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Abstract

Background: In post-genomic era, the study of transcriptional regulation is pivotal to decode genetic information.
Transcription factors (TFs) are central proteins for transcriptional regulation, and interactions between TFs and their
DNA targets (TFBSs) are important for downstream genes’ expression. However, the lack of knowledge about
interactions between TFs and TFBSs is still baffling people to investigate the mechanism of transcription.

Results: To expand the knowledge about interactions between TFs and TFBSs, three biological features (sequence
feature, structure feature, and evolution feature) were utilized to build TFBS identification models for studying
binding preference between TFs and their DNA targets in mammals. Results show that each feature does have
fairly well performance to capture TFBSs, and the hybrid model combined all three features is more robust for TFBS
identification. Subsequently, correspondence between TFs and their TFBSs was investigated to explore interactions
among them in mammals. Results indicate that TFs and TFBSs are reciprocal in sequence, structure, and evolution
level.

Conclusions: Our work demonstrates that, to some extent, TFs and TFBSs have developed a coevolutionary
relationship in order to keep their physical binding and maintain their regulatory functions. In summary, our work
will help understand transcriptional regulation and interpret binding mechanism between proteins and DNAs.
Background
Transcription factors (TFs) are important functional
proteins, which play central roles in transcriptional regu-
lation by interacting with specific DNA targets. These
targets are named as transcription factor binding sites
(TFBSs), which are short DNA fragments mainly located
in promoter regions of genes. Generally, TFs can be
grouped into four classes according to their structures
and functions:(1) TFs with basic domains (basic-TFs),
(2) TFs with zinc-coordinating DNA binding domains
(zinc-TFs), (3) TFs with helix-turn-helix patterns (helix-
TFs), and (4) beta-scaffold factors with minor groove
contacts (beta-TFs)[1,2].
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Interactions between TFs and their targets are sig-
nificantly correlated with gene expression, so compre-
hensively investigating those interactions is crucial to
understand transcriptional regulation. For this purpose,
one of the primary steps is to represent TFBSs with
appropriate features. Generally, three features are
often utilized to describe biological characters of TFs’
DNA targets. (1) Sequence feature, which is the se-
quence similarity of DNA segments to a position
weight matrix (PWM). A PWM is a mathematical
model, which reflects nucleotide occurrence probabil-
ity in each position [3,4]. When a DNA segment is
marked with a high score to a valid PWM, it is con-
sidered as a positive instance. TFBS prediction meth-
ods based on PWM were successfully carried out on
some TF data sets [3-6]. But these methods require
prior PWM models, which are not available for many
TFs. Besides, PWM-based methods may generate too
many false positive predictions when they are exe-
cuted on a genome-wide scale [7,8]. (2) Structure
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feature, which is conformational and physicochemical
information of a DNA segment. Since transcription
factors interact physically with their DNA targets, it is
reasonable to depict binding preference between TFs
and TFBSs through conformational and physicochem-
ical information. For example, Pomomarenko and his
colleagues [9,10] employed the conformational and
physicochemical values of DNA segments to predict
TFBSs. (3) Evolution feature, which is a conservation
score of a DNA segment. Because transcription factor
binding sites are functional elements. It is commonly
believed that these elements are conserved in evolu-
tion. In fact, some algorithms for TFBS identification
have been proposed based on the assumption that
TFBSs are more converved than their surrounding
non-functional fragments in order to maintain their
functions[11-14].
Pioneer works based on the three features provide

promising results and broaden our knowledge of interac-
tions between TFs and TFBSs. Nevertheless, some
aspects about interactions between TFs and TFBSs are
still unclear. (1) Which feature has the greatest power
for describing binding preference between TFs and
TFBSs? That is to say, among the models using these
three features, which one has the best performance for
recognition of TFBSs? In addition, do any complementa-
rities exist for those features? If the answer of the last
question was true, then a hybrid model combining these
three features should represent binding preference be-
tween TFs and TFBSs more comprehensively. (2) In
terms of relationships between TFs and TFBSs, is there
any correspondence existing in the sequence, structure,
and evolution level? Since each of the sequence, struc-
ture, and evolution feature can denote TFBSs effectively,
we can investigate the correlation between TFs and
TFBSs at these three features’ aspects. To be more spe-
cific, if the sequences of two TFs are similar, will their
TFBSs’ sequences be similar as well? If two TFs can be
categorized into a group based on their structure infor-
mation, will their corresponding TFBSs be also categor-
ized into a group as well? If a TF is conserved in
evolution, will its TFBSs be conserved as well? Answers
Table 1 Detailed information of transcription factors and the

Dataset Numb

TF with sequence(270) basic-TF 56

zinc-TF 79

helix-TF 93

beta-TF 42

TF without sequence(56) 56

Total 326
to these questions may help people understand interac-
tions between TFs and TFBSs and reveal their correla-
tions in evolution.
In this paper, experimentally verified TFs and their

corresponding TFBSs were first collected for three
mammals (Homo sapiens, Mus musculus, and Rattus
norvegicus), and then a TFBS recognition model was
constructed based on each feature mentioned above.
In total, we had three models. The accuracy of each
model was used as the measurement to inspect its
capability to describe binding preference between TFs
and TFBSs. In addition, a hybrid model, integrating all
three features, was built to evaluate complementarities
of those features. After that, the correspondence be-
tween TFs and TFBSs was surveyed at sequence, struc-
ture, and evolution aspect respectively. Our results
may offer new clues for TFBSs’ identification. More-
over, the correspondence between TFs and TFBSs we
obtained accumulates the knowledge of interactions
between proteins and DNAs. Thus, our investigation
will shed light on understanding transcriptional regula-
tion in mammals.

