimal criteria
and domain knowledge may need to be considered to
determine the best model that satisfying both statistical
properties and biological relevance. For example, the
cross-validation consistency of a model among all candi-
date models may be used simultaneously, or genetic
knowledge, biological relevance, and quality evaluation
of genetic markers may also be integrated to assist in se-
lection of the final classification model. Second, there is
a very rich body of literature in the field of supervised
classification, including support vector mechanisms [47]
and classification trees [48]. Different algorithms have
pros and cons in different study scenarios and data
types. We are adding various classification algorithms to
further enrich the BIASLESS software.

This study analyzed the data in the HapMap II Project,
which contains only four populations, rather than the
HapMap III Project, which contains 11 populations be-
cause GE data for the majority of samples in the Hap-
Map III Project are not available. However, the proposed
method and software can be applied in general to con-
struct AIM panels for additional populations. The SNP
data in this study came from two genotyping platforms:
Affymetrix 500 K and Array6.0 SNP chips. The results of
the sample classification were similar, although the num-
ber of SNPs interrogated on Affymetrix 500 K (~4 — 4.9
hundred thousand SNPs after quality control) was only
about half the number in Array 6.0 (~7 — 8.7 hundred
thousand SNPs after quality control), suggesting that the
ancestral information in SNPs identified with Affymetrix
Array6.0 is not more informative than that in SNPs
identified with Affymetrix 500 K, with regard to the clas-
sification of samples in the HapMap II Project. Recently,
whole-genome sequencing technology, in comparison
with SNP microarrays, has become more common and
has promoted the identification of new common SNPs
and rare variants. Novel population-specific or ancestry-
informative variants may be identified, and more eQTLs
that contribute to genetic variation of ancestry inform-
ative GE may become available. It will be interesting to
investigate if the bottleneck in a SNP-only analysis for
discerning samples from closely related populations can
be overcome using highly dense common SNPs and rare
variants from massive parallel sequencing in the 1000
Genomes Project [49].
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Conclusion

In conclusion, we recommend SNP-only analysis for
sample subdivision when the study samples come from
ethnically distant populations such as Asian (CHB +JPT),
African (YRI), and Caucasian (CEU); ancestry inform-
ative or population-specific SNPs provide sufficient in-
formation for sample classification in this situation, but
population-specific SNPs may not be available or may
be very hard to identify in ethnically close populations
such as Chinese (CHB) and Japanese (JPT). Quantitative
GE data, which are more variable than qualitative SNP
data, are useful for sample classification after properly
removing noisy GE markers. Note, however, that the
GE-only analysis is still limited by slightly fluctuating
testing accuracies and a larger number of predictive
markers even when the samples are from ethnically dis-
tant populations. However, GE data do reveal important
classification information supplemental to SNP data.
Using an integration of SNP and GE markers, we estab-
lished classification models with a reduced number of
markers to accurately assign samples to the correct eth-
nic populations. Importantly, the genotyping cost is
reduced because the number of required markers in an
AIM panel is significantly diminished after inclusion of
ancestry informative GE markers.

Availability and requirements

The BIASLESS software, test examples, and user guide
can be downloaded from the BIASLESS website: http://
www.stat.sinica.edu.tw/hsinchou/genetics/prediction/
BIASLESS.htm.

Project name: Biomarker identification and sample
subdivision.

Project home page: http://www.stat.sinica.edu.tw/
hsinchou/genetics/prediction/BIASLESS. htm.

Operating system: MS Windows®.

Programming language: Language R and R-GUL

Other requirements: No.

Any restrictions to use by non-academics: On request
and citation.

Additional files

Additional file 1: Table S1. The total numbers of SNP and GE markers
remaining in the analysis after quality control. This table summarizes the
number of SNP and GE markers in each analysis of the eight
combinations of ethnic populations. After quality control, 18,807 GE
markers, 403,067 — 486,092 SNPs in the Affymetrix Human Mapping 500 K
set, and 700,682 — 868,434 SNPs in the Affymetrix Array 6.0 set remained.
The number of SNPs in the intersection of the Affymetrix Human
Mapping 500 K and Array 6.0 sets was 385,493 — 469,057.

Additional file 2: Figure S1. Classification of HapMap samples using
whole-genome SNPs of Affymetrix Human Mapping 500 K set. All
samples were superimposed onto a two-dimensional plane in an allele
frequency (AF) biplot. (A) CHB, JPT, CEU, and YRI, (B) CHB and JPT, (O)
CHB and YRI, (D) CHB and CEU, (E) JPT and YRI, (F) JPT and CEU, and (G)
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YRI'and CEU. Red line with a B symbol indicates CHB samples; blue line
with a J symbol indicates JPT samples; gray line with a Y symbol
indicates YRI samples; green line with an E symbol indicates CEU
samples.

Additional file 3: Table S2. The best classification models. This table
summarizes the key predictive markers, testing accuracy, cross-validation
consistency (CVC), and number of genetic markers in the best
classification models in the analysis of each of the eight combinations of
ethnic populations.

Additional file 4: Table S3. Genotype frequencies of key predictive
SNPs in the best model for the classification of samples from ethnically
distant populations. This table summarizes genotype frequencies of the
key predictive SNPs in the 500 K-only (first field), Array6.0-only (second
field), 500 K+ GE (third field) and Array6.0 + GE (fourth field) analyses for
the classification of samples from “CHB and YRI" (first panel), “CHB and
CEU" (second panel), “JPT and YRI" (third panel), “JPT and CEU" (fourth
panel), and “YRI and CEU" (fifth panel). The genotype frequencies also are
shown in Figure 5.

Additional file 5: Figure S2. Interface of BIASLESS software. BIASLESS
software programmed in R and R-GUI is a user-friendly tool for the
identification of key predictive markers to classify samples from different
populations/groups.

Additional file 6: Figure S3. Graphical outputs in BIASLESS software.
BIASLESS software outputs six graphs including (A) overlay line graph, (B)
parallel coordinates plot, (C) multidimensional scaling plot, (D) stacked-
bar/box-whisker plot, (E) sample misclassification plot, and (F) marker
impact plot from the analysis of a test example (Detailed explanations to
these graphs can be seen in the User Guide of BIASLESS, which can be
downloaded at http://www.stat.sinica.edu.tw/hsinchou/genetics/
prediction/BIASLESS.htm).
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