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Abstract

Background: microRNAs (miRNAs) have been shown to regulate the expression of a large number of genes and play
key roles in many biological processes. Several previous studies have quantified the inhibitory effect of a miRNA
indirectly by considering the expression levels of genes that are predicted to be targeted by the miRNA and this
approach has been shown to be robust to the choice of prediction algorithm. Given a gene expression dataset, Cheng
et al. defined the regulatory effect score (RE-score) of a miRNA as the difference in the gene expression rank of targets
of the miRNA compared to non-targeted genes.

Results: Using microarray data from parent-offspring trios from the International HapMap project, we show that the
RE-score of most miRNAs is correlated between parents and offspring and, thus, inter-individual variation in RE-score
has a genetic component in humans. Indeed, the mean RE-score across miRNAs is correlated between parents and
offspring, suggesting genetic differences in the overall efficiency of the miRNA biogenesis pathway between
individuals. To explore the genetics of this quantitative trait further, we carried out a genome-wide association study
of the mean RE-score separately in two HapMap populations (CEU and YRI). No genome-wide significant associations
were discovered; however, a SNP rs17409624, in an intron of DROSHA, was significantly associated with mean RE-score
in the CEU population following permutation-based control for multiple testing based on all SNPs mapped to the
canonical miRNA biogenesis pathway; of 244 individual miRNA RE-scores assessed in the CEU, 214 were associated
(p < 0.05) with rs17409624. The SNP was also nominally significantly associated (p = 0.04) with mean RE-score in the
YRI population. Interestingly, the same SNP was associated with 17 (8.5% of all expressed) miRNA expression levels in
the CEU. We also show here that the expression of the targets of most miRNAs is more highly correlated with global
changes in miRNA regulatory effect than with the expression of the miRNA itself.

Conclusions: We present evidence that miRNA regulatory effect is a heritable trait in humans and that a
polymorphism of the DROSHA gene contributes to the observed inter-individual differences.

Background
microRNAs (miRNAs) are a class of small non-coding
RNA molecules of approximately 21 nucleotides in length
that regulate gene expression. They typically bind to com-
plementary loci in the 3′ untranslated region (UTR) of
mRNA and prevent translation to mature protein. An
individual miRNA can regulate the expression of hun-
dreds of genes. Some genes, particularly those with longer
3′ UTRs, are often the targets of multiple miRNAs and
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consequently, miRNA mediated regulation tends to result
in the fine tuning of the expression of many proteins
within a cell [1,2]. In mammals, miRNAs are thought
to regulate the expression of as many as 50% of protein
coding genes [3]. miRNA expression impacts on almost
every cellular process and miRNA dysregulation has been
implicated in many pathologies [1,4].
miRNAs regulate a range of biological pathways associ-

ated with cancer including apoptosis [5] and cell prolifer-
ation [6]; dysregulation of miRNAs has also been widely
observed in cancer [7]. For example over expression of
miR-155 has been implicated in Hodgkin’s and Burkitt’s
lymphoma [8], while miR-15 andmiR-16, which target the
anti-apoptotic gene BCL2, have been shown to be dys-
regulated in chronic lymphocytic leukemia [9]. miRNAs
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have been found in many of the genomic regions associ-
ated with chromosomal abnormalities in cancer, including
regions of amplification, which may contain oncogenes,
regions of loss of heterozygosity, which may harbor tumor
suppressor genes and fragile sites which are preferential
sites for translocation, deletion, amplification, sister chro-
matid exchange and insertion of tumor associated viruses
like human papilloma virus [10].
While many specific maturation steps have been uncov-

