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Abstract

Background: In the last few years several studies have shown that Transposable Elements (TEs) in the human
genome are significantly associated with Transcription Factor Binding Sites (TFBSs) and that in several cases their
expansion within the genome led to a substantial rewiring of the regulatory network. Another important feature of
the regulatory network which has been thoroughly studied is the combinatorial organization of transcriptional
regulation. In this paper we combine these two observations and suggest that TEs, besides rewiring the network,
also played a central role in the evolution of particular patterns of combinatorial gene regulation.

Results: To address this issue we searched for TEs overlapping Estrogen Receptor α (ERα) binding peaks in two
publicly available ChIP-seq datasets from the MCF7 cell line corresponding to different modalities of exposure to
estrogen. We found a remarkable enrichment of a few specific classes of Transposons. Among these a prominent
role was played by MIR (Mammalian Interspersed Repeats) transposons. These TEs underwent a dramatic expansion
at the beginning of the mammalian radiation and then stabilized. We conjecture that the special affinity of ERα for
the MIR class of TEs could be at the origin of the important role assumed by ERα in Mammalians. We then
searched for TFBSs within the TEs overlapping ChIP-seq peaks. We found a strong enrichment of a few precise
combinations of TFBS. In several cases the corresponding Transcription Factors (TFs) were known cofactors of ERα,
thus supporting the idea of a co-regulatory role of TFBS within the same TE. Moreover, most of these correlations
turned out to be strictly associated to specific classes of TEs thus suggesting the presence of a well-defined
"transposon code" within the regulatory network.

Conclusions: In this work we tried to shed light into the role of Transposable Elements (TEs) in shaping the
regulatory network of higher eukaryotes. To test this idea we focused on a particular transcription factor: the
Estrogen Receptor α (ERα) and we found that ERα preferentially targets a well defined set of TEs and that these TEs
host combinations of transcriptional regulators involving several of known co-regulators of ERα. Moreover, a
significant number of these TEs turned out to be conserved between human and mouse and located in the vicinity
(and thus candidate to be regulators) of important estrogen-related genes.
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Background
It is well known that Transcription Factors (TFs in the
following) exert their regulatory function in a combina-
torial and cooperative way [1]. This is particularly true
for higher eukaryotes where simple and general argu-
ments borrowed from information theory show that
combinatorial interactions among TFs is a mandatory
consequence of the lack of information of their binding
sequences [2].
Thanks to the recent advances in ChIP-seq technolo-

gies and in particular to the so called Re-Chip experi-
ments [3], it is now possible to address cooperative
interactions among TFs in a quantitative way. An inter-
esting open problem in this context is to understand the
evolutionary mechanisms which led to clustering of
binding sequences of the “right” TFs in the regulatory
regions of target genes. While it is easy to create a sin-
gle binding sequence by point mutation, the appearance
of a combination of several binding motifs in an
extended region of DNA is definitely more unlikely in
this way. Indeed, it is difficult to understand how a
local evolutionary process could create an extended
(non-local) combination of binding sequences. A pos-
sible solution of this apparent paradox is to assume that
a suitable template for the sought combination of motifs
already exists in the genome and is then transferred as
a whole in the regulatory region of the target genes.
Transposable Elements (TEs in the following) are the

natural candidates to play this role [4-7].
In agreement with the above observation, in the last

few years several ChIP-seq analyses have shown that TEs
in the human genome are significantly enriched with
transcription factor binding sites [8-13]. This was shown
for various master TFs (p53, POU5F1, SOX2, C-Myc,
OCT4, NANOG) and, among others, for ERα, which is
the main focus of our paper. It is interesting to notice
that this association with TEs persists even when a total
affinity approach is used to reconstruct the transcrip-
tional regulatory network [14].
This association between TFs and TEs suggests

that transposition events could have played a central
role in the emergence and success of combinatorial
gene regulation in complex eukaryotes. According to
this hypothesis, when a TE with a “good” combin-
ation of binding sequences is transposed near the
regulatory region of a target gene it is “exapted” [15]
and then conserved by evolution. Stochastic muta-
tion of the original transposable sequence can then
fine tune the regulatory module by eliminating or
adding suitable binding motifs. Indeed there is clear
evidence that several TE families are under strong
purifying selection [16,17] and that most of the known
CNEs (conserved non coding elements) are located in-
side TEs [18].
Bioinformatic tools can only identify the most recent
exaptation events, for which the underlying TE can be
recognized. An extreme version of this hypothesis would
suggest that also the regulatory regions for which no TE
structure is visible are actually the modern remnant of
ancient exaptation events, in which the underlying TE
structure was deleted by evolution.
A consequence of this picture is that, due to continu-

ous transposition events, the regulatory network of
higher Eukaryotes is characterized by an extensive and
fast rewiring of regulatory interactions [8,12,19,20].
In this paper we test this picture relative to a specific

case of inducible TF, that is the Estrogen Receptor α
(ERα). Besides looking for TEs enrichments and transcrip-
tion factor binding sites (TFBSs) correlations we also
sought to understand if the binding pattern (and the pre-
ference for specific families of TEs) of ERα varies as a con-
sequence of the kind of experimental activation of ERα.
ERα plays a central role in the development and func-

tion of mammary glands and other sex hormone-
regulated districts and is a key molecular player in most
human breast cancers. Indeed, antiestrogenic drugs are
among the most widely and successfully used treat-
ments since long time. In vitro stimulation of human
breast cancer derived cell lines with 17β-estradiol
(“E2T” condition in the following) evokes rapid and
massive binding of ERα to the genome and regulation
of transcription of thousands of genes [21-23] and con-
sequently stimulates proliferation. However, these cell
lines are made proliferating also by continuous culture
in so-called “complete medium” (“CM” condition in the
following) that contains low level estrogen derived from
the 5 to 10% fetal calf serum added to this medium.
These two modalities represent “chronic” (CM) expos-
ure to low doses versus “acute” (E2T) exposure to ele-
vated levels of hormones and may represent two
extreme modalities for cells to respond to the hormone,
which display both common and specific ERα binding
sites. It should also be stressed that human reproductive
biology is quite different from other Mammals in terms
of cycling of hormones. Estrogen receptor binding sites
profiling of breast cancers is associated with the clinical
outcome under antiestrogen treatment, further suggest-
ing that estrogen concentration may correlate with
changes in binding sites [24]. For all these reasons ERα
is a perfect candidate to test our proposals.
On these grounds, we present here a comparative ana-

lysis of ERα binding sequences in chronic versus acute
stimulation, in order to seek for common or differential
TE enrichment and TFBSs composition.