Methods
Dataset of transcription factors and their DNA targets
Experimentally verified TFs and their corresponding
TFBSs were collected from the TRANSFAC database
(v 9.4) [1,2] for three mammals (Human, Mouse, and
Rat). A TF was selected when it contained more than
10 verified DNA targets. As a result, 326 groups of
TFs and their DNA targets (TF-TFBSs) were gener-
ated. 309 of the 326 groups contained PWM patterns
and the remaining 17 groups had no PWM informa-
tion [see Additional file 1]. The 309 groups with
PWM patterns were named dataset 1, while the rest
17 groups were termed dataset 2. Moreover, according
to the description of TRANSFAC database, TFs con-
tained in the dataset 2 had less conserved binding
sites, since their TFBSs were not able to be aligned to
generate a PWM. Based on our previous work [15,16],
among those 326 TFs, 270 TFs with amino acid se-
quence were classified into four classes according to
ir DNA targets

er Dataset Number

TF-TFBSs with PWM 309

TF-TFBSs without PWM 17

Total 326
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their structures and domains [see Additional file 2 and
Additional file 3]. Detailed information of TF-TFBS
datasets was summarized in Table 1. Given a TF, veri-
fied DNA targets were used as positive instances.
Meanwhile, promoter sequences of the three mammals
were obtained from the Eukaryotic Promoter Database
(EPD) [17,18] to construct negative instances: First,
those promoter sequences were utilized as training
data to generate a 3rd-order hidden markov model;
then the model was employed to produce 5 kb-long
pseudo DNA sequences, which had the same nucleo-
tide distribution of those promoter sequences; subse-
quently, a window (with the average length of positive
instances for a TF) was employed to scan and cut
those pseudo sequences for building a negative in-
stance pool; finally, for each TF, 10 DNA sequence sets
were constructed by mixing equal positive and negative
instances. In practice, for each DNA sequence set, the
negative instances were randomly selected from the
pool.
Sequence feature of a DNA segment
For a DNA segment, its sequence feature was calculated
through Equation 1 modified from some previous stud-
ies [3,5,6]. The sequence feature presented a score for
assessing the similarity of a short DNA fragment to a
known PWM pattern.

score ¼
Xn
j¼1

WjðijÞCj

WjðijÞ ¼
fAj ij ¼ A
fTj ij ¼ T
fCj ij ¼ C
fGj ij ¼ G

Cj ¼
XT
i¼A

fij log2ð
fij
Pi
Þ

8>><
>>:

ð1Þ

where n is the length of the DNA segment, j denotes
a position in the DNA segment or the PWM, ij
denotes the base (A,T,C,G) of position j, Wj(ij) is the
weight of position j for the DNA segment, Cj is the in-
formation content of position j for the DNA segment,
fij is the frequency of base i occurred in position j for
the PWM pattern, Pi is the observation probability of
base i in background sequences. When an instance
was evaluated, scores of the Watson and Crick strands
were calculated respectively, and the higher one was
assigned to the instance.
evolution feature ¼ 0
the maximal conservation score of

�

Structure feature of a DNA segment
For a DNA segment, its structure feature was calculated
through an empirical formula (Equation 2) proposed by
Ponomarenko and his colleagues [9,10].

score ¼ 1
n� 1

Xn�1

j¼1

xðbjbjþ1Þ ð2Þ

where n is the length of the DNA segment, j denotes
a position of the segment, x(bjbj+1) are empirical values
of 16 binucleotides combination at position j/j + 1 for
transcription factor binding sites. For each conform-
ational and physicochemical attribute, its x(bjbj+1)
values were listed in Additional file 4. Based on Equa-
tion 2, for a DNA segment, a structure feature vector
was built to represent the TFBS from 38 conform-
ational and physicochemical attributes. Detailed infor-
mation of these 38 attributes was provided in Additional
file 4.

Evolution feature of a DNA segment
In 2005, Xie and his colleagues [19] presented 174
conserved regulatory motifs [see Additional file 5]
through alignment of several mammalian genomes. In
our work, the evolution feature of a DNA segment
was generated through comparing to those motifs. In
practice, a conservation score of a motif was assigned
to a DNA segment when it was similar to the motif
(with a similarity threshold 0.95). If a DNA segment
was similar to several motifs, the maximal conserva-
tion score of those motifs was assigned to the seg-
ment. If a segment was not similar to any motif, 0
was assigned to the segment (Equation 3).

