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Abstract

Background: The pathogenesis of natural scrapie and other prion diseases is still poorly understood. Determining
the variations in the transcriptome in the early phases of the disease might clarify some of the molecular
mechanisms of the prion-induced pathology and allow for the development of new biomarkers for diagnosis and
therapy. This study is the first to focus on the identification of genes regulated during the preclinical phases of
natural scrapie in the ovine medulla oblongata (MO) and the association of these genes with prion deposition,
astrocytosis and spongiosis.

Results: A custom microarray platform revealed that 86 significant probes had expression changes greater than
2-fold. From these probes, we identified 32 genes with known function; the highest number of regulated genes
was included in the phosphoprotein-encoding group. Genes encoding extracellular marker proteins and those
involved in the immune response and apoptosis were also differentially expressed. In addition, we investigated the
relationship between the gene expression profiles and the appearance of the main scrapie-associated brain lesions.
Quantitative Real-time PCR was used to validate the expression of some of the regulated genes, thus showing the
reliability of the microarray hybridization technology.

Conclusions: Genes involved in protein and metal binding and oxidoreductase activity were associated with prion
deposition. The expression of glial fibrillary acidic protein (GFAP) was associated with changes in the expression of
genes encoding proteins with oxidoreductase and phosphatase activity, and the expression of spongiosis was
related to genes encoding extracellular matrix components or transmembrane transporters. This is the first
genome-wide expression study performed in naturally infected sheep with preclinical scrapie. As in previous
studies, our findings confirm the close relationship between scrapie and other neurodegenerative diseases.
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Background
Scrapie is a prion-associated encephalopathy that occurs
naturally in sheep and goats. It is characterized by the ac-
cumulation of a pathological agent, the prion protein
(PrPSc), mainly in the central nervous system [1]. PrPSc

differs from the endogenous normal form (PrPc) in its
conformation, partial resistance to proteolytic degrad-
ation and insolubility in the presence of detergents [2,3].
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Scrapie is included in transmissible spongiform enceph-
alopathies (TSEs), a disease class that also affects humans
(e.g., Creutzfeldt-Jakob disease and Kuru) and cattle (e.g.,
bovine spongiform encephalopathy [BSE]) [4-6].
The incubation period of the disease is long and

asymptomatic. PrPSc can be detected in VRQ/VRQ
sheep, genotype for the PRNP gene, two months after
infection [7]. Three to six months after infection, the
pathological agent is detected in the lymphoid forma-
tions associated with the gastrointestinal tract [8,9].
From six to nine months, the secondary lymphoid
organs are also infected, and finally, at the tenth
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month after infection, the central nervous system is
affected [10-12].
The neuropathological events in prion diseases occur

at different times depending on the disease. High levels
of PrPSc exist without clinical disease in Gerstmann-
Sträussler syndrome [13]; conversely, PrPSc is present in
very low levels in fatal familiar insomnia [14]. The de-
gree of prion accumulation in specific brain regions does
not correlate with the clinical features (reviewed in [15]).
In addition to prion deposition, other molecular
mechanisms act early during the disease. For example,
the brain undergoes oxidative stress in the early stages
of prion invasion into the brain and may predispose the
brain to neurodegenerative mechanisms [16]. Genomic
analysis confirmed the induction of cellular stress (oxi-
dative stress and ER stress) and the activation of other
molecular pathways in a murine model of prion disease
[17]. Other functional genomic studies performed in ani-
mal models of scrapie infection have indicated that sev-
eral genes are misregulated in the early phases of the
infection [18-24].
To date, very few genomic approaches have focused

on the analysis of the early molecular events in prion
diseases and, to a lesser extent, studies dealing with the
natural disease. The identification of the genes involved
in the preclinical changes of the disease can help in the
discovery of new biomarkers and targets for future diag-
nosis tests or treatments. In an earlier published work,
we presented the differentially expressed genes in the
brains of scrapie-symptomatic sheep and the relationship
between scrapie-related neuropathological changes and
the transcriptional activities of the identified genes [25].
The objectives of the present study were to identify the
genes that are differentially expressed during natural
preclinical scrapie infection in sheep using a CVI custom
designed 4x44K ovine microarray and to determine the
relationship between their expression patterns and
prion-associated lesions. In this way, we discuss the vari-
ation in gene expression and its association with scrapie
neuropathology during the progression of the disease.
Methods
Ethics statement
This study was performed in strict accordance with the
recommendations for the care and use of experimental
animals of the University of Zaragoza, in accordance
with the law (R.D. 1201/2005). The protocol was
approved by the Committee on the Ethics of Animal
Experiments (Permit Number: PI02/08).
Animals
A total of 10 Rasa Aragonesa female sheep aged 1–5 years
were included in this study. Six of them were selected
from flocks located in areas free of scrapie and were used
as controls.
Four of the animals exhibited preclinical signs of scra-