ered for different miRNAs, most known human miRNAs
are processed in the same way by the miRNA biogenesis
pathway. miRNA precursors, known as primary miRNA
(pri-miRNA) are transcribed by RNA polymerase II or
III. These transcripts are subsequently cleaved by the
microprocessor complex DROSHA-DGCR8 to form the
pre-miRNA, which is transported from the nucleus to the
cytoplasm by XPO5-RAN-GTP. There, it is cleaved by
DICER1-TRBP to form the two stranded miRNA duplex;
the passenger strand is detached and normally degraded,
although in some cases it acts as a separate functional
miRNA. The remaining functional strand combines with
E1F2C2 proteins and forms the RNA-induced silencing
complex (RISC). The miRNA then guides RISC to pre-
vent translation of target mRNAs. Translation is pre-
vented bymRNA deadenylation, mRNA target cleavage or
translational repression [11]. Of the mechanisms of post-
transcriptional regulation by miRNAs, lowered mRNA
levels (mRNA cleavage or deadenylation) accounts for
most (>84%) of decreased protein production [12]. This
implies that it is possible to assess levels of miRNA medi-
ated gene silencing from the mRNA levels of a miRNA’s
target transcripts.
Cheng et al. quantified miRNA activity in this way by

defining the regulatory effect score (RE-score) of amiRNA
in a sample as the average expression rank of genes that
are not predicted to be targeted by the miRNA minus the
average expression rank of the predicted targets of the
miRNA [13]. Thus, the RE-score is intended to measure
the extent to which targets of the miRNA are down-
regulated in a sample relative to other genes. It is not
informative to compare the RE-scores of different miR-
NAs, but comparison of the RE-score of a given miRNA
between samples can provide an indication of a difference
in the repressive effect of the miRNA in the samples. For
example, if the targets of a given miRNA relative to non-
targets are ranked higher in a set of cancer samples than in
comparable normal tissues, this suggests that the miRNA
exerts less control over gene expression in the cancer sam-
ples. There have been numerous other studies published
that have also investigated miRNA regulation by assessing
changes in expression of mRNA targets [14-18].
We sought to investigate whether there is evidence of

natural variation in this phenotype between human indi-
viduals using RE-scores calculated from microarray and

RNA-seq data generated from the CEU (Utah residents
with ancestry from northern andwestern Europe) and YRI
(Yoruba in Ibadan, Nigeria) lymphoblastoid cell lines of
the HapMap project [19-23]. Microarray data were avail-
able for 56 trios of related individuals in these populations
(consisting of two parents and an offspring). We used
these data to investigate the genetic component of the
variation in RE-scores. Positive correlation between the
value of a phenotype in an offspring and the mean value
in parents provides evidence of a heritable component in
the variation of the phenotype and the slope of the lin-
ear regression line relating parentmean to offspring values
can be used as an estimate of the narrow-sense heritability
[24-26].

Results and discussion
Heritability of the regulatory effect of miRNAs
Microarray data [23] were obtained for 56 trios (both
parents and an offspring) from the CEU and YRI pop-
ulations of the HapMap project [19,20]. Using miRNA
targets predicted by TargetScan [2,27] we compared RE-
scores between parents and offspring. For 51% of miRNAs
the mean RE-score of parents and the RE-score of the
offspring were significantly (p < 0.05) positively corre-
lated (Table 1). Population of origin was included in these
regressions to model biological and technical differences
between the CEU and YRI cell lines. Regression p-values
and slopes for heritability of individual miRNA RE-scores
from TargetScan and a second miRNA prediction algo-
rithm (PicTar [28]) are provided as Additional file 1; his-
tograms of these p-values are shown in Additional file 2:
Figure S1.
We calculated the mean of the RE-score over all miR-

NAs. Unsurprisingly, the mean RE-score is also strongly
correlated between parents and offspring in HapMap trios
(Figure 1). This correlation is statistically significant using
mean RE-scores calculated from targets predicted by Tar-
getScan (slope = 0.68 ± 0.34; p = 2 × 10−4). The
slopes of these regression lines provide estimates of the
narrow-sense heritability of the mean RE-score. We also
assessed mean RE-score heritability based on targets pre-
dicted by four other algorithms (which have been found to

Table 1 Summary of results for individual miRNA
RE-scores calculated using TargetScan

Number of miRNAs 244

Average number of target genes per miRNA 437

RE-score positively correlated between 235

mean of parent and offspring

Positively correlated (p < 0.05) 124

Average Heritability (S.D) 0.30 (0.15)
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Figure 1 Heritability of mean RE-score. Scatter plots of child values of mean RE-score against mean value of parents. Points from the CEU are
colored blue and YRI are green. The estimated regression line is shown in red. RE-scores were calculated using TargetScan.