Construction of the sequence model, the structure model,
the evolution model, and the control model
Given a TF and its 10 DNA target sets (each set
included positive and negative instances), first, three
scores were calculated for each instance according to
the three features. Then three TFBS identification
models (named the sequence model, the structure
model, and the evolution model) were constructed re-
spectively based on these three features. In practice,
the C4.5 algorithm [20,21] was utilized to build those
TFBS identification models, in which the positive and
negative instances with feature information were used
as the input and a decision tree model was generated
as the output. At the same time, the Match 2.0
method [22,23] was utilized as the control model,
similar motifs
ð3Þ
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since it was adopted by the TRANSFAC database to
measure the similarity of DNA segments to a PWM
pattern.

Construction of the hybrid model
After using the sequence, the structure, and the evolu-
tion feature separately to establish TFBS identification
models, an integrated strategy was employed to inspect
the complementarities of the three features. First, scores
were calculated for each feature. As a result, each in-
stance in a DNA target set was presented with 40 attri-
butes, in which 2 attributes depicted the sequence and
evolution feature respectively, and the other 38 attri-
butes stood for the structure feature. In practice, we first
combined the 40 attributes of the sequence, structure,
and evolution feature, and then delivered positive and
negative instances with 40 attributes to the C4.5 algo-
rithm [20,21]. Wherein, attribute selection was carried
out to remove redundant attributes using a correlation-
based filter method with default parameters [24]. At last,
a decision tree model, contained the three features, was
constructed.

Evaluation of different models
Given a TF, 5 models (the control model, the sequence
model, the structure model, the evolution model, and
the hybrid model) were built for each DNA instance set
of this TF separately. In practice, a 10-fold cross valid-
ation test was used to assess the performance of each
model. The test was operated as follows: (1) split an in-
stance set into 10 fractions; (2) selected one as the test
set and made the remaining 9 fractions as the training
sets; (3) computed the following four statistical measure-
ments for the subsequent analysis: (a) the true positive
(TP), (b) the false positive (FP), (c) the true negative
(TN), and (d) the false negative (FN). The true positive
and the true negative were the correct recognition of
TFBSs and non-TFBS items respectively. A false positive
occurred when a non-TFBS item was predicted as a
TFBS one. Similarly, a false negative occurred when a
TFBS item was predicted as a non-TFBS one; (4) calcu-
lated the sensitivity, specificity, and accuracy through
Equation 4; (5) repeated step (2), (3), and (4), while each
fraction was chosen as the test set in turn.

sensitivity ¼ TP
TP þ FN

specificity ¼ TN
TN þ FP

accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

8>>>>><
>>>>>:

ð4Þ

After that, in order to further evaluate the perform-
ance of models, the receiver operating characteristic
curves were constructed for the 5 different models, and
the area under curve (AUC) was used as a statistic
measurement to assess the power of each model to dis-
tinguish TFBSs.
Results
Performances of different models
10-fold cross validation tests were executed for each
TF-TFBS model in dataset 1(with PWM) and dataset 2
(without PWM). Detailed results of the 10-fold cross
validation test were included in the Additional file 6.
Since the control model and the sequence model
required PWM information, performance of these
two models on dataset 2 was not presented. Detailed
results of AUC measurement were listed in Additional
file 7. Figure 1 showed different models’ sensitivity, spe-
cificity, accuracy, and AUC distribution in dataset 1.
While Figure 2 showed those distributions in dataset 2.
Table 2 and 3 summarized the mean and standard
deviation of model performance for dataset 1 and 2
respectively.
Results for dataset 1 were shown in Figure 1. The

interval between the 25th and the 75th percentile was
also adopted as a model performance measurement. For
sensitivity, the intervals of the 5 models (the control
model, the sequence model, the structure model, the
evolution model, and the hybrid model) were (0.447-
0.773), (0.774-0.955), (0.676-0.830), (0.556-0.786), and
(0.810-0.938) respectively. For positive instances, sensi-
tivity results demonstrated that: (1) the sequence model
had the best performance among the three single feature
models; (2) the hybrid model was comparable to the best
single feature model (the sequence model) and better
than the control model. For specificity, interval values of
the 5 models were (0.950-1.000), (0.828-0.928), (0.632-
0.818), (0.393-0.842), and (0.808-0.910) respectively. For
negative instances, specificity results indicated that: (1)
the sequence model was the best one in three single fea-
ture models; (2) the hybrid model was comparable to
the best single feature model (the sequence model) and
worse than the control model. The accuracy values of
the 5 models were (0.690-0.873), (0.804-0.930), (0.646-
0.818), (0.502-0.768), and (0.806-0.925) respectively.
When both positive and negative instances were con-
sidered, the accuracy results showed that: (1) among sin-
gle feature models, the sequence model outperformed
the other two for TFBS recognition; (2) the hybrid
model was comparable to the best single feature model
(the sequence model) and surpassed the control one.
For AUC measurement, corresponding values of the 5
models were (0.696-0.877), (0.760-0.913), (0.630-0.831),
(0.476-0.726), and (0.804-0.919) respectively. Conclusions



