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Abstract

Background: The class of small non-coding RNA molecules (sRNA) regulates gene expression by different
mechanisms and enables bacteria to mount a physiological response due to adaptation to the environment or
infection. Over the last decades the number of sRNAs has been increasing rapidly. Several databases like Rfam or
fRNAdb were extended to include sRNAs as a class of its own. Furthermore new specialized databases like
sRNAMap (gram-negative bacteria only) and sRNATarBase (target prediction) were established. To the best of the
authors’ knowledge no database focusing on sRNAs from gram-positive bacteria is publicly available so far.

Description: In order to understand sRNA’s functional and phylogenetic relationships we have developed sRNAdb
and provide tools for data analysis and visualization. The data compiled in our database is assembled from
experiments as well as from bioinformatics analyses. The software enables comparison and visualization of gene loci
surrounding the sRNAs of interest. To accomplish this, we use a client–server based approach. Offline versions of
the database including analyses and visualization tools can easily be installed locally on the user’s computer. This
feature facilitates customized local addition of unpublished sRNA candidates and related information such as
promoters or terminators using tab-delimited files.

Conclusion: sRNAdb allows a user-friendly and comprehensive comparative analysis of sRNAs from available
sequenced gram-positive prokaryotic replicons. Offline versions including analysis and visualization tools facilitate
complex user specific bioinformatics analyses.
Background
In recent years numerous small non-coding RNAs
(sRNAs) were discovered in bacteria. This class of RNAs
is crucial to prokaryotic life, modulating transcription or
translation leading to either activation or repression of
important physiological processes. sRNAs enable bac-
teria to trigger rapid physiological responses in order to
adapt to the environment or infectious processes [1-3].
To cope with the increasing number of identified

sRNAs, databases such as fRNAdb, Rfam, sRNAMap
and sRNATarBase were developed [4-9]. All of these
approaches have certain drawbacks. fRNAdb contains all
classes of RNAs, but allows no further analysis. Rfam is
one of the most informative data collections, allowing
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detailed analyses via a web front-end. sRNAMap is a
webserver-based application for gram-negative bacteria
only. sRNATarBase compiles experimental data and
allows the prediction of sRNA targets. But all databases
available to date limit the analysis to published data only.
Therefore bioinformatics analyses of candidate sRNAs in
combination with genomes, terminators and other rele-
vant information that has not yet been published is still
a very complicated task.
In an attempt to overcome some of the aforemen-

tioned drawbacks, we have developed sRNAdb. Our
database is a locally installable web-suite, permitting the
comparative analysis of sRNAs of gram-positive bacteria
including their flanking genes. User modified files in
GenBank format and gram-negative bacterial genomes,
pooled sRNA candidates or further features of interest
can be included in locally installed databases. Further-
more all integrated analysis tools can also be used
locally.
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Construction and content
A database scheme of unique keys and entities, com-
bined with corresponding relations and connections is
given in Figure 1. Optional user defined extensions to lo-
cally installed versions of the database are indicated with
a lighter background color than the boxes representing
database entities.

Input data
To the best authors’ knowledge, no general nomencla-
ture convention for sRNAs exists to date. Therefore
sRNAs imported into our database from the literature
cannot always be unambiguously distinguished by name,
locus or annotation only. Furthermore a large number of
published sRNAs is currently annotated as predicted or
putative. This leads to a myriad of sRNAs bearing indis-
tinct names, positions or ambiguous annotations. To
cope with this difficulty, sRNAdb contains a unique key
composed of information about the authors, experimen-
tal conditions and sRNA properties as shown in the
Figure 1 Database schema. The whole database with connections betwe
and foreign keys of each table are given in bold letters while relations betw
features which can be inserted by the user into local versions of the datab
boxes representing entities.
table termed snrax of Figure 1. Annotated sequences of
organisms or plasmids downloaded from NCBI’s RefSeq
database [10] represent the replicons in the database. In-
formation annotated in GenBank-formatted files such as
sequences, or genes filtered from these files are automat-
ically inserted into sRNAdb. When sRNAdb is installed
locally, users can furthermore modify the local database
by adding customized features such as terminators, pro-
moters and other additional data. Terminators predicted
by TransTermHP [11] serve as examples for this option,
as described on the official sRNAdb server homepage.