be less accurate predictors of protein levels [29]). Of these
PicTar (slope = 0.62 ± 0.36; p = 1.3 × 10−3), miRanda
[30](slope = 0.40 ± 0.37; p = 3.6 × 10−2) and mirTar-
get2 [31] (slope = 0.35 ± 0.32; p = 2.8 × 10−2) showed
significant evidence of heritability, while one miRNA tar-
get prediction algorithm, mirBase [32], did not reach
statistical significance (slope = 0.20 ± 0.33; p = 0.21).
It is possible that the apparent genetic contribution

to the regulatory effect of miRNAs is a consequence of
the heritability of gene expression, rather than a novel
molecular phenotype. Since the expression levels of a
large proportion of human genes have a strong genetic
component [33-35], the correlation in RE-score between
parents and offspring could simply reflect the correla-
tion in the expression levels of a proportion of the genes
targeted by the miRNA. We devised a permutation test
to evaluate this possibility. For each set of mRNAs pre-
dicted to be targeted by a given miRNA we replaced
predicted target genes by genes chosen at random (details
in Methods). If the apparent heritability of RE-scores is
merely a consequence of heritability of individual gene
expression levels, the RE-scores obtained from sets of ran-
dom genes should exhibit similar levels of heritability to
the RE-scores based on the true predicted target sets.
Greater evidence of heritability from true predicted tar-
gets compared to sets of randomly selected genes suggests
that the RE-score heritability cannot be explained by the

heritability of individual gene expression levels. Of 1,000
randomizations, just eight (p = 0.008) reached a regres-
sion p-value as extreme as the target sets predicted by
TargetScan.

Genome-wide association of mean RE-score
In order to explore the genetic contribution to RE-score
variation further, we carried out a genome-wide associa-
tion (GWA) test, treating mean RE-score, calculated using
miRNA targets predicted by TargetScan, as a quantitative
trait, and using genotype data from the HapMap project
[19,20]. To avoid artifacts resulting from population struc-
ture, we carried out these tests separately on the CEU and
YRI samples and excluded related individuals (offspring
of the HapMap trios). RE-scores were recalculated using
expression data derived from RNA-seq [21,22], which was
available for parents but not for offspring of HapMap trios.
Histograms and Manhattan plots of p-values are shown
in Additional file 2: Figure S2. The p-value distributions
show a peak towards low p-values, suggesting the pres-
ence of some true positive associations. The top ten most
significantly associated loci in both populations are shown
in Additional file 3. None of these associations remained
significant following a permutation-based correction for
multiple testing. This is not surprising given the rel-
atively small number of samples compared to typical
GWA studies.
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Association of mean RE-score with SNPs in the miRNA
biogenesis pathway
Cheng et al. [13] used the RE-score metric to compare
miRNA repression in Estrogen Receptor Positive (ER+)
and Estrogen Receptor Negative (ER-) breast cancers and
found that miRNAs tended to have higher RE-scores (i.e.
their targets were more repressed) in the latter. The differ-
ences in RE-scores between the two cancer subtypes was
attributed to dysregulation of key genes in the microRNA
biogenesis pathway [13]. We used linear regression to
investigate the relationships between seven key genes
in the miRNA biogenesis pathway, (DICER1, EIF2C2,
DROSHA,DGCR8,XPO5, RAN and TRBP) andmean RE-
score, first using all samples from both populations pooled
(including population of origin as a factor in the model)
and then in each of the populations separately. Expression
levels of five of these seven genes were significantly cor-
related with mean RE-score (Table 2), consistent with a
contribution of differential regulation of the miRNA bio-
genesis pathway to differences in mean RE-score. In fact,
a large proportion (37.8%) of all genes were significantly
associated (p < 0.05) with mean RE-score; however, this
proportion was somewhat higher (five out of seven, or
71.4%) for genes in the miRNA biogenesis pathway. Given
this relationship between RE-score and the activities of
genes in the miRNA biogenesis pathway these genes are
worthy of closer examination for genetic association with
mean RE-score.
We carried out a second test of association, restrict-

ing to 336 SNPs that map to the genomic regions of
these seven key genes involved in the miRNA biogen-
esis pathway. A SNP is mapped to the genomic region
of a gene by dbSNP if it lies between 2kb upstream and
500bp downstream of the gene. Again there appear to
be more low p-values than would be expected under the
uniform distribution, pointing to a proportion of true pos-
itive associations in both populations (Additional file 2:
Figure S3). The ten SNPs most strongly associated with
mean RE-score in CEU and YRI are shown in Tables 3

and 4, respectively. One SNP, rs17409624, in an intron of
DROSHA remained statistically significantly (padjusted <