Results
In order to test our proposals we analyzed two publicly
available datasets corresponding to the two conditions
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(CM and E2T) described above [24,25]. Details on
the datasets are available in the Methods section.
We report here the results of a set of enrichment
tests performed on these data. Details on the tests
are also available in the Methods section and in the
Additional file 1.
ERα preferentially binds DNA within particular classes

of TE sequences in both CM and E2T conditions. While
some of the selected TEs are enriched in both condi-
tions, a few of them are specifically enriched only in CM
or E2T datasets.
We show the results of our enrichment test in

Figure 1A for the “CM” dataset [24] and in Figure 1B for
the “E2T” dataset [25] (see also Additional file 2: Table
S3 and Additional Table S4 for absolute values and Figure 2
for distributions).
The very high levels of enrichment observed prove

that ERα preferentially binds DNA within a few specific
families of TEs both in CM and in E2T conditions. This
confirms previous results for ERα reported in [9] (which
were based on a different ChIP-seq dataset) and agrees
with what already observed for p53 [9,10], POU5F1 also
known as OCT4 [9,12], SOX2 [9], C-Myc [11], NANOG
[12] and STAT1 [13].
Examining results in more detail, we see that the TEs

are not all on the same ground and that the highest en-
richment scores are reached for a few selected TE fam-
ilies. This suggests that besides a general affinity for the
given TE class, ERα is able to perform a fine-tuned
selection and shows a specific affinity for a few well-
defined small families of TEs within the class. This
Figure 1 Enrichment of TEs in the ERα binding datasets. Histogram of
reshuffling, of single TEs (left) and classes (right) in the CM dataset (A) and
remarkable selectivity allowed us to perform a detailed
analysis of the combinatorial regulatory patterns involv-
ing ERα and to identify a few putative new co-regulators.
Our results suggest that each particular TE family within
a given class should actually correspond to a different
combinatorial regulatory pattern.
As far as the difference between the two datasets is

concerned, when comparing the enrichment scores we
clearly see a twofold pattern. The ERV-like TEs (in par-
ticular those belonging to the ERV1 and ERVL classes)
are enriched in both datasets while the MIR-like TEs
show a preferential enrichment in the E2T dataset. In
order to test this observation further we performed the
same enrichment analysis separately for the three groups
of sequences: i) intersection of the two datasets, ii) the
binding events present only in the CM dataset and iii) the
binding events present only in the E2T dataset. The
results are reported in Table 1 and nicely confirm the pre-
vious results.
We see two possible explanations for the different be-

haviour in the two datasets. They correspond to different
experimental settings: the E2T dataset corresponds to an
acute, sudden exposure to elevated concentration of
17β-estradiol, while the CM dataset corresponds to cells
that are grown in a steady state situation of low estrogen
concentration. Therefore, either i) the two different
exposures to estrogen likely correspond to different con-
centrations of the Estrogen Receptor in the nucleus, thus
making it possible that also binding sequences with a
lower affinity to the receptor are bound in the dataset
(E2T) with the highest concentration; or ii) continuous
the z-score values showing the enrichment, with respect to random
in the E2T dataset (B) respectively. Only values z > 3 are shown.
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Figure 2 Relative fractions of enriched single TEs and classes. Pie-charts showing the relative fraction of enriched single TEs and classes
shown in Figure 1A and Figure 1B. Top pies: single TEs; bottom pies: classes; left pies: CM dataset; right pies: E2T dataset.
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versus pulse estrogen exposure would result in different
concentration and activity of cofactors known to play a
crucial role in fine tuning the binding of ERα to its tar-
get sequences.
Most of the enriched classes of TEs predate the

human-mouse separation but a few of them appeared in
the last 100 Myrs and induced a rewiring of the human
regulatory network with respect to the murine one.
An interesting feature of the above results is that most

of the enriched TE families are rather old Transposons.
This is particularly true for the MIR-like sequences,
whose amplification is known to predate (at least in
part) the mammalian radiation [26]. In the case of the
ERV-like sequences the time window is slightly larger.
TEs belonging to the ERVL class, which is the largest
class of ERV sequences, and is enriched in both our
datasets, ceased their activities only 40 Myrs ago [27],
while TEs belonging to the ERVK class (which is
enriched only in the CM dataset) are definitely younger.
A tentative estimate of their mean age gives numbers
ranging from 8 Myrs (if only human ERVK are consid-
ered) up to 18 Myrs (if human and chimp ERVK are
considered) [28,29]. Even if it is widely accepted that
these TEs are no longer active, examples of very recent
ERVK insertions (about 6 Myrs old) exist [30]. In any
case it is clear that most of the ERVK insertions occurred
after the new world/old world monkeys split.
Thus it seems that, as far as these TEs binding

sequences are concerned, a twofold picture exists also
for the network rewiring.
A large portion of the ERα regulatory network (and in

particular the part which is activated in the E2T condi-
tion) underwent a dramatic rewiring at the beginning of
the mammalian radiation (more than 100 Myrs ago) but
then it stabilized, and is now shared by all the Mamma-
lians. This obviously does not exclude local changes and
possibly also transposition events after the mouse/
human divergence, but suggests that these should not be