Figure 1 Performance comparison of different models for 309 TF-TFBSs (with PWM information). Panel(a)-(d): boxplots of 5 models (the
control model, the sequence model, the structure model, the evolution model, and the hybrid model) for sensitivity, specificity, accuracy and
AUC measurement. For a boxplot, the 5 whiskers from bottom to top denote the 5th, 25th, 50th, 75th, and 95th percentile respectively.
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hinted by the accuracy measurement were reinforced by
the AUC results.
Results for dataset 2 were shown in Figure 2. For sen-

sitivity, interval values of the structure model, evolution
model and hybrid model were (0.718-0.879), (0.690-
0.741), and (0.771-0.877) respectively. While for specifi-
city, accuracy, and AUC measurement, corresponding
values were [(0.800-0.868),(0.455-0.857),(0.790-0.868)],
[(0.775-0.857),(0.490-0.809),(0.788-0.856)], and [(0.769-
0.866),(0.455-0.802),(0.791-0.872)] respectively. Results
of dataset 2 implied that without PWM information: (1)
the structure model was better than the evolution model
for TFBS recognition; (2) performance of the hybrid
model was comparable to the best single feature model
(the structure model) for identifying TFBS.
In order to compare the 5 models more directly, the

mean of performance was calculated. Table 2 showed
the mean values of model performance in dataset 1.
In terms of accuracy, when the hybrid model was com-
pared with the control model and the three single fea-
ture models, TFBS identification success rate improved
8.0%, 0.0%, 12.8%, and 21.1% respectively. In terms of
AUC, corresponding increments were 6.9%, 2.3%, 12.6%,
and 24.5% respectively. Those results suggested, again,
that considering both positive and negative instances,
performance of the hybrid model was comparable to the
best single feature model and surpassed the control one.
Table 3 showed the mean values of model performance
in dataset 2. When the hybrid model was compared with
the structure model, the increased values of accuracy
and AUC were 0.7% and 11.3% respectively. When the
hybrid model was compared with the evolution model,
the increase was 1.2% and 14.1% for accuracy and AUC
respectively. According to the results of dataset 2, a con-
clusion similar to dataset 1’s was made, that the hybrid
model was comparable to the best single feature model
and outperformed the control one. In addition, as shown
in Table 2 and 3, the standard deviation of the hybrid
model was smaller than other models’ in most cases,
which meant that the hybrid model was more robust
and balanced than other models.
In order to survey power of the hybrid model fur-

ther, we investigated frequency distribution of accuracy
measurement for the hybrid model and the best



Figure 2 Performance comparison of different models for 17 TF-TFBSs (without PWM information). Panel(a)-(d): boxplot of 3 models (the
structure model, the evolution model, and the hybrid model) for sensitivity, specificity, accuracy and AUC measurement. For a boxplot, the 5
whiskers from bottom to top denote the 5th, 25th, 50th, 75th, and 95th percentile respectively.
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single feature model in the two datasets (Figure 3).
In dataset 1, the hybrid model was compared with the
sequence model. While in dataset 2, the hybrid model
and the structure model were compared. As shown
in Figure 3, for accuracy, values of the hybrid model
were more concentrated in high score region than the
single feature model. That outcome demonstrated that
the hybrid model was more robust than the single fea-
ture model.

Correspondence between TFs and TFBSs
In the previous section, capability of the sequence,
structure, and evolution feature to denote TFBSs were
Table 2 Performance of different models for 309 TF-TFBSs (w

Control Model Sequence Model St

Mean SD Mean SD Me

Sensitivity 0.588 0.247 0.852 0.137 0.7

Specificity 0.965 0.052 0.859 0.105 0.7

Accuracy 0.776 0.122 0.856 0.103 0.7

AUC 0.783 0.124 0.829 0.116 0.7
surveyed respectively through constructing TFBS identi-
fication models. In this section, biological characters
of the relationship between TFs and TFBSs were investi-
gated for better comprehending transcriptional regula-
tion. In practice, we inspected TF-TFBS correspondence
in terms of sequence, structure, and evolution to explore
their relationships.

Inspecting correspondence between TFs and TFBSs
in sequence level
In sequence level, correspondence inspection was oper-
ated as follows: (1) 270 TFs (with sequences) out of 326
TFs were clustered through the BLASTCLUST algorithm
ith PWM information)

ructure Model Evolution Model Hybrid Model

an SD Mean SD Mean SD

46 0.117 0.675 0.156 0.865 0.103

10 0.152 0.616 0.256 0.848 0.088

28 0.123 0.645 0.153 0.856 0.091

26 0.136 0.607 0.154 0.852 0.095



intersecting rate ¼ intersection of a TF and a TFBS cluster
union of a TF and a TFBS cluster

TF clusters match rate ¼ matching TF clusters
TF clusters

8><
>: ð5Þ
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[25], which could categorize sequences according to
their similarity. In practice, for TF clustering, the param-
eter of length coverage threshold (−L) was changed
from 0.60 to 0.95, with 0.05 as the step size, and the
parameter of identity percentage (−S) was changed from
60 to 95, with 5 as the step size. (2) Simultaneously, cor-
responding TFBSs of those 270 TFs were also clustered
through the BLASTCLUST algorithm, where TFBS
length coverage threshold (−L) was set to 0.90 (required
by the BLASTCLUST algorithm due to TFBSs’ short
length), and TFBS identity percentage (−S) was changed
from 60 to 95, with 5 as the step size. (3) Clustering
outcomes of TFs and TFBSs were recorded separately,
and then for each TFBS cluster, its items were trans-
formed to their TF names according to TF-TFBS inter-
action pairs. Subsequently, matched clusters between
TFs and TFBSs were checked. A TF cluster was regarded
as matching with a TFBS cluster when one of below
criteria held: (a) over 90% items of a TF cluster were
contained in a TFBS cluster; (b) the intersection rate
(Equation 5) between a TF and a TFBS cluster was over
two-thirds. Results of the inspection were summarized
in Table 4.