pie, and the diagnoses were made by third eyelid biopsies
[26] and confirmed using the rapid test (TeEsE, Bio-Rad)
and immunohistochemistry to detect PrPSc using the
6 H4 monoclonal antibody [27]. This characterization
was performed considering the presence of the clinical
signs associated with the disease as per previously
reported criteria [26]. All of the animals belonged to
flocks that had been previously characterized as scrapie-
affected flocks and were located in different geographical
areas. The animals were genotyped for PRNP poly-
morphisms via full Open Reading Frame sequencing as
previously reported [28], and the sheep chosen for this
study displayed the ARQ/ARQ genotype without other
coding mutations outside the 136, 154 and 171 codons,
which is the most susceptible genotype in this ovine
breed [28]. The presence of the prion protein was con-
firmed by immunohistochemical methods and western
blotting [27].
Tissue collection and RNA isolation
Animals were sacrificed by intravenous injection of sodium
pentobarbital and exsanguination. Necropsy was per-
formed immediately, and the physical examination of the
scrapie-infected and control animals did not reveal any
additional pathological signs. The samples were rapidly
preserved and processed according to established guide-
lines regarding safety. The lesion pattern in scrapie is bilat-
eral; therefore, one-half of the caudal medulla oblongata,
including the obex, was snap-frozen in liquid nitrogen
prior to long-term storage at −80°C until RNA extraction.
The other half was formalin-fixed and paraffin-embedded
for further histopathological analysis. Total RNA was iso-
lated from a tissuemizer-disrupted medulla oblongata in
duplicate using TRIzolW (Invitrogen AG) followed by a
phenol and chloroform extraction and subjected to a puri-
fication step with the NucleoSpinW RNA clean-up kit
RNAII (Macherey-Nagel GmbH & Co. KG). The quality of
the total RNA was assessed using the RNA 6000 Nano
Assay kit and the 2100 Bioanalyzer (Agilent Technologies).
The RNA integrity number (RIN) index for each sample
was estimated using the Agilent 2100 Expert software. The
RIN provides a numerical assessment of the integrity of
RNA that facilitates the standardization of the quality in-
terpretation. Only high quality RNA samples with an RIN
number equal to or higher than 7 were further processed
for microarray analysis.
Histology and prion immunohistochemical detection
A histopathological study of the medulla oblongata at
the level of the obex was performed in HE-stained slices
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(one from each individual control and each positive
animal).
Immunohistochemical (IHC) studies were performed

on adjacent sections. For every antibody, positive and
negative controls (the omission of primary antibodies
from the control and scrapie slides) were performed.
Detection of the prion proteins was performed following

pretreatment as previously described [29]. Briefly, sections
were pretreated with 98% formic acid, hydrated and then
autoclaved to enhance antigen retrieval. To block en-
dogenous peroxidase activity, the sections were incubated
with blocking reagent (DAKO) for 10 min after proteinase
K digestion (Roche, 4 g/ml). Next, the sections were
incubated with the monoclonal primary antibody L42
(R-Biopharm, dilution 1:500) at RT for 30 min. Endogen-
ous peroxidase blocking was used to process sections. The
enzyme-conjugated polymer Envision (DAKO, 30 min)
was used as the visualization system and DAB (DAKO,
10 min) as the chromogen. The sections were counter-
stained with hematoxylin.
Astrocytosis was evaluated based on glial fibrillary

acidic protein (GFAP) immunostaining, as previously
described [30,31]. Briefly, after heat-induced epitope re-
trieval pretreatment with citrate buffer (pH 6.0), the sec-
tions were incubated for 1 h at RT with a rabbit
polyclonal anti-GFAP antibody (DAKO, dilution 1:400).
The omission of the primary antibodies from the control
and scrapie slides served as negative controls in the rou-
tine immunoreactions.
The preparations were examined with a Zeiss Axios-

kop 40 optical microscope (Carl Zeiss AG) and a
40 ×−magnification objective lens (Carl Zeiss AG). The
images were captured with a digital camera (AxioCam
MRc5, Zeiss AG) that was coupled to the microscope
and a computer and were analyzed using the ImageJ
1.4.3.67 image-analysis software package (Psion Image,
NIH) to determine the areas occupied by PrPSc depos-
ition, astrocytosis and spongiosis. For the evaluation of
the IHC and HE slides, captured images were opened in
NIH Image/ImageJ using the area method to evaluate
the indices of positivity. The total area occupied by
brown markers (PrP and GFAP) or by white spaces
(spongiosis) was estimated by setting a “threshold” using
the thresholding tool for the selection of these areas,
and the positive IHC/HE index for that image was calcu-
lated. Using the Student´s t test, significant differences
between the control and scrapie groups were detected.

Custom sheep oligo-DNA microarray
The custom CVI 4x44K microarrays contained custom
eArray-designed 60-mer probes on previously sequenced
normalized and subtracted cDNA libraries of ovine
Peyer's Patch, obex and tonsil, supplemented by the pub-
licly available Ovis aries transcripts from the NCBI/EBI
databases and by the Agilent O. aries transcript catalog.
All of the arrays were printed using Sureprint technol-
ogy (Agilent Technologies).

Preparation of the labeled cDNA and microarray
hybridization
All of the procedures for the preparation of the labeled
cRNA probes and subsequent Genechip hybridizations
were performed according to the Agilent Technologies
One-Color Microarray-Based Gene Expression Analysis
guidelines. First, cDNA was synthesized using 1 μg
total RNA as a template and the T7 Promoter Primer
of Agilent One-Color RNA Spike-In (Quick Amp Kit,
One-Color, Agilent Technologies). The cDNA was then
transcribed and labeled using T7 RNA Polymerase and
cyanine 3-CTP. Finally, the labeled cRNAs were
cleaned up using Qiagen RNeasy mini spin columns.
The samples were then hybridized to custom CVI-

Agilent 4x44K chips for 17 h at 65°C and 6 rpm. Follow-
ing the manufacturer’s protocol, the chips were then
washed and incubated with wash buffers and scanned
using the GenePix 4200AL Scanner (Axon Instruments)
in conjunction with GenePix Pro 6.0 software.
The hybridizations of each sample were performed in

duplicate, resulting in 8 microarrays for the preclinical
scrapie animals and 12 for the negative control animals.