Table 1 z-scores (first five columns) and numbers of instances (last five columns) of the most enriched transposable
elements and classes of TEs for the five possible combinations of the two datasets: CM, E2T, CM only (= CM\ E2T),
E2T only (= E2T\ CM) and the intersection of the two datasets

CM CM only E2T E2T only int CM CM only E2T E2T only int

ALR/Alpha 3.39 4.56 -2.32 -2 -1.63 19 19 0 0 0

HAL1-2a_MD -1.73 -0.9 2.06 4.61 -1.84 1 1 10 10 0

L1PBa 2.46 5.42 -2.33 -2.12 -1.24 15 13 2 0 2

L2b 4.54 5.01 3.18 2.76 1.02 284 149 292 157 135

LSU-rRNA_Hsa 26.31 11.67 31.65 16.3 21.52 17 5 21 9 12

LTR16A 4.31 1.17 4.1 1.51 4.39 30 9 32 11 21

LTR19A 24.31 17.77 17.83 8.8 17.7 22 10 17 5 12

LTR3 26.63 9.93 27.34 9.12 25.12 12 3 12 3 9

LTR33 5.14 3.2 2.04 -0.53 3.79 42 18 31 7 24

LTR3A 38.69 29.61 21.24 4.95 21.92 25 14 14 3 11

LTR40a 8.77 8.45 6.38 4.28 6.19 20 10 17 7 10

LTR47A 6.12 -0.1 10.88 6.51 8.63 10 2 17 9 8

LTR8 12.3 15.3 2.68 1.24 3.02 52 38 22 8 14

MER11A 1.87 6.17 -1.71 -0.89 -1.8 8 8 1 1 0

MER20 2.84 0.51 3.6 2.71 2.91 52 20 59 27 32

MER21A 3.21 4.28 0.95 1.78 0.5 13 9 9 5 4

MER31A 9.47 5.65 6.36 0.97 9.56 20 7 16 3 13

MER39 4.67 1.74 9.96 8.59 5.65 18 4 33 19 14

MER39B 5.28 0.93 7.14 4.31 6.69 11 2 15 6 9

MER41A 14.46 6.04 14.16 5.75 15.04 52 15 52 15 37

MER41B 18.63 8.54 14.97 5.84 16.22 63 23 56 16 40

MER49 10.95 1.98 11.85 2.15 15.15 26 3 29 6 23

MER4A 4.12 2.47 6.85 7.26 3.65 10 4 15 9 6

MER4A1 3.9 0.32 5.87 5.09 3.96 15 5 21 11 10

MER4B -0.89 -1.52 3.75 5.06 0.12 6 1 21 16 5

MER4D 7.58 1.72 8.2 1.84 9.92 19 3 22 6 16

MER50 4.9 5.86 2.42 2.29 1.73 21 13 16 8 8

MER52A 3.07 5.93 -0.35 0.09 -0.61 16 13 7 4 3

MER77 6.43 5.66 3.74 1.84 3.7 22 12 17 7 10

MER81 -0.59 -1.26 5.19 5.96 0.81 5 0 21 16 5

MER87 17.46 9.3 16.67 7.78 13.82 15 6 14 5 9

MER91A 3.99 4.67 2.59 1.18 2.24 17 9 15 7 8

MIR3 4.01 -0.03 5.81 3.11 5.23 172 55 214 97 117

MIRb 2.76 1.19 6.57 5.45 3.43 488 190 625 327 298

MIRc 3.05 2.04 5.89 5.56 2.66 233 95 304 166 138

MLT2B1 2.31 3.06 0.84 -0.23 0.98 15 8 12 5 7

MLT2B4 4.02 1.67 4.87 2.45 3.99 21 7 25 11 14

MamRep605 1.97 0.59 3.73 2.61 2.24 13 4 19 10 9

Plat_L3 2.64 3.61 1.34 1.29 0.62 13 8 11 6 5

LTR/ERV1 12.77 5.84 10.86 4.04 11.55 592 227 604 239 365

LTR/ERVK 7.7 7.32 1.52 -0.95 3.15 77 45 47 15 32

LTR/ERVL 8.98 5.6 5.65 1.37 6.83 415 177 395 157 238
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Table 1 z-scores (first five columns) and numbers of instances (last five columns) of the most enriched transposable
elements and classes of TEs for the five possible combinations of the two datasets: CM, E2T, CM only (= CM\ E2T),
E2T only (= E2T\ CM) and the intersection of the two datasets (Continued)

LTR/Gypsy? 3.01 2.49 2.55 0.5 2.76 24 9 24 9 15

SINE/MIR 2.56 0.97 8.02 7.33 3.02 1170 480 1486 796 690

Satellite/centr 3.51 5.22 -2.71 -2.19 -1.89 23 23 0 0 0

rRNA 14.31 9.74 19.99 17.64 12.42 23 9 33 19 14

In the first part of the table are reported TEs which are enriched (i.e. have a z-score greater than 3) in at least one of the two datasets used for the analysis. In the
first five columns we report the z-score for the five possible combinations of the two datasets: CM, E2T, CM only = CM\ E2T, E2T only = E2T\ CM and the
intersection of the two datasets. In the last five columns the absolute number of instances of each enriched TE in each one of the five combinations of the
datasets. In the second part of the table we report the same information for the classes of TEs enriched in both the datasets used for the analysis.
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the rule and that a massive rewiring of this subnetwork
in the last 100 Myrs should be excluded. Finding evi-
dences of this conservation by a direct comparison of
the human and mouse sequences is very difficult because
most of these ancient TEs are too corrupted to be iden-
tified. Nonetheless, by combining the syntenic maps and
the TE annotations of the human and mouse genomes
downloaded from the Ensembl database [31] we were
able to single out, among the TEs bound by ERα in our
datasets, several pairs of conserved Trasposons (our
results are summarized in Additional file 2: Tables S6
and S7). These examples are of particular interest since
the very fact that they could be identified suggests that a
large portion of the TE sequence should be under purify-
ing selection and, therefore, they may represent import-
ant regulatory sequences. As expected from the above
discussion, most of the conserved TEs belong to MIR-
like classes (since most of the ERV type TEs are younger
than the human-mouse separation) with a few notable
exceptions like MER20, MER31A and MER77 which are
known to be among the oldest ERV-type TEs.
Among the TEs enriched in our dataset belonging to