As shown in Table 4, for TF clustering, when the
length coverage threshold and identity percentage
increased, cluster number dropped from 62 to 36, which
meant TF clustering outcome was sensitive to these two
parameters. In terms of TFBSs, when the identity per-
centage increased, the cluster number of TFBS was not
altered. Since sequences of TFBSs were degenerated to
some extent, it was not surprising that their clustering
outcome was not sensitive to the sequence parameter.
The match rate of TF-TFBS clusters was always over
60%, which demonstrated that most TF clusters could be
found matched TFBS ones in all conditions. That is to
say, to some extent, when some TFs were categorized
into a cluster due to their similar sequences, their
Table 3 Performance of different models for 17 TF-TFBSs (wit

Control Model Sequence Model St

Mean SD Mean SD Me

Sensitivity NA NA NA NA 0.8

Specificity NA NA NA NA 0.7

Accuracy NA NA NA NA 0.7

AUC NA NA NA NA 0.7
corresponding TFBSs were also classified into a cluster
by sequence similarity. In another word, if some TFs’
sequences were similar, their TFBSs’ sequences were
most probably similar as well. Those results suggested
that to some degree, there existed correspondence in the
sequence level between TFs and TFBSs.

Inspecting correspondence between TFs and TFBSs
in structure level
In structure level, correspondence inspection was exe-
cuted as following: (1) 270 TFs (with sequences) out of
326 TFs were categorized into four classes (basic-TFs,
zinc-TFs, helix-TFs, beta-TFs) according to their struc-
ture information [15,16]. (2) Frequency of 38 attributes
for structure feature was recorded during the TFBS rec-
ognition model construction. Meanwhile, a confidence
interval, based on the 75th quantile of attribute fre-
quency, was generated through a 10,000-replication
bootstrapping. Then significant attributes, with frequen-
cies over median of the interval, were selected for subse-
quent process. As a result, 5 (the 27th, 30th, 32th, 33th,
and 34th attributes) out of the 38 attributes were chosen,
and TFBSs of the 270 TFs were encoded with a 5-
dimension vector. (3) Expectation-Maximization (EM)
algorithm was employed to evaluate class number of
TFBSs, and then the number was delivered to K-means
cluster algorithm as an initial parameter for TFBS classi-
fication. (4) For each TFBS class, its items were trans-
formed to their TF names according to TF-TFBS
interaction pairs. Then mapping status between TF and
TFBS classes was inspected with similar criteria used in
the previous section (inspecting correspondence in se-
quence level). In practice, mapping status was defined as
Yes when over 90% items of a TF class were found in a
TFBS class. The mapping results of four TF classes were
summarized in Table 5.
As shown in Table 5, for each TF class, in terms of

class-level mapping rate, the numbers were no less than
hout PWM information)

ructure Model Evolution Model Hybrid Model

an SD Mean SD Mean SD

02 0.115 0.723 0.142 0.816 0.106

88 0.157 0.655 0.252 0.788 0.165

95 0.129 0.689 0.170 0.802 0.127

87 0.144 0.658 0.168 0.799 0.140



Figure 3 Distribution of accuracy measurement for different models. Panel (a): the histogram of the sequence model and the hybrid model.
The green and red rectangle represents the former and the latter’s accuracy frequency respectively. Panel (b): the histogram of the structure
model and the hybrid model. The green and red rectangle represents the former and the latter’s accuracy frequency respectively.
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90%, which suggested that every TF class found a
matched TFBS class. That is to say, according to struc-
ture information, when some TFs were grouped into a
class, their corresponding TFBSs were most likely cate-
gorized into a class as well. Therefore, we thought that
in structure level, correspondence between TFs and
TFBSs did exist as well.
Table 4 Matching results of TF and TFBS clusters based on se

BLASTCLUST (parameter) clusters Match

TF TFBS TF TFBS T

-L 0.60 -S 60 -L 0.90 -S 60 62 233

-L 0.65 -S 65 -L 0.90 -S 65 62 233

-L 0.70 -S 70 -L 0.90 -S 70 60 233

-L 0.75 -S 75 -L 0.90 -S 75 58 233

-L 0.80 -S 80 -L 0.90 -S 80 58 233

-L 0.85 -S 85 -L 0.90 -S 85 54 233

-L 0.90 -S 90 -L 0.90 -S 90 43 233

-L 0.95 -S 95 -L 0.90 -S 95 36 233
Inspecting correspondence between TFs and TFBSs
in evolution level
In evolution level, correspondence inspection was car-
ried out as belows: (1) Homolog information of 270 TFs
(with sequences) was collected from the InParanoid
database, which contained eukaryotic ortholog groups
[26,27]. Then each TF was assigned a conservation score
quence information

ing clusters match rate fisher test

F-TFBS TF cluster odds ratio p value (<)