0.05) associated with mean RE-score in the CEU follow-
ing Bonferroni and permutation-based control for mul-
tiple testing. This SNP was also nominally significantly
associated with mean RE-score in the YRI (p = 0.04);
however, the minor allele frequency was much lower in
YRI, limiting the power to detect an association with a
significance that could survive multiple test correction.
The magnitude and direction of the RE-score differences
between genotypes are consistent across the two popu-
lations (Figure 2). Taken individually, the vast majority
(214 of 244) of RE-scores are associated (p < 0.05)
with genotype at this SNP in the CEU. This number
drops to 36 of 244 in the YRI, however the lower minor
allele frequency in YRI again limits the power to detect
the association.
As a further test of the association between rs17409624

and mean RE-score, we investigated the RE-scores of a
particular class of intronic miRNAs (mirtrons), which
are not processed by DROSHA [36]. If the association
between the SNP and mean RE-score is real and is medi-
ated by an effect on miRNA processing by DROSHA,
the SNP should not be associated with the RE-scores of
mirtrons. Consistent with this prediction, we found that
a much lower proportion of mirtron RE-scores (based
on TargetScan predictions from CEU RNA-seq data) are
associated (at α = 0.05) with theDROSHA SNP (5 out of 12
mirtrons, compared to 214 out of 244 conventional miR-
NAs; p = 0.0004, from a two-sided Fisher’s exact test).
We have found evidence that the subset of mirtrons that
do show an association with the SNP do so because of
an overlap between their target gene sets and the target
gene sets of conventional miRNAs, as the mirtrons which
are most significantly associated with rs17409624 tend to
target genes that are also targeted by many other miR-
NAs; and mirtrons that target genes that are targeted by
few conventional miRNAs are less significantly associated
with rs17409624 (Additional file 2: Figure S4).

Table 2 Associations between expression levels of keymiRNA biogenesis genes andmean RE-score

CEU YRI Pooled

Bonferroni P Slope Bonferroni P Slope Bonferroni P Slope

DROSHA 9.42 × 10−03 -10.23 1.37 × 10−05 -22.12 5.19 × 10−06 -15.64

DGCR8 0.036 11.57 0.95 -0.46 0.37 6.23

XPO5 0.47 -3.03 1.38 × 10−04 -17.85 2.17 × 10−03 -10.74

RAN 0.27 0.49 0.14 -0.94 0.75 -0.12

DICER1 8.51 × 10−03 -13.77 1.97 × 10−09 -26.18 5.57 × 10−10 -21.72

TRBP 2.95 × 10−05 12.26 0.085 8.12 2.68 × 10−04 10.60

EIF2C2 0.022 -6.25 1.39 × 10−07 -9.07 1.88 × 10−08 -8.41

P-values and slopes from the linear regression of expression level of genes in the miRNA biogenesis pathway against mean RE-score, in the CEU, YRI and for both
populations pooled.
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Table 3 Top 10 associations for miRNA biogenesis pathway related SNPs (CEU)