Microarray data analysis
The hybridization data were extracted with the Agilent
Feature Extraction, version 9.5.3.1, image analysis appli-
cation (Agilent Technologies) before processing with
GeneSpring GX 10.0.2 (Agilent Technologies). Using
the 75th percentile method intensity, the chip values
were normalized, and the expression values were calcu-
lated. The global medulla oblongata gene expression
profiles from the clinical scrapie-infected animals were
compared to the negative controls, through a linear
model that accounts for both technical (random animal
effects) and biological replicates (disease effects). In
addition, a multiple testing correction proposed by
Benjamini-Hochberg was applied. Further, only genes
with a P-value ≤ 0.05 for the difference between healthy
and preclinical individuals and a 2-fold change (FC) as
the lower limit were selected. Although 2-FC is used as
cutoff value, according to our experience, we consider
that the major conclusion of our work is not changing
even if we would have used a different threshold, but
always higher than 1.5. These genes were clustered by
their Euclidean distance coefficient using the Permut-
Matrix software [32]. A BLAST search of the GenBank
database was performed to identify the genes that were
similar to the differentially expressed probes. The mo-
lecular functions of the genes were classified according
to Gene Ontology (GO) using an on-line functional
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annotation of DAVID Bioinformatics Resources 2008
[33,34] (NIAID/NIH, USA).
The relationship between neuropathology and gene
expression
Using a Mixed Model Analysis under a Bayesian approach
by the Gene Expression Analysis with Mixed Models
(GEAMM) software [35], the relationship between neuro-
pathological lesions and gene expression was analyzed.
The statistical model assumed the following Bayesian likeli-
hood of logarithm of gene expression data provided by the
oligo-DNA microarray: p y a; b;Rj ÞeN Xaþ cb; I���Rð Þ�

,
where a is the array effect, b is the vector regression
slope associated with the numerical valuation of the
neuropathological changes (c: prion deposition, spongi-
osis or astrocytosis), X is the incidence matrix that
relates the array effects to the logarithm of gene ex-
pression data (y), and R is the matrix of residual (co)
variances with probe-specific residual variance and
null residual covariances. Prior distributions were
assumed to be flat for a, b and R. A more detailed
description of the statistical procedure was described
by Casellas et al. (2008) [35].
The Bayesian analysis was performed using a Gibbs

sampler approach [36] with a single chain of 500,000
iterations after discarding the first 50,000. The results
with a posterior probability below 0.01 for a regression
slope associated with a neuropathological lesion greater
(or lower) than zero were selected.
Quantitative real-time PCR
Quantitative real-time PCR (qRT-PCR) was performed to
confirm the expression of the 12 genes/sequences involved
in the mechanisms related to neurodegenerative or repar-
ation processes and/or had a high level of differential ex-
pression in the scrapie group compared to the controls in
the oligo-DNA microarray expression analysis. Eight of
these genes also displayed the highest significance in the
Mixed Model Analysis. The PCR primer sequences used
for the quantification of the genes encoding amyloid beta
(A4) precursor (APP), aquaporin 4 (AQP4), calcineurin-like
phosphoesterase domain-containing 1 (CPPED1), golgi gol-
gin subfamily 4 (GOLGA4), maguk p55 subfamily member
7 (MPP7), nell2 (NELL2), CD3 gamma chain (CD3G), gran-
ulysin (GNLY), lysosomal protein transmembrane 4 beta
(LAPTM4B) and serine/arginine-rich splicing factor 3
(SRSF3) and the two ovine scrapie related sequences
(OSRS1) and (OSRS2) are shown in Table 1. RNA samples
used for qRT-PCR were the same used for microarray
experiments, the qRT-PCR assays were designed with Pri-
mer Express 2.0 software (Applied Biosystems) to select ap-
propriate primer sequences from known sheep or bovine
sequences. Whenever possible, the exon-exon border was
included to prevent the amplification of genomic DNA in
the PCR reaction. Complementary DNA (cDNA) was
synthesized from 1 μg RNA using random hexamer pri-
mers with the Superscript First Standard Synthesis System
for RT-PCR (Invitrogen). To confirm the elimination of any
remaining DNA, reverse transcription with and without the
enzyme was performed.
qRT-PCR was performed using SYBRW Green (PE

Applied Biosystems) assays. PCR amplification was per-
formed in an ABI-Prism fast 7500 Sequence Detection
System (PE Applied Biosystems). All qRT-PCR reac-
tions were run in triplicate in total reaction volumes of
10 μl with 10–20 ng of cDNA as the template and a
300 nM final primer concentration. Universal condi-
tions were used with an initial 10 min activation and
denaturation step at 95°C, followed by 40 cycles of
15 s at 95°C and 30 s at 60°C. The baseline and
threshold for the Ct calculations were set automatically
with the ABI-Prism 7500 software Version 2.0.1. The
levels of gene expression were determined using the
comparative Ct method.
To improve the normalization accuracy, the geometric

mean of three housekeeping genes was used to calculate
the normalization factor (NF), which was used to
normalize the expression level of each gene in each sam-
ple [37]. The NF was calculated from the GAPDH,
G6PDH and RPL32 expression data. These are the three
most stable reference housekeeping genes in the sheep
medulla oblongata, and they have been used as in-
ternal references for expression studies in scrapie
[38]. The primers and PCR conditions for the ampli-
fication of these housekeeping genes have been
described previously [38,39].
The quantitative results obtained from the qRT-

PCR assays were expressed as the fold-change. Stu-
dent’s t test analyses were used to determine if the
differences observed between the groups were statis-
tically significant (P < 0.05).

