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Abstract

Background: Compared to classical genotyping, targeted next-generation sequencing (tNGS) can be
custom-designed to interrogate entire genomic regions of interest, in order to detect novel as well as known
variants. To bring down the per-sample cost, one approach is to pool barcoded NGS libraries before sample
enrichment. Still, we lack a complete understanding of how this multiplexed tNGS approach and the varying
performance of the ever-evolving analytical tools can affect the quality of variant discovery. Therefore, we
evaluated the impact of different software tools and analytical approaches on the discovery of single nucleotide
polymorphisms (SNPs) in multiplexed tNGS data. To generate our own test model, we combined a sequence
capture method with NGS in three experimental stages of increasing complexity (E. coli genes, multiplexed E. coli,
and multiplexed HapMap BRCA1/2 regions).

Results: We successfully enriched barcoded NGS libraries instead of genomic DNA, achieving reproducible
coverage profiles (Pearson correlation coefficients of up to 0.99) across multiplexed samples, with <10% strand bias.
However, the SNP calling quality was substantially affected by the choice of tools and mapping strategy. With the
aim of reducing computational requirements, we compared conventional whole-genome mapping and SNP-calling
with a new faster approach: target-region mapping with subsequent ‘read-backmapping’ to the whole genome
to reduce the false detection rate. Consequently, we developed a combined mapping pipeline, which includes
standard tools (BWA, SAMtools, etc.), and tested it on public HiSeq2000 exome data from the 1000 Genomes
Project. Our pipeline saved 12 hours of run time per Hiseq2000 exome sample and detected ~5% more SNPs than
the conventional whole genome approach. This suggests that more potential novel SNPs may be discovered using
both approaches than with just the conventional approach.

Conclusions: We recommend applying our general ‘two-step’ mapping approach for more efficient SNP discovery
in tNGS. Our study has also shown the benefit of computing inter-sample SNP-concordances and inspecting read
alignments in order to attain more confident results.
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Background
Correlations between genotype and phenotype variations
have traditionally been studied by determining the geno-
type of known markers. For example, genome-wide asso-
ciation studies (GWAS) have revealed associations of
known common variants with several of the common
diseases. But these associations typically explain less than
25% of the heritable risk estimated for each of those dis-
eases [1,2]. This is a serious limitation for complex dis-
eases, which are often genetically heterogeneous [3].
Existing GWAS data suggest that rare alleles also have a
significant influence on common diseases [4]. Therefore,
targeted resequencing of suspected exonic, intronic, and
intergenic loci mapped by GWAS and linkage studies is
the next logical consequence to identify the entire under-
lying genetic variation and its disease relevance.
Target enrichment methods rely either on PCR or

sequence-specific nucleic acid hybridization, and each
method has unique advantages and disadvantages [5-7].
The combination of sample enrichment methods and
next-generation sequencing (NGS) pipelines is an effect-
ive analysis approach, but it also raises some important
questions: How accurate is the sequence variation dis-
covery within the targeted NGS (tNGS) data? What is
the effect of the varying performance of the rapidly
evolving alignment and analytical tools? Can a sample
multiplexing approach reduce the analysis and study
costs? To address these questions, as a test model, we
combined a hybridization-based sample enrichment
method (Febit biomed GmbH, Germany) with an NGS
platform (SOLiD, Life Technologies, USA). With sample
mix-up control and enrichment cost reduction in mind,
we evaluated the enrichment of barcoded SOLiD librar-
ies (individual and pooled), rather than preparing NGS
libraries after enrichment [8-10]. Individual samples are
indexed by inserting unique nucleotide signatures, the
barcodes, and are then pooled together before enrich-
ment so that the pooled DNA samples can be sequenced
en-bloc. Sample identity is then re-established during
the bioinformatic processing of the reads after sequen-
cing. Sample barcoding has the advantage – in contrast
to a simple pooling approach – that genotypes can be
assigned at an individual level and that even rare
variants can be identified with a high sensitivity
[4,5,8,11-14]. We tested the applicability of the evaluated
tNGS method on E. coli, as a simple model to optimize
the process, and human genomic samples in three ex-
perimental stages of increasing scope and complexity,
culminating in a SNP concordance evaluation for the
BRCA1 and BRCA2 cancer genes.
To identify a suitable analytical approach in terms of

computational time and accuracy of sequence variant
detection in tNGS data, we carefully analyzed the data
using different software and tools. We found that SNP
detection depends strongly on the chosen analytical
tools and settings, rather than on key enrichment mea-
sures such as high and uniform coverage, the percentage
of reads mapped on target, or an adequate enrichment
fold. Unexpectedly, all evaluated tools failed to identify a
large proportion of true sequence variations (false nega-
tive SNPs). Whole-genome (WG) mapping/SNP-calling
was time-consuming, but with the benefit of few false
positive SNPs. Target region (TR) mapping/SNP-calling
was faster and yielded more true SNPs than WG map-
ping, but led to a high proportion (up to 50%) of likely
false positive SNPs. Target region mapping can force-
map reads from other genomic loci into the target, lead-
ing to false positive SNPs and requiring a postprocessing
cleanup. To benefit from both methods, we here report
a novel ‘two-step’ mapping approach that starts with TR
mapping/SNP-calling, followed by backmapping only
the SNP-supporting reads to the WG. Because of the
recent wide interest in whole exome sequencing, we
also applied our approach to public human exome
enrichment data generated by Illumina HiSeq instru-
ments. Moreover, our report includes detailed practical
instructions, such as validating SNPs by computing
inter-sample SNP-concordances between multiplexed
technical replicates, filtering for novel SNPs, or estab-
lishing and evaluating a tNGS method.