the MIR family, a fraction between 15% and 25% of the
TEs was conserved between human and mouse. We then
looked for putative regulated genes of these conserved
MIR-like TE’s (details in the Methods section). We found
several putatively regulated genes (see Additional file 2:
Table S10 and S11) and, remarkably enough, most of them
turned out to be important known targets or cofactors of
ERα. In particular, among the regulated genes, we found
GREB1 (growth regulation by estrogen in breast cancer 1
gene) which is known to be regulated by ER and to be
involved in estrogen-responsive breast cancer (see for
instance [32]); RARα, which is a known cofactor of ERα
[3]; TAP/SEC14L2 which is known to be downregulated by
ER in breast cancer cells [33]; GLUT1/SLC2A1, whose ex-
pression in the luminal epithelial cells of the uterus was
shown to be regulated by ERα [34] and is involved in the
ERα mediated response to hypoxia [35] and several other
ERα regulated genes like Anxa6 [36], Fyn [37], CA12 [38],
CYP1B1 [39,40], KRT13 [41] and PRKACA [42].
These findings suggest that also some of the remaining
genes targeted by conserved TEs could be involved in
ERα regulated pathways and that this combination of
ChIP-seq and evolutionary conserved TEs could be in
general (i.e. also for the other TFs associated TEs
dicussed in the introduction) a powerful tool to identify
reliable targets.
On the contrary, the portion of the regulatory network

that is activated in CM conditions, which is strongly
enriched in ERVL and ERVK insertions, most probably
underwent a significant rewiring in the last 100 Myrs.
However, note that, as above, also in this case one cannot
exclude local cases of convergent evolution (see below for
a nice example) or that part of these insertions (being too
young to have been modeled by evolution) simply corres-
pond to non-functional bindings, thus mitigating the re-
wiring effect of the ERV-like transposons expansion.

MIR-like and ERV-like TEs targeted by ERα are
preferentially located near the TSS of regulated genes
In order to support the idea that the MIR-like and ERV-
like TEs in the peak datasets have a regulatory role, we
identified their chromosomal localization and measured
their distance from the Transcription Start Site (TSS) of
the nearest gene. Results of this analysis are reported in
Figure 3A for MIR-like TEs and in Figure 3B for ERV-
like TEs. We see that in both cases the TEs nicely peak
around the TSS. The pattern is very similar in the two
datasets and supports our suggestion that these TEs
were indeed exapted by the Estrogen Receptor and are
likely to play a regulatory role in driving the response to
estrogen stimulation.

TEs selected by ERα are enriched for binding sequences
of TFs representing known cofactors of ERα. Our
approach allows the identification of new putative
cofactors
In order to exert its regulatory functions, ERα very often
interacts with other TFs. In particular, clear evidences of
regulatory interactions with FoxA1, RARα, GATA3, SP1 and
AP1 (JUN+FOS) have been recently observed ([3,25,43-47]).



Figure 3 Selected classes of TEs are located nearby the TSS of known genes. (A) Histogram of the distance of MIR-like TEs targeted by ERα
from the TSS of the nearest gene. (B) Histogram of the distance of ERV-like TEs targeted by ERα from the TSS of the nearest gene.
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In order to test whether these interactions are mediated
by TEs and in particular by those that are enriched in the
two datasets, we evaluated the Transposon Affinity Score
(TAS) value (for the definition see the Methods section)
for each TF. Results are reported in Additional file 2: Table
S3 and S4 separately for the two datasets (only TFs with
TAS value greater than 0.1 for at least one of the enriched
TEs are considered).
Remarkably enough, most of the known cofactors of

ERα listed above have a TAS value above threshold in at
least one of the enriched TEs (in most cases in several
TEs). Moreover the same procedure allowed us to iden-
tify a few combinatorial patterns associated to selected
classes of TEs, thus supporting our suggestion of a TEs
driven combinatorial organization of transcriptional
regulation. These data (reported in Additional file 2:
Table S3 and S4 and in Figure 4) allowed also the iden-
tification of several other putative cofactors (like AP-2
factors or ERR) for which, as far as we know, experi-
mental evidences like those mentioned above for FoxA1,
RARα, GATA3, SP1 and AP1 are still missing. In
Figure 4 we report the heat-maps showing the fraction
of enriched transposable elements in the datasets which
carry given computationally predicted transcription fac-
tor binding sites. Yellow corresponds to low fractions,
blue to high fractions. In the figure we also report the
hierarchical clustering of both TEs and TFs. These heat-
maps are probably the best representation of the