Results
Preclinical scrapie-related lesions
The neuropathological features of scrapie were evaluated
in the medulla oblongata tissues of 6 control and 4 pre-
clinical scrapie-infected sheep. Spongiosis, PrPSc depos-
ition and GFAP immunoreactivity were consistent with
the features of classical scrapie [40]. PrPSc deposition and
spongiosis were only detected in the affected animals
(Figure 1). Particular medullary areas in the obex, such as
the nucleus dorsal motor of the vagus, the spinal tract of
the trigeminal nerve and the solitary tract nucleus, were
severely affected in the infected group. Even with the
high variability observed in the scrapie group, the differ-
ences between the groups were statistically significant
(P < 0.01 and P < 0.05).



Table 1 Genes analyzed by quantitative real-time PCR

Gene Primer sequence Size (bp) Accession number (GenBank)

Upregulated genes/sequences APP F: ACCCCTGACGCCGTTGAC 121 NM_001076796.1

R: TCATGACCTGGGACATCCTCTC

AQP4 F: GTTCACGGAAATCTTAGCGCT 104 NM_181003.2

R: TCAGTCCGTTTGGAATCACAG

CPPED1 F: TTGGATGGCATCACCGACTT 101 NM_001031771.2

R: TTTGCGACCTCATGAACCAC

GOLGA4 F: TCTACCAAAACCACTGCCTCAA 88 NM_001192125.1

R: TCCCACTACTGGCTCTACATCACT

MPP7 F: GCCTCCTATGCCTGATGACAT 81 NM_001100347.1

R: CCCAGTGGTTCTCTATTTTTGACC

NELL2 F: AAGAGGGAGACGATGGACTGAG 105 NM_001102084.1

R: ACACCAAGACCCCAAACTGCT

OSRS1* F: GAGGATCTTGTGGAACCATTGA 124 FQ482089.2

R: TACGGACAGCTGAACCCTTTC

OSRS2** F: TTGTCAGTCCCCATCACCTTT 101 NW_003104406.1

R: CATTGATTTGCACAGAAAACCA

Downregulated genes CD3G F: AGCTTCAGACAAGCAGACGCT 101 BC103010.1

R: GGGTTCAGTTCTTCCTCAGGTG

GNLY F: TCCGTGCCAGTCAATCATGA 101 NM_001075143.1

R: TGCAGACCTTGATGTCCACAC

LAPTM4B F: GGTACTTGATCCTCAATGCCG 101 NM_205802.1

R: AAAGTCACCCCCGAGTTCAGA

SRSF3 F: CGAAATGCATCGTGATTCCT 101 NM_001034700.1

R: AATAGCCAAAAGCTCGTTCCA

Primers (F: forward and R: reverse) used for gene amplification, amplicon size and GenBank accession numbers of the bovine cDNA sequences used for primer
design.
*Ovine Scrapie Related Sequence 1 (OSRS1) has a high identity (92%) with the Bos taurus DNA sequence from clone CH240-103 G5(accession number:
FQ482089.2) from 4172 to 4904 bp.
**Ovine Scrapie Related Sequence 2 (OSRS2) has a high identity (93%) with the Bos taurus chromosome 15 genomic scaffold, Bos_taurus_UMD_3.1, whole
genome shotgun sequence (accession number: NW_003104406.1) from 2672152 to 2672419 bp.

Filali et al. BMC Genomics 2012, 13:399 Page 5 of 15
http://www.biomedcentral.com/1471-2164/13/399
Identification of the genes in the medulla oblongata that
are differentially expressed in natural scrapie
A total of 86 probe sets displayed statistically signifi-
cant differences between the control and scrapie
preclinical groups that were equal to or greater than a
2-fold change. The genes from Ovis aries are relatively
poorly annotated, but BLAST searches against publicly
available databases allowed the identification of a set
of 44 known genes from the complete set of 86 differ-
entially expressed genes. The microarray data were
deposited in the array express and are accessible
through accession number E-MTAB-866. To determine
the gene ontology (GO) categories of the deregulated
genes in scrapie, we used DAVID Bioinformatics
Resources 2008 [33,34] (NIAID/NIH, USA). Based on
the GO analysis, 35 genes had known functions
(Table 2), of which 3 were upregulated (5.7%) and 32
were downregulated (94.3%). The functional group
with the highest number of regulated genes (18) was
that of the phosphoprotein-encoding genes (Table 2).
In addition, downregulated genes were included in GO
groups encoding for proteins located in the lumen of
organelles or the extracellular matrix and involved in
the immune response and apoptosis. After the cluster-
ing analysis, the animals were grouped according to
their disease condition (Figure 2).

Identification of neuropathology-related genes
We identified many genes with known functions whose
expression was related to PrPSc deposition (1,011), al-
though few genes were related to astrocytosis (21) and
spongiosis (66). The expression of the genes that displayed
a high probability of regression with scrapie lesions chan-
ged less than 2-fold (Figure 3). The gene ontology analysis
revealed that genes associated with prion deposition
encoded for proteins involved in protein and ion binding,
oxidoreductase activity and transcription. Genes encoding
for proteins involved in metal ion binding showed a