Architecture and design
Our public sRNAdb server is implemented in Java 1.6
on a Debian Linux PC. It facilitates a client–server archi-
tecture using Java Server Pages (JSPs), Java Servlets, and
Cascading Stylesheets (CSS). Apache Tomcat and
MySQL serve as webserver and database, respectively.
Related sRNAs are determined using BLASTN [12],

while protein homologies are established by a combination
en tables and specific attributes are shown in UML-Notation. Unique
een entities are stated above the connection arrows. Optional

ase, are indicated using a lighter background color than employed for
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of BLASTCLUST and BLASTP [12]. The addition of new
data (replicons, sRNAs, terminators, promoters, RBS, etc.)
to a local installation of sRNAdb is a simple process based
on GenBank and tab-delimited flat-files.
Currently, the public sRNAdb server contains 558

gram-positive genomes and plasmids as well as 9993
automatically predicted and 671 experimentally verified
sRNAs. An overview is given in Table 1.

Utility and discussion
The sRNAdb web-database aims to collect all published
and predicted sRNAs of gram-positive bacteria for com-
parative analysis. sRNAs featuring an environmental
condition-depending range of sizes can optionally be
joined to a combined transcript. The public version of
sRNAdb contains terminators predicted by Trans-
termHP [11]. Three web-interfaces are provided for re-
trieval and analysis of the data. The first module is
called search and offers a rich query interface for the
database, as shown in Figure 2A. Properties of sRNAs
can be selected and filters can be defined to create task-
specific queries resulting in a tabular output (Figure 2B).
Related or customized data can also be collated to the
query, based on the up- or downstream distance to an
sRNA of interest. Furthermore, a secondary structure
prediction of selected sRNA sequences by energy
minimization can be performed using RNAfold (http://
rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi).
Another interface named blast (Figure 3A) was created

to enable homology searches of sRNAs versus either
Table 1 The table shows an overview of the current database
bioinformatic analyses

Reference sRNAs Org

Arnvig et al. 2009 [13] 9 Myco

Bohn et al. 2010 [14] 28 Stap

Christiansen et al. 2006 [15] 3 Liste

D’Hérouel et al. 2011 [16] 22 Ente

Geissmann et al. 2009 [17] 11 Stap

Irnov et al. 2010 [18] 90 Baci

Kumar et al. 2010 [19] 50 Strep

Livny et al. 2008 [20] 9993 Gram

Mandin et al. 2007 [21] 12 Liste

Mraheil et al. 2011 [22] 150 Liste

Nielsen et al. 2008 [23] 1 Liste

Perez et al. 2009 [24] 33 Strep

Rasmussen et al. 2009 [25] 84 Baci

Tezuka et al. 2009 [26] 12 Strep

Toledo-Arana et al. 2009 [27] 103 Liste

Vockenhuber et al. 2010 [28] 63 Strep

The organisms for which sRNAs are listed in the database, including references, the
pumed identification number are listed.
public or proprietary sRNAs or whole chromosomes/plas-
mids using BLASTN [12]. This can be used for initial
screening of potential genomic regions. Concise matrix
outputs for comparative analysis purposes as shown in
Figure 3B and Figure 3C, are implemented. Complete
BLAST alignments are displayed in Figure 3D. Sequences
from the BLAST output table can be easily selected by set-
ting checkmarks to extract data into a multifasta-
formatted file, ready to serve as input to multiple sequence
alignment programs such as CLUSTALW (http://www.
ebi.ac.uk/Tools/msa/clustalw2/). The resulting output can
be used to predict structurally conserved and thermo-
dynamically stable RNA secondary structures using e.g.,
RNAz (http://rna.tbi.univie.ac.at/cgi-bin/RNAz.cgi), facili-
tating screens for sRNA-homologs across genomes.
For comprehensive visual assessment the vision servlet

(Figure 4A) was developed. This allows for a compara-
tive analysis of multiple, related chromosome/plasmid
loci of the genomic neighborhood of a single sRNA of
interest (single mode) as displayed in Figure 4B. The
results are translated into an image (.png-formatted)
whereby homologous genes (CDS, RNA) of the sRNA
locus are identified by BLASTP [12] and presented with
an identical colour code. Terminators and any number
of additional features previously defined can be included
as desired. Each object in the image is associated with a
popup-box, displaying further information and linked to
corresponding database entries. The width of the result-
ing image can be varied to compensate for different
screen resolutions. Thus one sRNA locus can be
entries. These are compiled from experiments or from

anism Pubmed_id

bacterium tuberculosis H37Rv 19555452

hylococcus aureus subsp. aureus N315 20511587

ria monocytogenes EGD-e 16682563

rococcus faecalis V583 21266481

hylococcus aureus subsp. aureus N315 19786493

llus subtilis subsp. subtilis str. 168 20525796

tococcus pneumonia TIGR4 20525227

-positive bacteria 18787707

ria monocytogenes EGD-e 17259222

ria monocytogenes EGD-e 21278422

ria monocytogenes EGD-e 18621897

tococcus pyogenes MGAS5005 19888332

llus subtilis subsp. subtilis str. 168 19682248

tomyces griseus subsp. griseus NBRC 13350 19465662

ria monocytogenes EGD-e 19448609

tomyces coelicolor 21521948

number of identified sRNAs for the specific organisms and their relevant

http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://rna.tbi.univie.ac.at/cgi-bin/RNAz.cgi