Figure 4 Enriched TEs are often bound by additional TFs, besides ERα. The heat-maps show the fraction of enriched TEs in the datasets
which carry particular computationally predicted TFBSs. A refers to the CM dataset while B refers to the E2T dataset. Yellow corresponds to low
enrichment fractions, blue to high enrichment fractions. In the figure we also report the hierarchical clustering of both TEs and TFs.
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“Transposon code” mentioned above: each column cor-
responds to a different TE and the blue spots along
the column to the particular combination of TFBSs
brought about by that particular TE. Well defined combina-
torial patterns involving TEs belonging to the same class
can be recognised in the heat-maps. Their organization is
made more explicit by the hierarchical clusterings reported
along the sides of the heat maps. Smaller versions of these
maps, involving only the most important known cofactors
of ERα can be found in the Additional Material (Additional
file 3: Figure S1 and Additional file 4: Figure S2).
Selection of combinatorial patterns using our “Transposon

Affinity Score” has evolutionary implications. A TAS
value above 10% (i.e. ten times the one expected by
chance) is likely to occur only if the TE contained in
its ancestral sequence one or more subsequences
similar to the TFBS under study. If we accept this as-
sumption then the TAS value measures the fraction
of such ancient subsequences modified by evolution
to become TFBSs (or conserved, if they were already
present).
TFs enriched in the datasets, and in particular the

known ERα cofactors, tend to be simultaneously present
and to appear at fixed distance in the TEs that we studied.
A possible objection to the above statement is that sim-

ultaneous enrichment does not necessarily imply that the
two TFBSs are simultaneously present in the same TE in-
stance. To address this issue, for each set of TEs we
looked for correlators of TFBSs at fixed distance along the
sequence, i.e. we counted how many times a pair of TFBSs
occurs exactly at a distance d along the TE sequence. We
report the results of this analysis in Additional file 2: Table
S5. An interesting example is plotted in Figure 5 for the
case of ERR and GATA-3. As can be seen from Figure 5,
this correlation function has a very sharp peak at a fixed
distance. This behaviour is typical of most of the identified
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correlators and agrees with a set of recent observations
(see for instance [48]) showing that TFs cooperation, to be
effective, requires tight spacing patterns between the TFs.
Both in the CM and in the E2T datasets a putative

ERR binding site is associated to GATA-3 at a fixed dis-
tance of 24 bp in the context of MER41A/B TEs. These
TEs also host other important correlations: for example
BRCA1 with E2F-1 (at a fixed distance of 33 bps) and
RARα with GATA-3 (at a fixed distance of 19 bps, see
the results listed in Additional file 2: Table S5). Thus we
see that two of the TEs showing the highest level of en-
richment in our datasets host a collection of TFBSs
located at a fixed distance among them, whose relative
position seems to be carefully conserved by evolution.
This example is interesting also for another reason.
BRCA1 is characterized by a PWM with a very low in-
formation content and for this reason we could not sin-
gle it out in the enrichment analysis described in the
previous section. The same happened also for other TFs
with similar scarcely informative PWMs. This problem
is completely overcome by the correlation analysis dis-
cussed here, which is much more constrained and allows
precise identification of TFs even when they display
scarcely informative PWMs.
The genes of our datasets regulated by particular classes
of TEs show a non trivial enrichment with respect to a
few Gene Ontology categories
To further support these results, we searched if genes
connected to specific TEs (or classes of TEs) are enriched
for specific GO categories, following the procedure dis-
cussed in the Methods section. We performed this ana-
lysis both on the whole set of enriched TEs and separately
on the subset of TEs conserved between human and
mouse. Results of the analysis are reported in Additional
file 2: Tables S1 and S2 for the whole set of enriched TEs
and in Additional file 2: Tables S8 and S9 for the subset of
conserved TEs.
We found several interesting results. A few of them

are clearly related to the expected function of estrogen,
like “cell-cell signaling” (p = 4 10^-3) or “secreted” (p = 5
10^-4), (enriched as expected in the E2T dataset) but a
few others, which present rather strong functional en-
richment are new and could suggest new functions (both
in CM and E2T conditions) driven by selected classes of
TEs. Interesting examples are GTPase regulator activity
(p = 6 × 10^-5), regulation of Ras protein signal trans-
duction (p = 6 × 10^-4) or Keratin (p = 10^-6). In par-
ticular, this latter category, which is enriched in the E2T
dataset and is strongly associated to the MER20 TE,
suggests that this particular class of TEs could play a
critical role in remodeling cell morphogenesis, a key
process in mammary gland differentiation [49]. In
agreement with this observation, it is very interesting
to notice that this specific TE is enriched in E2-
treated dataset suggesting a link with increasing level
of estrogen during pregnancy.
Discussion
General considerations on the regulatory role of TEs
There are by now several evidences of the important
regulatory role played by TEs. For instance in [50-53] a
few examples of TEs playing the role of enhancers are
discussed. In [54-57] the authors showed that Alu
[55,56] and Line [54] are enriched in TF binding
sequences. The authors of [57] using the FANTOM4
data found more than 20000 candidate, TE-derived regu-
latory regions. More recently one group [58] discussed
the role of TEs in organizing and modeling CTCF bind-
ing in Mammals and others [59] have shown the central
role of MER20 to associate with TFs that control gene
regulatory network for pregnancy in placental Mammals.
Given the importance played in our analysis by these

classes of TEs, we shall concentrate here in particular on
the evidences supporting the widespread regulatory role
of MIR-like and ERV-like transposons.

MIR-like Transposons, which are specifically enriched in
E2T cells, play an important regulatory role in Mammals
A few recent results strongly support the idea that MIR-
like transposons should play important roles in gene
regulation in Mammals.

– it was shown in [17] that the MIRb family is
overrepresented in mammalian CNEs (conserved
noncoding elements).

– a TE belonging to the MIRb family was shown to
play a crucial regulatory role in the Reelin signalling
pathway, which allows neurons to complete their
migration in the developing brain [17].

– a set of MIR3 and MIRb TEs (conserved between
human and mouse) were demonstrated to regulate
immune response genes [60].