Figure 1 Quantification of PrPSc deposition, glial fibrillary acidic protein expression and spongiform degeneration. The values represent
the means (± standard deviation) of intensity of the DAB color (PrPSc and astrocytosis) and Haematoxiline & Eosine (spongiosis) obtained from
ImageJ software (A). Grey bar correspond to scrapie-affected sheep and black bar to control sheep. Significant differences were detected using
Student´s t test (**P< 0.01, *P< 0.05). A generalized increase in the expression of the astroglial marker glial fibrillary acidic protein (GFAP) was
observed in the brains of the scrapie-affected sheep (P< 0.01). Hyperplasia and hypertrophy of the stellate GFAP-positive cells were observed in
the medulla oblongata of the affected sheep, which is consistent with reactive astrocytosis. PrPSc staining in control (B) and scrapie medulla
oblongata sample (C). GFAP staining in control (D) and scrapie medulla oblongata sample (E). Haematoxylin/Eosin staining in control (F) and
scrapie medulla oblongata sample (G).
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positive association with both GFAP and spongiosis. In
addition, genes encoding for proteins with oxidoreductase
and phosphatase activity were associated with GFAP ex-
pression, and genes coding for extracellular matrix com-
ponents or transmembrane transporters were associated
with spongiosis. A list of known genes whose expression
was highly correlated with PrPSc deposition, GFAP expres-
sion and spongiosis is shown in Figure 3. Only genes with
a high probability of a positive (or negative) slope of re-
gression are presented (P< 3.5x10-3).



Table 2 Identified genes with known GO terms with a P≤0.05 and≥ 2-fold changes

Preclinical
stage

Clinical
stage**

Term P-Value Probe Name Gene
symbol

Gene name FC

Compositionally biased
region

4.90E-02 A_70_P049406 EIF5 Eukaryotic translation initiation factor 5,
transcript variant 7

−2.65 −1.94

External side of plasma
membrane

4.60E-02 A_70_P048131 GPC3 Glypican 3 −2.95 −2.56

Extracellular matrix
binding

5.30E-02 A_70_P050511 NID1 Nidogen 1 −2.78 −4.15

Extracellular matrix
organization

1.90E-02 A_70_P059746 CYR61 Cysteine-rich, angiogenic inducer, 61 −2.97 −3.42

A_70_P061221 P4HA1 Prolyl 4-hydroxylase, alpha polypeptide I −3.00 −2.81

Granzyme A mediated
Apoptosis Pathway

6.20E-02 A_70_P054526 ANP32A Acidic (leucine-rich) nuclear phosphoprotein
32 family, member A

−2.86 −2.47

A_70_P040956 GZMB Granzyme B −3.10 NSR

MHC protein binding 4.90E-02 A_70_P016891 CD3G* CD3 Gamma chain −3.20 NSR

A_70_P008201 CLEC7A C-type lectin domain family 7, member A −2.20 NSR

CUST_12481_PI375351158 TRD@ T-cell receptor delta chain −3.30 NSR

Organelle lumen 6.80E-02 A_70_P037521 FGB Fibrinogen beta chain −2.44 NSR

A_70_P020146 MRPL39 Mitochondrial ribosomal protein L39 −2.37 NSR

A_70_P036101 NOP10 NOP10 ribonucleoprotein homolog
(yeast) (NOP10), mRNA

−3.34 NSR

A_70_P007556 SUMF1 Sulfatase modifying factor 1 −2.11 NSR

Phosphoprotein 1.30E-03 A_70_P037146 ACOX3 Acyl-Coenzyme A oxidase 3, pristanoyl −2.23 −1.73

A_70_P021671 ARPC3 Actin related protein 2/3 complex,
subunit 3, 21 kDa

−2.46 NSR

A_70_P019041 ATP8B2 Similar to ATPase, class I, type 8B,
member 2

−2.19 −1.78

A_70_P024516 CDKN1B Cyclin-dependent kinase inhibitor 1B
(p27, Kip1)

−2.03 −1.71

A_70_P001561 FOS FBJ murine osteosarcoma viral
oncogene homolog

−2.86 −2.66

A_70_P008036 LAPTM4A Lysosomal protein transmembrane 4 alpha −2.58 −2.10

A_70_P018586 LAPTM4B* Lysosomal protein transmembrane 4 beta −3.65 −2.80

A_70_P049041 MAT2A Methionine adenosyl transferase II, alpha −2.24 −1.63

A_70_P006536 MGMT PREDICTED: O-6-methylguanine-
DNA methyltransferase

−2.89 −2.22

A_70_P030701 NES Nestin 2.02 2.55

A_70_P026261 SLC16A1 Solute carrier family 16, member 1
(monocarboxylic acid transporter 1)

−2.65 −2.34

A_70_P027206 SLC30A1 Solute carrier family 30
(zinc transporter), member 1

2.45 2.27

A_70_P018386 SLC44A1 CDW92 antigen, transcript variant 2 −2.27 NSR

A_70_P059781 UBE2E1 Ubiquitin-conjugating enzyme E2E 1,
transcript variant 2

−2.31 NSR

A_70_P031441 VCL Vinculin, transcript variant 2 −2.01 NSR

A_70_P022731 WDR33 WD repeat domain 33 −2.54 NSR

A_70_P033291 LOC618584 Zinc finger, CCHC domain containing 2 −2.08 −1.87

A_70_P043106 ZNF428 Zinc finger protein 428, transcript
variant 2

−2.28 −2.27

Response to a biotic
stimulus

4.00E-02 CUST_10550_PI375351158 BTG2 B cell translocation protein 2 −2.41 NSR

Response to fungus 4.90E-02 A_70_P050991 GNLY* Granulysin −3.97 NSR
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Table 2 Identified genes with known GO terms with a P≤0.05 and≥ 2-fold changes (Continued)