39 0.629 123.973 2.2e-16

40 0.645 133.192 2.2e-16

40 0.667 141.485 2.2e-16

39 0.672 139.486 2.2e-16

40 0.690 151.705 2.2e-16

37 0.685 136.013 2.2e-16

27 0.628 79.789 2.2e-16

25 0.694 88.648 2.2e-16



Table 5 Mapping results of TF classes based on structure
information

TF class items
in class

mapped
items

mapping
rate

mapping
status

basic-TF 56 52 0.929 Yes

beta-TF 42 39 0.929 Yes

helix-TF 93 84 0.903 Yes

zinc-TF 79 75 0.949 Yes
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based on the number of its orthologs. In practice, a TF
obtained higher score when it had more orthologous
genes. (2) Simultaneously, for each TF, conservation of
its DNA targets was assessed through their evolution
feature during model construction for TFBS identifica-
tion. In practice, the mean value of evolution feature for
a TF’s DNA target was assigned as its corresponding
TFBSs’ conservation score. (3) Correspondence between
TFs and TFBSs was inspected through surveying correl-
ation of conservation score between TFs and their DNA
targets. Detailed information about conservation score
of TFs and their DNA targets was listed in Table 6.
A spearman’s rank test was used to investigate the cor-

relation between TFs and TFBSs. As a result, the coeffi-
cient of TFs and TFBSs was 0.122 (p = 0.023 < 0.05, one
side test), which meant there was positive correlation
between transcription factors and their DNA targets to
some degree. Those results suggested when a TF was
conserved, its TFBSs were likely conserved. In other
words, in terms of evolution, there exists correspond-
ence between TFs and their TFBSs.
Discussion
In this work, we first evaluated the power of sequence,
structure, and evolution feature to describe properties of
transcription factor binding sites through constructing
TFBS identification model. For TF datasets with PWM
information, TFBS identification accuracy of the three
single feature models achieved 86%, 73%, and 65% for
the sequence, structure and evolution model respect-
ively. Given no PWM information, accuracy of the struc-
ture and the evolution feature were about 80% and 69%.
Those results demonstrate: (1) these features do have
fairly well capability to capture TFBSs; (2) among the
three features, the sequence feature is most impactful
for depicting TFBS binding preference. It is noteworthy
that prior PWM information is required when comput-
ing the sequence feature. In contrast, the structure and
the evolution feature don’t need much prior information
when they are applied to TFBS recognition. Thus, the
structure and the evolution feature are more suitable
than the sequence one for ab inito TFBS recognition in
a certain degree.
A hybrid model was built to survey the complementa-
rities of the three features. According to the outcomes of
sensitivity, specificity, accuracy, and AUC measurement,
performance of the hybrid model exceeds the control
one and is comparable to the best single feature model.
Moreover, the hybrid model has fairly well performance
not only in TF sets having PWM information (dataset 1)
but also in TF sets with low conserved TFBSs (dataset
2). Powerful capability of the hybrid model can be
explained by following two reasons: (1) In terms of bio-
logical character, the sequence feature presents similarity
of an DNA sequence to a PWM pattern; the structure
feature contains conformational and physicochemical
attributes, which are thought to be closely related to
TFBS binding; the evolution feature depicts conservation
degree of a DNA segment. The three features offer prop-
erties of TFBSs in various biologic aspects, so combining
these features can describe TFBS binding preference
more comprehensively. (2) In terms of string context,
for a DNA segment, the sequence feature gives contribu-
tion of each nucleotide to a valid pattern (PWM pat-
tern); the structure feature is correlative to dinucleotide
distribution, which reflects relationship of joint nucleo-
tides; the evolution feature considers conservation of a
DNA segment as a whole. In methodology, integrated
model is more effectively using string context than the
single feature model, so it is not surprising that the hy-
brid model has better performance for TFBS recogni-
tion. In summary, investigation results illustrates: (1)
there are complementarities over the three biological
features to some extent; (2) strategy of combining differ-
ent features is good to TFBS identification.
After investigating competence of the sequence, struc-

ture, and evolution feature to distinguish TFBSs, we
investigated the correspondence in those features’ levels
to explore the interaction mechanism between TFs and
TFBSs. Results of correspondence inspection make clear
that TFs are reciprocal with TFBSs: (1) in sequence level,
when some TFs’ sequences are similar, their correspond-
ing TFBSs’ sequences are also similar. In general, when
some proteins’ sequences are similar, they are believed to
have analogous functions. TFs are pivotal proteins of
transcriptional regulation, and their most important
functions are binding with TFBSs to regulate expression
of downstream target genes. Hence, it is reasonable
when some TFs having similar sequences, sequences of
their TFBSs are similar as well. Those reciprocal phe-
nomena of TFs and TFBSs in sequence level are func-
tional reflection of interactions between them; (2) in
structure level, when some TFs are grouped into a class,
it is most probably that their TFBSs are categorized into
a class as well. When some TFs belong to a class, they
generally have analogous structure domain. It is well
known that interactions between TFs and TFBSs are