Figure 2 Search servlet. Properties of interest for each sRNA such as name, start, stop and so forth can be selected by setting check marks in
the properties section of the servlet form. sRNAs of specific organisms or publications can be selected according to settings defined in the set
limits section. Furthermore advanced limits for detailed filtering are available. Additional features like promoters and terminators can be searched
for in the neighborhood of sRNAs of interest. B An example output from the search servlet. The resulting table contains four sRNAs named LhrA,
LhrB, LhrC and L13. The corresponding search options are shown in A. For each sRNA, properties as well as additional features (promoters) in the
surrounding area are displayed in intervals of 20 bp. Also the properties as selected with the search servlet are included in the output.
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Figure 3 Blast servlet form and corresponding output. A FASTA formatted sRNA sequences can be inserted into the query box. Also target
genomes or sRNAs have to be selected for multiple alignment using BLAST. For a detailed BLAST analysis the BLAST output analysis (BOA)
options has to be selected. In this example four sRNAs resulting from a search with parameters shown in Figure 1 were selected as input.
Genomes of the genus Listeria were set as targets and the BOA options were enabled. B The number of sRNAs detected in the target organism is
displayed in a comparative matrix form. C All hits listed in a table and are linked to their corresponding alignment. D A detailed BLAST alignment
of all results can also be plotted.
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Figure 4 Vision servlet forms and result of single and batch mode. Different input options are available. After selecting the sRNA of interest,
replicons can be selected for visualization. Options for further analyses based on BLAST, as well as properties relating to the image output can be
set. A An example relating to the LhrC transcript is displayed. B Single mode: the resulting image shows a comparative representation of a single
sRNA candidate and flanking genes in selected organisms. Moving the mouse pointer over these, the corresponding properties of each object is
shown in a separate popup window. C Batch mode: sRNAs displayed in Figure 1 are used as input in this example. The output-matrix indicates
occurrence of the sRNA candidates in selected organisms and their directional relationships with respect to their surrounding genes.
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compared to different chromosomes/plasmids in a con-
cise image output.
For the genome wide analysis of multiple sRNA loci

an additional batch mode is available. Results from an
application of this batch mode have already been pub-
lished by Mraheil and collaborators [22]. In order to per-
mit this global analysis an option was implemented that
enables export of the data to an Excel sheet. This con-
tains a visualization matrix (Figure 4C) which indicates
the occurrence of the sRNA of interest in the target or-
ganism together with its directional relationships of the
flanking genes.
The software tool presented here is a valuable exten-

sion to existing solutions and will assist in the rapid ana-
lysis of large volumes of data to understand the
distribution and evolution of sRNAs in bacteria. Com-
pared to other databases the comparative batch mode of
sRNAdb’s vision servlet facilitates analyses such as in
silico screening for phylogenetic markers, or identifica-
tion of drug targets related to bacterial sRNAs. As exem-
plified by Mraheil and colleagues [22] a grouping of
sRNAs from pathogenic, apathogenic or non-pathogenic
bacterial strains based on the vision servlet´s result
matrix, allows the user to identify sRNAs as putative
phylogenetic markers. Specifically, sRNAs found exclu-
sively in pathogenic strains can be identified as drug tar-
get candidates. Furthermore after download and local
installation of sRNAdb, both the database and the dedi-
cated software tools are available to the user. Since pro-
prietary replicons or putative sRNAs can easily be
included into locally installed versions of the database,
these may be analysed making use of the full power of
sRNAdb’s software tools, simplifying detailed analyses of
unpublished bacterial replicons or sRNA candidates. To
the best of the author’s knowledge, this functionality is
currently not supported by any other publicly available
sRNA database.
Conclusion
sRNAdb offers biologists an easy access and analysis to
both proprietary and public data and allows the identifi-
cation of a core set of sRNAs which can be used as puta-
tive drug targets in antimicrobial therapeutic approaches
as well as specific sRNAs for potential diagnostic mar-
kers for the detection of gram-positive bacteria.
Availability and requirements
The database including documentation and tools for
analysis are available free of charge at http://bioinfo.mik-
robio.med.uni-giessen.de/sRNAdb.
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