Tight junction assembly 5.60E-02 A_70_P003466 MPP7 membrane protein, palmitoylated 7
(MAGUK p55 subfamily member 7)
(MPP7), mRNA

2.93 NSR

Shown are the Blast results of the clones with significant alterations in gene expression (P≤ 0.05 and≥ 2-fold change). FC of significant alteration during clinical
stage is given in the last column (NSR: no significant regulation). The GO was determined using on-line functional annotation of DAVID Bioinformatics Resources
2008 (NIAID/NIH, USA). Only the genes with a known GO are shown.
*Genes chosen for validation by quantitative RT-PCR.
**FC values obtained in a previous study developed by our group comparing scrapie-infected animals in a clinical stage and controls [25].
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Validation of gene expression profiling by quantitative
RT-PCR
To confirm the results of the microarray, we performed
qRT-PCR using SYBR Green on a selected number of
targets. For validation, we chose 4 genes from the ex-
pression study and 6 genes and 2 sequences from the as-
sociation analysis. Eight of the genes/sequences were
upregulated in the microarray (APP, AQP4, CPPED1,
GOLGA4, MPP7, NELL2, OSRS1 and OSRS2) and four
displayed downregulation (CD3G, GNLY, LAPTM4B and
SRSF3). In most cases, the selection of genes was based
on previous reports showing their associations with prion-
related and other neurodegenerative diseases [41-44] but
was also due to their potential involvement in the mechan-
isms involved in neurodegeneration.
The qRT-PCR analyses confirmed the microarray ex-

pression results (Figure 4). The differences between the
control and scrapie groups were statistically significant
for each of the 12 genes analyzed (P < 0.05).
Discussion
Transmissible spongiform encephalopathies, or prion
diseases, are fatal neurodegenerative diseases with char-
acteristic spongiform lesions, neuronal cell loss, astrocy-
tosis and the accumulation of the pathological form of
the prion protein [45]. The precise mechanisms regulat-
ing these processes remain unknown. Genomic approaches
are a potential tool to understand the molecular basis of
complex mechanisms; in addition, they allow the discovery
of new disease biomarkers.
The analysis of gene expression profiling can elucidate

the molecular basis of this pathology. Several studies
have focused on genomic analyses of brain tissue from
animal models of prion diseases, including CJD, scrapie
and BSE [19-24]. However, there are fewer studies in-
volving the mRNA profiles of “natural” human CJD [46],
bovine BSE [47] or ovine scrapie [48]. We previously
reported a genomic analysis performed in tissues
obtained from sheep naturally infected with scrapie in
terminal stages [25]. However, the molecular changes
can occur before the onset of the disease; for example,
PrPSc accumulation occurs early in the disease in both
the central nervous system [49] and peripheral tissues
[50]. In mouse models, genomic expression profiles
revealed the induction of oxidative and endoplasmic
reticulum (ER) stress, activated ER and mitochondrial
apoptosis pathways, and activated cholesterol biosyn-
thesis in the central nervous system of preclinical mice
[17]. We report here the first transcriptome study of the
central nervous system (CNS) in sheep naturally infected
with scrapie in preclinal stages that associated the varia-
tions in the expression profile with the features of scra-
pie neuropathology.
Differential gene expression in preclinical scrapie
Our microarray hybridization analysis identified 86
probes with changes in expression greater than 2-fold
compared with the controls. Using the same platform,
our previous study of sheep clinically affected with
scrapie [25] revealed 350 differentially regulated
probes, indicating that at the early stages of the dis-
ease, fewer genes are active or the expression changes
are not high enough to be detected by microarray.
From the 86 probes, 40 were also differentially regu-
lated in clinical animals [25] and 46 were identified
only in preclinical sheep (some of these probes are
shown in Table 2).
In vitro studies have shown variations in the phospho-

proteome of N2a cells after PrPSc infection [51] and spe-
cific inflammatory profiles in microglia [52]. In addition,
genes involved in defense, the immune response or en-
coding for secreted extracellular proteins are differen-
tially regulated in murine models during prion infection
[20]. In the clinical phase of classical scrapie, the genes
involved in ion-binding and transport, nucleotide bind-
ing and the immune system are differentially expressed
[25]. In accordance with the in vitro and murine models
and with our previous results in classical scrapie at the
late stages of the disease, the differentially regulated
genes identified in this study encoded phospho-proteins,
extracellular matrix organization proteins and immune
response-related proteins. Therefore, these mechanisms
seem to be involved in the neuropathology of scrapie
from the early phases of the disease.
The microarray analysis was validated using qRT-PCR

for 4 genes; their differential regulation was confirmed
in all cases. The high adjustment between the fold
changes obtained with the microarray and the qRT-PCR
of the genes selected for confirmation reflects the high
credibility of the microarray and the gene alignment
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Figure 2 Condition trees of the clustering analysis. The hierarchical cluster analysis (Euclidean distance clustering algorithm) was performed
using PermutMatrix [32], and 86 clones/genes differed significantly. Each colored bar represents a gene. The color represents the level of
expression, and the sample information is listed across the top. The names of the known genes are indicated. Note the distinct patterns of
altered gene expression between the positive and control animals.
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analysis. Three of these genes were downregulated in
scrapie tissues. Two of them, CD3G and GNLY, are
involved in the immune response. CD3G is part of the
T-cell receptor-CD3 complex, which plays an important
role in coupling antigen recognition to several intracellu-
lar signal-transduction pathways [53]. The CD3 T cells
accumulate near or around blood vessels and in the
CNS parenchyma of mice inoculated with scrapie [54],
suggesting the infiltration of T cells in the brain. In con-
trast, the downregulation of CD3G observed in our nat-
ural model suggests that these cells are decreased in
preclinical scrapie. Similarly, we observed a significant
decrease in the expression of GNLY, which is a potent
antimicrobial protein contained within the granules of
CTL and NK cells [55]. Taking together, our results sug-
gest a decline of immune activity in prion diseases, as
described for other neurodegenerative diseases such as
Alzheimer’s disease (AD) [56].
Another gene that was downregulated in the preclinical