Table 6 Conservation scores of 270 TFs and their corresponding TFBSs

TF_id TF_score TFBS_score TF_id TF_score TFBS_score TF_id TF_score TFBS_score

T00035 0.510 22.689 T02068 0.229 37.695 T01581 0.281 22.469

T00036 0.323 53.477 T02256 0.000 19.975 T01649 0.490 21.440

T00040 0.156 17.661 T02336 0.458 18.020 T01675 0.479 16.642

T00045 0.417 24.431 T02338 0.635 43.785 T01710 0.312 19.878

T00100 0.000 8.600 T02513 0.510 19.355 T01737 0.396 19.207

T00105 0.250 23.436 T02689 0.573 11.751 T01788 0.000 42.591

T00112 0.000 26.139 T02758 0.000 24.052 T01806 0.281 9.876

T00113 0.281 31.947 T02769 0.406 31.273 T01828 0.396 15.416

T00123 0.323 37.325 T02905 0.417 29.244 T01836 0.552 38.128

T00133 0.531 40.426 T03828 0.000 30.425 T01862 0.365 27.131

T00137 0.000 22.547 T03978 0.344 16.819 T01863 0.365 27.131

T00140 0.469 80.516 T04076 0.333 20.941 T01873 0.406 19.462

T00149 0.417 24.994 T04096 0.406 41.469 T01888 0.365 20.913

T00163 0.500 36.319 T04139 0.396 32.720 T01944 0.240 26.854

T00167 0.615 40.211 T04169 0.292 20.608 T01964 0.000 36.555

T00168 0.312 12.591 T04255 0.229 9.579 T02016 0.396 11.973

T00204 0.000 43.157 T04292 0.458 32.288 T02057 0.333 10.183

T00207 0.000 23.891 T04323 0.469 30.400 T02072 0.406 5.871

T00241 0.458 35.887 T04337 0.417 8.588 T02083 0.000 22.700

T00250 0.000 38.958 T04345 0.281 17.885 T02142 0.146 22.509

T00311 0.000 21.446 T04362 0.344 16.418 T02251 0.292 40.375

T00330 0.250 19.700 T04651 0.219 24.345 T02327 0.271 81.746

T00331 0.438 25.084 T04673 0.000 16.867 T02344 0.521 22.483

T00337 0.000 11.789 T04674 0.000 14.984 T02349 0.417 11.981

T00368 0.208 25.903 T04675 0.240 10.487 T02361 0.000 26.080

T00423 0.208 18.856 T04682 0.000 19.150 T02450 0.396 12.598

T00490 0.000 42.650 T04683 0.521 26.489 T02529 0.250 31.583

T00525 0.354 37.525 T04684 0.521 29.356 T02532 0.000 9.291

T00529 0.542 5.670 T04728 0.938 2.200 T02772 0.323 33.126

T00539 0.000 23.310 T04734 0.448 33.173 T02983 0.156 12.375

T00581 0.156 16.629 T04742 0.417 29.900 T03388 0.000 17.450

T00594 0.406 18.237 T05040 0.417 10.977 T03389 0.604 18.979

T00625 0.000 30.061 T05887 0.208 12.650 T03461 0.490 12.826

T00630 0.417 9.392 T05990 0.167 9.142 T04176 0.427 22.757

T00641 0.417 28.149 T06429 0.333 19.271 T04203 0.458 24.991

T00646 0.312 25.800 T08251 0.479 18.206 T04347 0.271 24.125

T00647 0.312 27.887 T08292 0.188 19.371 T04368 0.406 12.612

T00671 0.271 10.249 T08300 0.240 25.765 T04446 0.458 1.591

T00719 0.000 32.340 T00017 0.167 18.741 T04668 0.073 13.053

T00721 0.000 24.300 T00018 0.000 8.178 T04669 0.562 24.492

T00759 0.604 44.722 T00104 0.260 14.491 T04670 0.615 28.587

T00764 0.354 19.933 T00111 0.365 38.400 T04671 0.604 28.089
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Table 6 Conservation scores of 270 TFs and their corresponding TFBSs (Continued)