Location Associated Gene P-value Bonferroni P Q-value Permutation

p-value

rs17409624 chr5:31,528,733 DROSHA 1.81 × 10−04 0.043 0.018 0.03

rs10078886 chr5:31,427,441 DROSHA 3.32 × 10−04 0.079 0.018 0.051

rs16901121 chr5:31,418,215 DROSHA 3.32 × 10−04 0.079 0.018 0.051

rs2279797 chr5:31,428,028 DROSHA 3.32 × 10−04 0.079 0.018 0.051

rs13183642 chr5:31,511,106 DROSHA 1.25 × 10−03 0.3 0.054 0.16

rs3805516 chr5:31,420,670 DROSHA 1.56 × 10−03 0.37 0.056 0.2

rs4867349 chr5:31,536,327 DROSHA 1.82 × 10−03 0.43 0.056 0.23

rs2287584 chr5:31,423,007 DROSHA 3.27 × 10−03 0.78 0.073 0.33

rs615344 chr5:31,425,788 DROSHA 3.39 × 10−03 0.8 0.073 0.34

rs682902 chr5:31,423,694 DROSHA 3.39 × 10−03 0.8 0.073 0.34

The results for association of miRNA biogenesis pathway related SNPs with mean RE-score in the CEU.

Searching for causal SNPs
We investigated the function of SNP rs17409624 using
the “SNP Function Prediction” tool, which is part of
the SNPinfo suite (available at http://www.niehs.nih.gov/
snpinfo) [37]; however, no significant results were iden-
tified. We also searched the “GWAS Catalog” but did
not find any previous studies which had identified this
SNP [38]. To search for other SNPs that may be causally
responsible for this association we used confidence inter-
vals [39] as implemented in HaploView to calculate hap-
lotype blocks for the CEU HapMap data. rs17409624
is located within a haplotype block that includes the
DROSHA promoter region (Figure 3).We verified that this
is the active promoter of DROSHA using data recently
released by the ENCODE project et al. [40]. Chromatin
states for this locus are shown in Additional file 2:
Figure S5. The expression level of DROSHA is signifi-
cantly associated with mean RE-score (Table 2); however,
the genotype of this locus was not significantly correlated

with DROSHA expression level (p = 0.39) or with the rel-
ative expression level of any DROSHA transcript isoforms
(identified using Cufflinks [41]). A further possibility is
that rs17409624 is in linkage disequilibrium (LD) with
an exonic SNP that was not genotyped on the HapMap
microarrays. Using SNP calls from genome sequence data
released by the 1,000 Genomes Project [42] we found no
coding SNPs with a stronger association to mean RE-
score than rs17409624, the regions assayed included the
3′ and 5′ UTRs. We caution however, that there was much
less statistical power to detect an association using the
1,000 Genomes data, as there was an overlap of only
45 samples between the 1,000 Genomes Project dataset
(versus 59 for the HapMapmicroarray data) and the RNA-
seq samples from the CEU used in this analysis, which
means that it is difficult to rule out the possibility of link-
age of rs17409624 with a causative SNP in the coding
region. These results are provided in Additional file 4.
Thus, the causal mechanism linking genetic variation

Table 4 Top 10 associations for miRNA pathway related SNPs (YRI)

Location Associated Gene P-value Bonferroni P Q-value Permutation

p-value

rs6994531 chr8:141,544,476 EIF2C2 4.57 × 10−03 1 0.38 0.55

rs1633445 chr22:20,100,596 DGCR8 0.011 1 0.38 0.77

rs17409275 chr5:31,514,127 DROSHA 0.012 1 0.38 0.8

rs1209904 chr14:95,563,712 DICER1 0.015 1 0.38 0.86

rs1187650 chr14:95,551,554 DICER1 0.018 1 0.38 0.9

rs1187655 chr14:95,565,556 DICER1 0.018 1 0.38 0.9

rs6575499 chr14:95,622,200 DICER1 0.018 1 0.38 0.9

rs12881840 chr14:95,568,003 DICER1 0.020 1 0.38 0.9

rs12889800 chr14:95,618,898 DICER1 0.020 1 0.38 0.9

rs2292780 chr8:141,561,357 EIF2C2 0.022 1 0.38 0.93

http://www.niehs.nih.gov/snpinfo
http://www.niehs.nih.gov/snpinfo
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(a) (b)

Figure 2 Stripcharts for rs17409624. Stripcharts of mean RE-score against genotype at rs17409624 in the (a) CEU and (b) YRI populations.

at the DROSHA locus to variation in the RE-score
remains unclear.