medullae encodes the lysosomal protein transmembrane
4 protein (LAPTM4). The endosomal and lysosomal
compartments are implicated in trafficking, recycling and
the final degradation of prions [57]. It has been proposed
that autophagy might play a protective role in prion dis-
eases, leading to the degradation of prions. Galectin-3
knockout mice express low levels of lysosomal activation
marker (LAMP-2) and autophagy markers, suggesting
that endosomal/lysosomal dysfunction in combination
with reduced autophagy may contribute to the develop-
ment of prion diseases [58]. The downregulation of
LAPTM4 is in accordance with these results and might
indicate a dysfunction of the lysosomal-endosomal path-
way in preclinical scrapie.
One of the genes upregulated in the microarray

hybridization analysis was Maguk p55 subfamily mem-
ber 7 [MPP7]. The membrane-associated guanylate kin-
ase homologues (MAGUKs) are a family of peripheral
membrane proteins that form multiprotein complexes
containing distinct sets of transmembrane, cytoskeletal,
and cytoplasmic signaling proteins. MPP7 acts as an im-
portant adapter that promotes epithelial cell polarity,
tight junction formation via its interaction with DLG1
and is involved in the assembly of protein complexes at
sites of cell-cell contact [59]. The cellular prion protein
PrPc is also located at cell-cell adhesion sites in polar-
ized/differentiated enterocytes and interacts with desmo-
somal proteins and with actin and actin-binding proteins
at cell-cell junctions [60]. Moreover, in the CNS, the
PrPc is located in the microvascular endothelium and at
intercellular junctions of cultured brain endothelial cells
of mouse, rat and human origin [61]. We report here for
the first time the upregulation of the gene encoding the
MPP7 protein in preclinical scrapie and its positive asso-
ciation with PrPSc deposition, suggesting a possible alter-
ation of cell-cell adhesion the early stages of the disease.

The genomic association with scrapie-related lesions
Studies of the associations between gene expression and
the intensity of scrapie lesions have been shown to be a
powerful tool to detect genes potentially involved in the
development of these lesions [25]. In the present study,
we found a relatively low number of genes with differen-
tial expression in the preclinical tissues; however, the as-
sociation study allowed the identification of genes that
had slight changes (FC<2) in the microarray hybridization
analysis but whose expression was strongly related to the
development of the scrapie-related lesions. The genes that
displayed a positive regression with prion deposition were
involved in several cellular mechanisms, the most frequent
of which being protein, metal and ion binding, oxidoreduc-
tase activity and transcription factors. The possible role of
PrPc to protect cells from oxidative stress is well documen-
ted [62], as is the capacity of the prion protein to bind
Cu2+ [63,64]. In addition, many other roles have been
attributed to the prion protein, such as transmembrane
signaling or cell adhesion [65]. Genes involved in these
mechanisms have been shown to be associated with
prion diseases, astrocytosis or spongiosis, thereby cor-
roborating the reliability of our association study.
The expression of 6 genes and 2 sequences was vali-

dated using qRT-PCR. These genes were chosen because
of their known role in brain metabolism and/or neuro-
degeneration, and the sequences displayed the most sig-
nificant degrees of association with scrapie lesions. We
found a slight up-regulation of the amyloid beta (A4)
precursor protein (APP). APP and PrP are both cell-
surface proteins residing in cholesterol-rich lipid rafts of
the cell membrane and play an important role in the de-
velopment of AD and prion diseases, respectively. These
diseases share a number of clinical, pathological and bio-
chemical characteristics [66]. The brains of CJD patients
display the pathology of both prion diseases and AD
[67]. The overexpression of APP in other genetic expres-
sion profiling studies in scrapie murine models has been
previously reported [24]. In addition, the overexpression
of APP facilitates the rapid development of artificial
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Figure 3 Relationship between gene expression profiles and scrapie histopathological lesions. Proteins encoded by genes whose
expression is associated with PrPSc deposition, glial fibrillary acidic protein expression and spongiosis. Only the highly significant related genes are
shown (P < 3.5x10-3). The slope of regression between histopathological lesions and gene expression was obtained under a Mixed Model
approach.
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scrapie [68]. The overexpression of APP in the preclin-
ical naturally infected animals found in our study are in
accordance with these previous studies and highlight the
possible early interaction between APP and PrP.
Water metabolism is of major importance in a number