– MIR3 and MIRb (which are both highly enriched in
our E2T dataset) share a common core of 70 bps which
is strongly conserved in human and mouse [28,61].

It was suggested a few years ago that this remarkable
conservation could have a regulatory origin and that this
shared 70 bps core could contain the binding sequences
of several DNA binding proteins [26,60]. Our results
suggest that ERα could be one of these TFs.
To test this hypothesis we aligned all the instances of

this conserved core in the MIR-like TEs that we found in
the two datasets. Then we analyzed the aligned “core”
sequences using both Jaspar and Transfac binding matri-
ces. We found at the very beginning of the core sequence



Figure 5 (See legend on next page.)

Testori et al. BMC Genomics 2012, 13:400 Page 10 of 16
http://www.biomedcentral.com/1471-2164/13/400



(See figure on previous page.)
Figure 5 TFBSs tend to appear at fixed distance in the TEs that we studied. The case of MER41B is reported as an example. In A is shown
the logo of ERα ChIP-seq regions carrying GATA-3 and ERR at the fixed distance of 24 nts (measured from start to start of these motifs). The
multi-alignment of these regions is shown in B, together with genomic location and associated TE. C: distance distribution between GATA-3 and
ERR in ERα ChIP-seq peaks. Notice that in all the three insets of the figure the reverse complement of the logo usually reported by Transfac is
used.
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a high score half-ERE, followed in many cases by other
instances of the same binding sequence.
Moreover in a few cases we found examples of point

mutations with respect to the reference core sequence
(like the A –>G mutation in the 14th position of the core
sequence) which led to the creation of additional high
score half-ERE sequences. These point mutations seem to
be positively selected in the dataset (they occur much
more often that the other possible point mutations). The
results of the analysis are reported in Additional file 5:
Figure S3, in which we report in the top line the reference
core sequence (as reported in [26]) and then list in each of
the following lines one of the instances of the core that we
found in our ChIP-seq datasets. For each of them we re-
port in bold face the nucleotides which are conserved with
respect to the original core sequence; in red colour the
half-ERE binding site, in blue colour the AP1 binding site
and green is for RORalpha binding site.

Examples of exaptation of ERV-like TEs
ERV-like TEs are probably the class with the largest num-
ber of known exapted instances with regulatory function.
At the same time ERV-like TEs are known to be preferen-
tial targets of several important TFs. For instance, it was
shown in [12] that ERV1 is the class of TEs with the high-
est affinity for OCT4, NanoG. In this respect our analysis
suggests that ERα and a few ERα related TFs should be
added to this list. This idea is also supported by the ana-
lysis of the distance from the TSS of the nearest genes
reported in Figure 3 showing that ERV-like TEs targetd by
ERα are preferentially located in the vicinity of the TSS
and are thus likely to have a regulatory role.
An interesting feature of ERV-like TEs is that, since

the ERV expansion occurred in a rather large time win-
dow, there are several examples of primate specific
ERVs. This represents a major difference between ERV-
driven and MIR-driven regulation. A list of examples of
ERV exaptation as promoters can be found in [62]. All
the examples listed in [62] are not present in mouse and
therefore are expected to have been exapted in the last
100 Myrs.
From these examples a few general considerations

emerge:

– ERV-like TEs are usually exapted as alternative
promoters, their main role being to ensure tissue
specifity of gene expression [57].
– In several cases after exaptation the ERV-derived
promoters become the primary promoter.

– In most cases these new promoters have only
moderate effects on gene expression. A notable
exception to this trend is represented by placental
genes. In these cases ERV-derived promoters have a
very strong effect and are essential for the expression
of the regulated genes in the placenta [63].

As for the function of these ERV-derived promoters, it
appears that they play a particularly important role in
the regulation of placental development [62], an obser-
vation in good agreement with our analysis, showing
that ERV-like TEs are enriched in ERα and ERα-related
TFBSs.
Another very interesting and nontrivial example is

given by prolactin regulation. A genomic instance of the
MER39 TE (which is enriched in both our datasets) reg-
ulates the expression of endometrial prolactin which is
essential for pregnancy both in rodents and in human
in a primate specific way. Remarkably enough the role
played by this MER39 in human is played by another
(similar) TE (i.e.: MER77) in rodents (notice that also
MER77 is in our list of enriched TEs). We see in this
example the competition between rewiring and evolu-
tionary pressure which has driven the exaptation of dif-
ferent but functionally similar TEs in different species
leading to this very nice example of convergent evolu-
tion [64].

Our results support a driving role of TEs in the
appearance of combinatorial regulation in complex
Eukaryotes
We have shown that a few classes of transposons are
strongly enriched among the ERα targets and that these
host the binding sequences of several known interactors
of ERα. From these observations emerges that TEs
played a crucial role in the evolution of the regula-
tory network of higher Eukaryotes, not only by re-
wiring the network, as already observed in various
papers [8,12,19,20], but also by allowing an easy im-
plementation of the combinatorial rules. The emer-
ging paradigm is that TEs may be considered as
templates of pre-organized combinations of binding
sequences which can then move around in the gen-
ome carrying an already prepackaged combinatorial regu-
latory information which can subsequently be fine tuned