T00794 1.000 18.030 T00131 0.542 37.864 T04811 0.000 14.562

T00851 0.000 30.779 T00138 0.000 10.669 T04849 0.354 28.104

T00857 0.490 23.217 T00152 0.000 13.035 T05012 0.167 51.522

T00874 0.448 48.698 T00244 0.490 32.023 T05840 0.625 48.409

T00878 0.448 58.069 T00273 0.615 13.368 T05943 0.417 22.448

T00885 0.396 15.250 T00278 0.385 19.934 T06029 0.396 20.694

T00899 0.417 34.042 T00377 0.490 23.438 T06585 0.438 24.253

T00900 0.417 29.490 T00378 0.458 5.421 T06593 0.198 32.085

T00902 0.000 30.319 T00402 0.250 11.518 T08231 0.490 14.017

T00915 0.427 15.628 T00422 0.167 13.413 T08291 0.344 18.350

T00929 0.469 16.593 T00425 0.167 15.035 T00042 0.146 10.674

T00968 0.490 28.308 T00437 0.000 42.280 T00108 0.000 17.824

T00997 0.073 23.077 T00454 0.438 27.733 T00109 0.000 7.500

T01005 0.792 28.543 T00505 0.771 27.210 T00124 0.312 42.912

T01009 0.792 33.484 T00526 0.312 43.133 T00132 0.531 33.659

T01042 0.750 18.733 T00528 0.219 38.886 T00164 0.510 38.254

T01071 0.500 14.414 T00595 0.406 22.510 T00183 0.354 21.642

T01122 0.000 11.302 T00644 0.365 24.060 T00258 0.167 20.208

T01313 0.219 27.573 T00648 0.312 19.429 T00333 0.229 24.129

T01345 0.542 27.789 T00651 0.156 22.926 T00369 0.219 23.012

T01346 0.000 34.134 T00677 0.333 12.273 T00371 0.000 20.978

T01427 0.656 20.220 T00680 0.000 33.917 T00372 0.458 23.436

T01428 0.208 32.483 T00681 0.000 24.983 T00424 0.177 16.045

T01462 0.260 37.833 T00684 0.000 43.609 T00459 0.219 14.155

T01468 0.302 15.041 T00694 0.250 16.028 T00535 0.375 30.000

T01481 0.562 20.503 T00702 0.208 35.793 T00599 0.375 40.421

T01493 0.260 27.513 T00752 0.604 53.710 T00691 0.000 22.778

T01527 0.458 29.300 T00765 0.365 12.164 T00754 0.583 44.405

T01528 0.448 29.592 T00859 0.490 19.629 T00853 0.000 23.131

T01542 0.510 30.648 T00877 0.396 45.574 T00856 0.479 16.747

T01553 0.542 25.917 T00930 0.448 24.136 T01040 0.479 14.921

T01580 0.292 18.325 T00989 0.469 35.417 T01049 0.531 19.961

T01599 0.375 19.287 T01112 0.000 17.350 T01050 0.271 20.600

T01607 0.448 40.100 T01147 0.448 29.662 T01349 0.458 38.760

T01673 0.677 23.779 T01201 0.396 6.845 T01562 0.531 13.891

T01795 0.417 13.877 T01211 0.219 19.882 T01921 0.219 23.153

T01804 0.604 45.070 T01311 0.469 14.534 T02115 0.396 47.292

T01823 0.000 15.839 T01331 0.531 33.655 T02288 0.000 27.853

T01839 0.417 28.932 T01332 0.479 33.209 T02290 0.417 17.006

T01840 0.417 29.820 T01429 0.302 25.000 T02716 0.479 11.258

T01853 0.500 23.999 T01441 0.156 62.155 T02815 0.427 1.021

T01920 0.000 13.056 T01445 0.469 71.685 T03257 0.000 15.213

T01948 0.240 28.606 T01483 0.365 21.781 T03258 0.000 15.307
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Table 6 Conservation scores of 270 TFs and their corresponding TFBSs (Continued)

T01950 0.208 24.200 T01526 0.469 14.751 T03458 0.490 8.353

T01951 0.208 24.200 T01543 0.500 26.750 T04297 0.448 17.736

T01973 0.188 11.157 T01554 0.542 17.850 T04761 0.521 20.942

T01975 0.000 24.591 T01574 0.260 26.200 T05026 0.000 7.374

T02054 0.406 15.031 T01579 0.531 23.187 T05137 0.365 10.673
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determined by structure domains of the former and fold
conformation of the latter. When some TFs are clustered
into a class, they interact with analogous TFBSs. Analo-
gous TFBSs are usually having similar fold conformation.
Therefore, it is not surprising that we can observe struc-
ture correspondence between TF and TFBS. Those
results are directly mapping at structure aspect for inter-
actions between TFs and TFBSs; (3) in evolution level,
when a TF is conserved, its corresponding TFBSs are
likely to have low mutation rates. In another words, TFs
and their TFBSs have consistent mutation trends in evo-
lution. Considering the opposite situation, a TF is con-
served which indicates it has low mutation rate. But its
TFBSs are more active and have a high mutation rate.
When those TFBSs’ sequences are mutated and their
fold conformations are changed. They will not be bound
by the original TF, which means interactions between
the TF and its DNA targets are eliminated. Thus TFs
and their TFBSs should have coherent trends in evolu-
tion so as to maintain interactions between them.
According to coherence between TFs and TFBSs at se-
quence, structure, and evolution aspect, we deem that,
to a certain degree, TFs and TFBSs have co-evolved in
order to keep their physical binding and maintain their
regulatory functions, which is consistent with reports of
Yang’s work [28].

Conclusions
In this work, we gave an insight into biological charac-
ters of interactions between transcription factors and
their DNA targets. Our results show that the sequence,
structure, and evolution features do have powerful per-
formance not only in TFBS recognition, but also in TF-
TFBS interaction description. Besides, it is a reasonable
strategy to combine the three features for capturing
TFBSs. Furthermore, interesting finding of correspond-
ence inspection between TFs and TFBSs makes solid
contribution to transcriptional regulation: On one hand,
coherence between TFs and TFBSs in sequence, struc-
ture, and evolution level gives aid to people for interpret-
ing TFBS binding preference; On the other hand, the
reciprocal phenomena of TFs and TFBSs at sequence,
structure, and evolution aspect provide useful informa-
tion for the research of interactions between proteins
and DNAs. In summary, results of our work widen the
knowledge of interactions between transcription factors
and their binding sites, which will help us further investi-
gate transcriptional regulation and explore binding
mechanisms between proteins and DNAs.
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