Integrative analysis of miRNA expression and RE-score data
miRNA expression data has recently been generated for
some of the HapMap CEU and YRI cell lines [43]. In
the majority of cases, miRNA expression levels and their

corresponding RE-scores were not significantly corre-
lated. Average Spearman correlation between miRNA
expression and corresponding TargetScan based RE-score
from the RNA-seq data is only 0.009 in the CEU and
-0.0003 in the YRI. Although surprising, this observa-
tion is consistent with the findings of Cheng et al. [13],
who, for the original RE-score study, performed Spearman

Figure 3 Haplotypes in rs17409624 region. Haplotype blocks around rs17409624 as calculated by confidence intervals in Haploview, using the
HapMap CEU data. The block which includes rs17409624 is highlighted in blue; this block also includes the DROSHA promoter region.
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correlations of the t-scores of comparisons of miRNA
expression and RE-scores between ER- and ER+ breast
cancers, finding only very weak positive correlation. Sim-
ilar results have also been observed on two separate
datasets by Liang et al. [44]. Correlations betweenmiRNA
expression level and RE-scores are included in Additional
file 5. However, we find that in the CEU, the expression of
17 of 201 miRNAs that were consistently expressed across
the cell lines is associated (p < 0.05) with rs17409624
and that 13 of these associations are in the same direc-
tion as mean RE-score. One miRNA is associated with the
SNP in the YRI, but once again, the lower minor allele
frequency of rs17409624 in the YRI limits the power to
identify associations. P-values and false discovery rates
for these 18 miRNAs (17 CEU and 1 YRI) for genotype
association are included in Additional file 6. Thus, this
SNP represents a trans-eQTL cluster for miRNA gene
expression. We hypothesize that this trans-eQTL reflects
inter-individual differences in the efficiency of miRNA
processing by DROSHA. Given that miRNA expression
measurements are relative (in this case miRNA expres-
sion was measured using a pooled reference microarray
design), it is possible that this polymorphism may affect
the absolute copy numbers of a large fraction of miRNAs,
even though an association between miRNA expression
and the SNP is detectable for a relatively small fraction
of miRNAs. This hypothesis could be tested using tran-
scriptome sequencing strategies designed to measure the
abundance of miRNAs relative to other RNA species.
Indeed, given a global and consistent change in expression
of all miRNAs in a sample, one may not expect the expres-
sion of any miRNAs to be associated with rs17409624,
as the proportion of the transcript pool occupied by any
given miRNA, would remain unchanged. However, the
miRNA regulatory effect polymorphism need not affect
the expression of all miRNAs to exactly the same degree,
potentially leading to both positive and negative associa-
tions of miRNA expression with the SNP.
As discussed above, RE-scores of the majority of miR-

NAs were not correlated with miRNA expression. This
remained the case when we restricted to miRNAs whose
expression varied most across samples. However, the
RE-scores of individual miRNAs were correlated with
the mean RE-score calculated across all miRNAs. We
restricted this analysis to the 20 most variable miRNAs.
Of the top 20 in either population, 14 in the CEU and
13 in the YRI had TargetScan prediction data and there-
fore RE-scores. We only considered these highly variable
miRNAs because quantities that are relatively constant
across samples are not expected to be correlated, given
the noise inherent in microarray data. The correlation
between mean and individual miRNA RE-scores is not
simply a consequence of overlaps in genes targeted by
different miRNAs, since it holds true even when the mean

RE-score is recalculated, for each miRNA correlation test,
after all of the individual miRNAs targets have been sub-
tracted from the target sets of the remaining miRNAs.
13 of the 14 highly varying miRNAs in the CEU and all
13 of 13 in the YRI show a stronger association between
the individual RE-score and (subtracted) mean RE-score,
than between the individual RE-score and the expression
of the miRNA itself. In most cases this difference is large
(Additional file 7), hence, the mean RE-score in a sample
may be a much better predictor of the expression level of
the targets of any particularmiRNA, than is the expression
profile of the miRNA itself. It is, perhaps, not surpris-
ing that the expression level of an individual miRNA is
not indicative of the expression of its target genes, given
that targeted genes are often targets of a large number
of miRNAs. Of 11,759 genes which are predicted to be
targeted by at least one miRNA (by the full TargetScan
set), the average number of miRNAs targeting each gene
is 17.48. In this context, the fact that the mean RE-score
has power to predict the expression levels of a miRNA tar-
get, even when the mean RE-score is calculated without
considering the targets of that miRNA is interesting and
points to differences in the effect of the miRNA pathway
on target genes across the cell lines.