Testori et al. BMC Genomics 2012, 13:400 Page 12 of 16
http://www.biomedcentral.com/1471-2164/13/400
by local evolutionary moves (mainly point mutations)
according to the specific needs of the target genes.
All these considerations support the idea that particu-

lar classes of repetitive features had a central role in the
diffusion of specific combinatorial patterns of regulation
on a genomic scale. This idea nicely agrees with the re-
cent observation that waves of TEs expansions (predat-
ing the mammalian radiation) had a central role in
modeling CTCF binding location in mammals [58]. This
is coherent also with the work of [59] who have shown
that MER20 contributed in a significant way to create
the gene regulatory network important for embryo im-
plantation key events of placental mammals. In our
study we have found that MER20, enriched to ERα bind-
ing site upon estrogen treatment, is near keratin cluster
genes suggesting that this specific TE class may play a
role in mammary gland differentiation, in addition to
placental development.
Pushing these considerations to their extreme to con-

sequences, it is tempting to guess that combinatorial
regulation was actually made possible by the appearance
of transposable elements which had a driving role in the
creation and organization of the combinatorial scheme
of transcriptional regulation which we observe today.
At the same time our analysis suggests that when a

specific association between a TF and a class of transpo-
sons exists, then the evolutionary success of this TF
could be related to the evolutionary success of the asso-
ciated transposon. In this respect the association be-
tween Estrogen Receptor and MIR-like transposons
represents a perfect example.
A TF very similar to the Estrogen Receptor (the “ances-

tral steroid receptor”) exists also in very distant species like
mollusks [65], however in these organisms it has a very
limited role. It is only at the beginning of the mammalian
radiation that this ancestral steroid receptor underwent a
set of duplications, giving rise to all the family of mamma-
lian steroid receptors and their role became essential in
mammalian development and reproduction. It is tempting
to relate this impressive evolutionary success with the sim-
ultaneous expansion of MIR-like transposons which, as we
have shown here, are preferential targets of ERα and ERα-
related TFs.
It is important to stress that in the case of ERα (as

for other nuclear receptors) a crucial condition for the
success mentioned above was the evolution of the
ligand-binding ability. The origin of this ability is still a
debated issue [66,67] with two main opposing hypoth-
esis “the ancestral receptor” model and the “ancestral
orphan” one. In this respect it is interesting to notice
that MIR-like transposons are especially enriched in
particular in the E2T dataset, which corresponds to
acute exposure to estrogen where ER-binding intensity
increases. Even if this observation by itself does not
allow to distinguish between the two scenarios, it shows
that transcriptional specificity for MIR-like TEs and
ligand-binding ability are deeply connected (E2-bound
ERα preferentially binds MIR-like TEs) and suggests
that the appearance of MIR-like transposons could be
exactly the event allowing to combine the two abilities
and at the same time to drive the genome-wide expan-
sion of ERα transcriptional activity.
A possible objection to this picture is that, even if sta-

tistically enriched with respect to a random reshuffling,
the overall number of MIR-like peaks in our datasets is
only a small portion of the total number of peaks (7.3%
in the CM case and 10.2% in the E2T case). It is not ob-
vious that they could really influence the functional evo-
lution of ERα. Indeed it is well possible that other
evolutionary mechanisms, still to be understood, played
a role together with MIR-like TEs in shaping the func-
tions that the Estrogen Receptor has acquired in these
last 500 Myrs. However it is important to notice that the
above percentages increase to higher values if we con-
sider the fraction of ChIP-seq peaks containing simul-
taneously ERα and one or more of its most important
cofactors, like FoxA1, RARα or AP1 (see the heatmap in
Figure 4). This agrees with the idea that combinatorial
organization of the regulatory interactions made ERα
evolving its functions and that this combinatorial
organization was more likely mediated by TEs.
It would be very interesting to extend these observa-

tions to other classes of TEs (in particular to Alus whose
important regulatory role has been already noticed in
[55] ) and to other TFs. It is becoming increasingly clear
that TFs can be classified as a function of their age and
that in some cases they acquired their regulatory role in
a precise time window of the evolutionary process. It
would be interesting to test if also in this case it is pos-
sible to associate these TFs to precise transposon classes
and to relate their evolutionary success to the expansion
of the associated transposon class.

Conclusions
In this work we sought to better understand the role of
transposable elements in shaping the regulatory network
of higher Eukaryotes. Several papers appeared in these last
years on this topic and it is by now well understood that
TEs contributed to a substantial rewiring of the regulatory
network of complex Eukaryotes. In this work we add an-
other piece of information to the picture looking at the
role of TEs in the emergence and diffusion of combinator-
ial transcriptional regulation. The rationale behind this
study is that while it is easy to create a single binding se-
quence by point mutation it is difficult to understand how
a local evolutionary process could create an extended
(non-local) combination of binding sequences. A possible
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solution is to assume that a suitable template for the
sought combination of motifs already exists in the genome
and is then transferred as one in the regulatory region of
the target genes. To test this idea we focused on a particu-
lar transcription factor: the Estrogen Receptor alpha (ERα)
and, using two different sets of ChIP-seq data, performed
a set of enrichment tests on the TE distribution within the
datasets. We found that ERα preferentially targets a well
defined set of TEs and that these TEs host combinations
of transcriptional regulators involving several of known
co-regulators of ERα. Moreover, a significant number of
these TEs turned out to be conserved between human and
mouse and to be located in the vicinity (and thus candi-
date to be regulators) of important estrogen-related genes.

Methods
Datasets
We used two whole-genome occupancy datasets. The first
one is the dataset published in [24] (“Complete Medium”
(CM) dataset in the following) derives fromMCF7 cells cul-
tured in complete medium, i.e. DMEM added of 10%
Fetal Calf Serum. Data are available at http://genesdev.
cshlp.org/content/24/2/171/suppl/DC1 (“Supp_Data_
Binding_Files.xls”). The authors define this culture as
“proliferating cells” and the concentration of active estro-
gen in media can be estimated from 0.01 to 0.1 nM. The
second one is the dataset published in [25] (“E2- treated”
(E2T) dataset in the following) derives from MCF7 cells
cultured for 3 days in hormone-deprived medium (phenol
red-free DMEM/F12 containing 5% charcoal-stripped
FBS) and then treated with 100nM estradiol for 45 min.
Data are available at http://www.nature.com/msb/journal/
v6/n1/suppinfo/msb2010109_S1.html in the folder “Sup-
plementary_Dataset_1”, in a file named “Suppl_combined_
table_MCF_T47D_ER_binding_by_ChIPseq_hg18.xls” (we con-
sidered only peaks from MCF7 cells). In both experi-
ments ChIP-seq library was obtained using Illumina
Solexa ChIP-seq sample processing methods.
The two datasets have a comparable number of en-