of physiological processes in the CNS. Alterations in the
distribution of water and cerebrospinal fluid in the brain
are a common occurrence in multiple neuropathological
conditions, including brain edema, brain tumors, stroke,
hyponatremia, head injuries and hydrocephalus. Aquaporin
4 (AQP4) is most likely expressed by activated glial cells,
and an increase in its level is indicative of ongoing astrocy-
tosis [69]. The increase in the expression levels of AQP4
has been reported in Creutzfeldt-Jakob disease, bovine
spongiform encephalopathy and scrapie-infected transgenic
mice [22,43,44,70]. Our work confirms the upregulation of
AQP4 in the preclinical phases of natural ovine scrapie.
Figure 4 Real-time RT-PCR confirmation of the microarray results. Diff
microarray and quantitative RT-PCR: amyloid beta (A4) precursor (APP), aqu
phosphoesterase domain-containing 1 (CPPED1), granulysin (GNLY), golgi g
(LAPTM4B), maguk p55 subfamily member 7 (MPP7), nell2 (NELL2), ovine scr
(OSRS2) and serine/arginine-rich splicing factor 3 (SRSF3).
Genes that have never been associated with prion dis-
eases or other neurodegenerative diseases were shown to
be significantly regulated. Our microarray data indicated
an increase in the expression of a gene similar to
calcineurin-like phosphoesterase domain-containing 1
[CPPED1] that was confirmed by quantitative RT-PCR.
The CPPED1 protein has hydrolase and metal ion-
binding activities. To date, no studies have reported the
differential regulation of this gene in neurodegenerative
diseases. However, PrPc interacts with a range of divalent
metal ions and maintains the their homeostasis, and the
conformational change that occurs in the formation of
PrPSc is induced by the interaction with ions (see [71]
for review). This gene has a positive association with
prion deposition (GEAMM analysis), suggesting a pos-
sible role in early scrapie development. However, further
analysis will be essential to confirm this conclusion.
erential expression of selected sequences/genes analyzed by
aporin 4 (AQP4), CD3 gamma chain (CD3G), calcineurin-like
olgin subfamily 4 (GOLGA4), lysosomal protein transmembrane 4 beta
apie related sequence 1 (OSRS1), ovine scrapie related sequence 2
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Golgi golgin subfamily 4 [GOLGA4] may play a role in
the delivery of transport vesicles containing GPI-linked
proteins from the trans-Golgi network through its inter-
action with microtubule-actin crosslinking factor 1
(MACF1). The prion protein is attached to the outer leaflet
of the plasma membrane by a glycosyl-phosphatidyl-
inositol (GPI) anchor (reviewed in [72]). Our results
demonstrate the upregulation of GOLGA4 is positively
associated with PrPSc deposition, suggesting that this
protein might have a role in PrP trafficking.
We previously reported that anti-apoptotic genes are

overexpressed in terminal scrapie, which suggested the
activation of neuroprotective mechanisms during the
disease [30]. In accordance with this, we found here that
neural tissue-specific epidermal growth factor-like repeat
domain-containing protein) NELL2 is overexpressed in
preclinical scrapie. NELL2 is a secreted glycoprotein
that is predominantly expressed in neural tissues and
increases in vitro cell survival under cell death-
inducing conditions [73]. In addition, NELL2 may
play an important role in the maintenance of neural
functions by regulating the intracellular machinery
involving Ca2+ signaling, synaptic transport and/or
vesicle release [74]. In our study, NELL2 displayed a
positive association with PrPSc deposition and spon-
giosis, which suggests a possible role in the patho-
genesis of the disease related to the role of PrP in
Ca2+ homeostasis [75].
Finally, we observed the downregulation of a serine/

arginine-rich splicing factor 3 [SRSF3], which seems to be
involved in the differential splicing of the low-density
lipoprotein receptor (LDLR), a major apolipoprotein E
(APOE) receptor that has been associated with choles-
terol homeostasis and, possibly, AD development [76].
This splicing factor is a proto-oncogene [77] and is antia-
poptotic [78]. To our knowledge, our work is the first
study to describe the differential regulation of this gene
in prion diseases. The downregulation of SRSF3 is in ac-
cordance with its probable protective activity against
neuronal cell death. Further studies will be necessary to
investigate the possible role of SRSF3 in the disease.
In addition to the regulation of known genes, several

non-annotated sequences were differentially expressed in
the preclinical medullae and associated with scrapie
lesions. We confirmed the upregulation of two sequences
(OSRS1 and OSRS2) that were associated with astrocyto-
sis and spongiosis, respectively. These sequences did not
display homology with any known genes (Table 1), but
they show a high homology with parts of two published
bovine sequences (FQ482089.2 and NW_003104406.1,
respectively). These sequences come from an ovine
cDNA library generated from the brain and lymphoid tis-
sue of scrapie- and control-infected sheep [25]. Al-
though further analyses are necessary to confirm
their differential regulation in a wider number of ani-
mals or in different prion animal models, these cus-
tom sequences can represent potential unknown
biomarkers useful for the diagnosis of presympto-
matic prion disease.

Conclusions
In summary, this is the first genome-wide expression study
performed in naturally infected sheep with preclinical scra-
pie and shows the induction of a reduced number of genes
compared with the changes shown in clinical scrapie sheep.
Differentially regulated genes confirmed the involvement of
the immune system, alterations in the extracellular matrix
and changes in the ion binding in the neuropathology of
prion diseases. In addition, changes in the levels of genes
encoding for proteins related to cell-cell contact and traf-
ficking and re-cycling pathways could play an important
role in the development of the disease. The association of
genomic changes with scrapie lesions allowed the identifi-
cation of a higher number of candidate genes to be used as
biomarkers and could be useful to develop biotools for the
early diagnosis of the disease. In addition to their inclusion
in the previous functional groups, the identified genes were
related to water metabolism or apoptosis. As in previous
studies, our findings confirm the close relationship between
scrapie and other neurodegenerative diseases. Moreover,
the reported association analysis contributes to the know-
ledge of the molecular mechanisms underlying the patho-
genesis of prion diseases. Further studies are required to
locate the cellular proteins encoded by these differentially
regulated genes and to study the expression of the identi-
fied genes in other brain areas and, in this manner, contrib-
ute to the knowledge of their role in the disease.
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