Conclusions
We have found evidence of heritability of the regulatory
effect of miRNAs in human. We have also identified an
association between the regulatory effect of miRNAs and
a SNP in the miRNA processing gene DROSHA. This
association was identified in lymphoblastoid cell lines and
it remains to be seen whether and in which primary
cells the regulatory effect of miRNAs is associated with
the DROSHA locus. As noted in the Background, Cheng
et al. had observed that there is a change in miRNA
RE-scores between ER- and ER+ breast cancer subtypes.
Thomsom et al. showed that mature miRNA levels are
generally lower in several human primary cancers, despite
unchanged pri-miRNA levels and this has been attributed
to defective processing by DROSHA [45], while DROSHA
and DICER have also been shown to be downregulated
in endometrial cancer and specific subgroups of breast
cancer [46,47]. Thus, it will be important to investigate
further the phenotypic consequences of inter-individual
differences in miRNA regulatory efficiency and the influ-
ence on gene expression, possible tumorigenesis and the
impact of such inter-individual differences in the context
of the use of miRNAs as biomarkers.

Methods
Data
Raw gene expression microarray data of related individ-
uals from the CEU and YRI populations of the HapMap
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project were downloaded from GEO under accession
number GSE7792, these data were generated by Huang
et al. [23] using Affymetrix Human Exon 1.0 ST microar-
rays. Prior to calculating gene expression level estimates,
the data were RMA normalized [48] and genes whose
expression level were below the detection threshold, as
estimated by the DABG algorithm (p < 0.05), were set to
zero; these steps were performed using Affymetrix Power
Tools and R as described in [49]. RNA-seq data for unre-
lated individuals of the HapMap YRI population were gen-
erated by Pickrell et. al [21] and we obtained these aligned
data from GEO under accession number GSE19480. Sim-
ilarly, Montgomery et al. [22] used RNA-seq to assess
gene expression of unrelated CEU samples and these data
were obtained from ArrayExpress under accession num-
ber E-MTAB-197. All data were aligned to hg18 using
MAQ [50]. We performed gene expression analysis using
R/Bioconductor. Data were loaded in R [51] using the
ShortRead [52] library. Following Montgomery et al., only
reads that had a mapping quality score of greater than
or equal to 10 were included. The GenomicRanges [53]
library was used to compute the number of reads map-
ping to exons of each gene and expression values were
normalized using the RPKM [54] procedure. miRNA
prediction data were obtained using the R library
RmiR.Hs.miRNA [55] which provides a database of
miRNA targets for several widely used algorithms.
The HapMap release 28 (merged data for phases I,
II and III) [19,20] SNP data were downloaded from
the HapMap website, converted to GenABEL format
and trimmed to include only samples in the CEU
and YRI populations for which there was matching
RNA-seq data.

Estimating Heritability of mean RE-score
Narrow sense heritability of individual miRNA RE-scores
and mean RE-score was estimated using a robust linear
regression model [24,25]. The rlm() function from the R
library MASS was used to fit regression models for child
value dependent on mean of parents. Population of origin
was included as a factor in the models. The slope of the
regression line provides an estimate of heritability.

Permutation testing of heritability of mean RE-score
To calculate a corrected p-value for heritability of mean
RE-score of a miRNA prediction algorithm, we performed
1,000 permutations of the prediction algorithm’s miRNA
gene target sets and recalculated heritability of mean
RE-score following each permutation; the permutation p-
value was the proportion of permuted sets that return
p-values which are equal to, or lower than, the original raw
p-value for that algorithm. To perform a permutation, we
replace each gene target of each miRNA’s target set with

a randomly chosen gene, but only genes for which expres-
sion data is available are replaced or used for replacement,
as only these can affect RE-scores. If a gene is a target
of multiple microRNAs, it is replaced by the same ran-
domly chosen gene in every target set, so as to maintain
the structure of the data.