tries: 14505 for the E2T dataset and 16043 for the CM
one. This similarity will simplify the statistical analysis in
the following and will allow us to reliably compare the
results obtained in each dataset.
A remarkable feature of the datasets is that, despite the

differences in culture and treatment, their intersection is
very high: 9545 peaks out of the 14505 from “E2T” dataset
have at least one base overlapped with 9924 peaks out of
16043 from “CM” dataset. (the two numbers do not coin-
cide due to multiple intersections of nearby peaks).

Identification of Transposable Elements
We used the Ensembl [31] database annotation of trans-
posable elements, which is based on the RepeatMasker
database [68,69]. Correspondence between single transpos-
able elements and classes was also taken from Ensembl.
Enrichment tests
Following [12] for each peak declared in the given data-
set, we extracted a 200 bp DNA-wide window centered
on the middle of the peak.
Then we generated 1000 datasets composed by randomly

chosen peaks, each containing the same number of regions
with the same length (200 bps) and the same nucleotide
distribution as true regions. To do this, we divided each
chromosome in genomic windows of 1,000,000 bps and, for
every real peak, the corresponding random peak was taken
with flat distribution from the same window.
We then annotated all repeats falling in the peaks

belonging to the real dataset and in the 1000 datasets of
random peaks. This way we managed to obtain, for each
transposable element, mean and variance, which we
used to calculate a z-score zr = (xr − μr) / √sr, where xr is
the occurrence of a particular transposable element r in
the original dataset, while μr and sr are respectively its
mean occurrence and its variance in the 1000 random sets.
We performed the same analysis also with classes of

transposable elements and similarly calculated the z-score
zc = (xc−μc) / √sc, where xc is the occurrence of a particu-
lar class of transposable elements in the original dataset,
while μc and sc are respectively its mean occurrence and
its variance in the 1000 random sets.
We carefully tested that our results were robust with

respect to different choices of this window size (data not
shown).
Functional enrichment analysis
We associated putative regulated genes to the ChIP-seq
peaks of our datasets as follows. For each Ensembl tran-
script we choose a window of +/− 20Kbp around the
transcription start site (TSS). If inside one of these win-
dows we find a peak of our dataset we assume that the
gene to which the transcript belongs is regulated by ERα
binding to the selected peak. We chose this particular
window size since in [23] it was shown to be an optimal
window to identify ER-binding events in target genes. Also
in this case we verified that our enrichment results were
robust against different choices of the window size.
This way we could associate to each TE a set of putative

regulated genes looking for all the genes regulated by
peaks belonging to a particular instance of that TE.
For each of these sets we performed a functional en-

richment analysis using the DAVID Bioinformatics Tools
[70] and choosing as background model the set of all the
regulated genes in our dataset.
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Identification of putative ERα interactors, Transposon
Affinity Score, TFBS correlators and the definition of the
ER PWM
We scanned for the presence of TFBSs within a window
of 200 bps centered in the middle of the ChIP-seq peaks
using all the position-specific scoring matrices from
TRANSFAC professional 11.2.
Then, for each TE we computed the fraction of

instances in the dataset carrying particular TFs. This
quantity, which we shall denote in the following as
Transposon Affinity Score (TAS), takes values in the
range [0–1] and can be used as an indicator of the spe-
cific affinity of a class of TE elements for a particular
TF. Scan thresholds vary according to information con-
tent of PWMs and were chosen for each TF so as to find a
TAS value of 0.01 for a random sequence (see Additional
file 1: Additional Material for details)
We then set an enrichment threshold of 10% in this

TAS value. The TFs with a TAS above this threshold in at
least one TE class represent the list of our putative ERα
interactors.
We used the same scanning procedure discussed

above to identify correlators of TFBSs at fixed dis-
tance along TEs, i.e. enriched motif spacing patterns
for given TEs. The rationale behind this analysis is
that probably it allows TFs to optimally interact with
each other.
Among the PWMs that we studied a particular role is

obviously played by the PWM of the Estrogen Receptor.
In our analysis we considered both the whole Estrogen
Receptor PWM (denoted in Transfac as ER) and the
half-site of estrogen response element (denoted in
Transfac as half-ERE). The corresponding logos are
reported in the Additional Material.
Additional files

Additional file 1: Additional Text and Methods. Content is divided in
the following sections: List of Additional Tables, Transposable Elements
Annotation, Monte Carlo Simulation, Transcription Factor Binding Sites
Identification, Correlators Identification, ER logo, Half-ERE logo.

Additional file 2: Additional Tables S1 to S11.

Additional file 3: Figure S1. The heat map shows the fraction of
enriched transposable elements in the CM dataset which carry particular
computationally predicted transcription factor binding sites. Here only a
selection of the most important known cofactors of ERα is considered.

Additional file 4: Figure S2. The heat map shows the fraction of
enriched transposable elements in the E2T datasets which carry particular
computationally predicted transcription factor binding sites. Here only a
selection of the most important known cofactors of ERα is considered.

Additional file 5: Figure S3. The figure shows alignment of MIRs from
both CM dataset and E2T dataset. The first line of the figure is MIR core
sequence (Smit et al., 1995); the binding site of half-ERE is in red.
Following there are all other MIRs. Red is for half-ERE binding site, blue is
for AP1 binding site and green is for RORalpha binding site. If the
character in the alignment matches the character in the core sequence, it
is depicted in bold.
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