Genome-wide association test
The R package GenABEL [56,57] was used for filtering
and tests of association. Prior to testing for association,
genotype data were filtered as follows. Obvious close rel-
atives are removed by discarding the child samples and
to avoid the effects of population stratification CEU and
YRI samples are assayed separately. Markers with a low
minor allele frequency were filtered by excluding SNPs
for which there were less than 5 copies of the minor
allele across all samples. We used only SNPs genotyped
as part of HapMap phase III. Individuals or SNPs were
excluded for a call rate of < 0.95. Tests for Hardy-
Weinberg equilibriumwere conducted using Pearson’s χ2,
comparing observed genotype frequencies in the data to
the calculated expected frequencies; a cut-off FDR level
of 0.2 was applied. To assess if any remaining related-
ness exists among the samples, the pairwise proportion
of alleles identical-by-state (IBS) was calculated between
all individuals based on 2,000 randomly chosen autoso-
mal markers, ensuring IBS < 0.95 for all samples. For
multiple testing correction of association p-values, per-
mutations were calculated by permuting phenotype labels
and performing tests of association as normal; for each
raw p-value, we computed the number of permutations
for which a p-value equal to, or lower than, the original
raw p-value was reached and divide this by the number
of permutations, the result of which is the adjusted p-
value. False discovery rates were also assessed using the R
package qvalue [58].

Calculating association between individual miRNA
RE-score, mean RE-score andmiRNA expression
For each of 14 highly varying miRNAs in the CEU samples
and 13 in the YRI, we fit a multiple linear regressionmodel
of individual miRNA RE-score dependent on the expres-
sion of the miRNA and the mean RE-score. For each fit
of the model, mean RE-score was re-calculated with the
genes that are targets of the particular individual miRNA
removed from the gene expression matrix, so as to avoid a
bias in the association between the two variables.

Additional files

Additional file 1: Tables of regression p-values and slopes, for
heritability of individual miRNA RE-scores from TargetScan and
PicTar algorithms.
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Additional file 2: Figure S1. Heritability for individual RE-scores.
Histograms of p-values for tests of heritability of individual RE-scores for (a)
TargetScan and (b) PicTar algorithms. Figure S2: P-Values for
genome-wide tests of association. Histograms (a & b) of p-values for tests
of association between all SNP markers and mean RE-score and Manhattan
plots (c & d) of p-values in the CEU and YRI respectively. Figure S3:
Histograms of p-values for miRNA biogenesis pathway SNPs. Histograms of
p-values for the tests of association between SNP markers mapped to the
miRNA biogenesis pathway and mean RE-score in the (a) CEU and (b) YRI
populations. Figure S4:Many mirtron target genes are also miRNA targets
Relationship between the strength of association with rs17409624 for
mirtrons and the average number of conventional miRNAs that also target
the mirtron’s target genes. This figure is based on TargetScan predictions
for conserved miRNA families on HapMap CEU data. R2 = 0.65,
p = 5.1 × 10−4 Figure S5: DROSHA promoter region Chromatin state of
DROSHA region for nine cell lines from the ENCODE project. Active
promoter is shown in bright red. The haplotype block for rs17409624 is
shown in black and clearly overlaps the promoter region.

Additional file 3: Tables of top 10 SNPs from the genome-wide
screen for association of mean RE-score and SNP genotypes, in the
CEU and in the YRI.

Additional file 4: Table of p-values for association of Drosha coding
SNPs andmean RE-score, based on the 1,000 genomes CEU data. Only
SNPs with more than 1 copy of the minor allele in the 45 samples available
are included. If a SNP was genotyped by the HapMap project, that p-value
is also included.

Additional file 5: Tables of Spearman correlations and p-values for
correlations between individual miRNAs and their associated
RE-scores in the CEU and YRI.

Additional file 6: Tables of P-values and False discovery rates
(calculated using the qvalue package in R) for association between
the expression of individual miRNAs and rs17409624.MiRNAs with
p < 0.05 are shown.

Additional file 7: P-values from linear models of individual RE-score
dependent on (subtracted) mean RE-score andmiRNA expression.
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