Results
We developed a novel, fast two-stage backmapping
method in the course of three experimental and analyt-
ical stages (our test tNGS model) and a fourth, purely
analytical stage using human exome data. The study de-
sign, the established wet-lab workflow, and the bioinfor-
matics workflows for our test tNGS model are presented
in Figure 1. In the first stage, we successfully enriched
different SOLiD libraries instead of gDNA of E. coli for
68 genes and sequenced them on a SOLiD NGS plat-
form. In the second stage, we enriched three pools of
barcoded libraries of E. coli for the same 68 genes and
sequenced these on the same NGS platform. The results
of this stage showed reproducible uniform coverages and
enrichment folds for most barcodes and multiplexes
tested. Full details on the target enrichment experiments
and results, especially the wet-lab procedure, can be
found in the Additional file 1. In the following results
section we concentrate on the respective data analysis
and tool development.

Pre-enrichment multiplexing of NGS libraries of BRCA1/2
genes and data analysis
In the third stage, we focused on enriching pools of bar-
coded libraries of HapMap individuals for non-repeat-
masked regions of two clinically relevant human cancer
genes (BRCA1 and BRCA2). We enriched these genomic



Figure 1 Our tNGS test model, study design and established workflow. Panel A summarizes the established workflow, while panel B lists
the bioinformatics approach. In panel C, the three sequential stages are summarized. The first stage represents the proof-of-principle on E. coli
enrichment, the second stage evaluated the multiplexing capacities, and the third stage demonstrated the application of the pipeline on
clinically relevant human target genes. For the data analysis, we tested different mapping tools and approaches as shown in this Figure. (WG
stands for whole genome, TR for target region, SAET for Spectral Analysis Enhancement Tool, AUC for area under the ROC curve, ADoC for
average depth of coverage, and EF for enrichment factor). Finally, we applied our TR/backmapping pipeline to public exome data (lower panel).
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regions at different multiplexing levels (two 4-plex pools
with two different 4-barcode combinations, 8-, 16- and
20-plex). We also included two non-barcoded controls.
The sequencing results and enrichment measures are
summarized in Additional file 2: Table S1 and Additional
file 3: Figure S1. For the data analysis we used several
tools, partly because the original tools turned out to be
insufficient and incompatible with newer tools, and
partly to benchmark the performance. We used the
SOLiD Spectral Analysis Enhancement Tool (SAET 2.2;
[15]) for correcting sequencing errors in the raw reads,
and evaluated the coverage and SNP-calls with and with-
out the use of SAET. We initially used SOLiD Corona
Lite for mapping and diBayes for SNP-calling, but after
achieving only insufficient results, we turned to SOLiD
BioScope for mapping and SNP-calling. We validated
the mapping and SNP-calling using CLC bio Genomics
Workbench 3.7.1 software (CLC bio, Aarhus, Denmark)
and the NextGENe V2 software (SoftGenetics, State
College, PA, USA). We used SAMtools [16] for data for-
mat conversion, pibase [17] for automatic validations,
and IGV [18] for viewing mapped reads. As a first result,
we found that SAET increased the coverage by about
15-20% (Figure 2), but that the run time was very high
(8 hours for the Yoruban control in the octant spot con-
taining 35 million reads) and that the automatic SNP
discovery rate was slightly decreased (3-19 percentage
points, see Additional file 2: Table S2 and Table S3). Bio-
scope with SAET mapped up to 113% more reads than
Corona Lite without SAET as shown in Figure 2. It also
illustrates that the SAET error-correction combined with
the Bioscope mapping led to the highest number of
mapped reads and the highest coverage for the SOLiD
data. Secondly, as expected, the TR mapping/SNP-call-
ing approach required far less time than the conven-
tional WG approach. Thirdly, we found that the
resulting average coverages and enrichment factors were
reproducible within each pool (more details in the



Figure 2 Mapping improvements using different bioinformatics tools and settings for the same raw sequencing data (third stage of
our multiplexed tNGS test model). This figure illustrates the mapping performance of different tools for the human BRCA1 and BRCA2
sequence reads. From Corona Lite’s default mapping (4 mismatches in 50 colors) to SAET 2.2 read enhancement and subsequent Bioscope 1.0.1
mapping, the number of uniquely mappable reads increased by about 60%. SAET alone improved mappable reads by about 15%-20% and
Bioscope improved mappable reads by about 35%-75%. Bioscope 1.0.1 improves coverage, because it can map a sub-segment of a read. As
Corona Lite mapped less reads to the target for the 20-plex spot and the non-barcoded Chinese control spot, Bioscope’s segment-mapping
approach over-proportionally increased mapped reads by a factor of 2.13 and 1.74.
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Additional file 1 and Additional file 2: Table S1). The
average depth of coverage (ADoC) was 407×, 330×,
187× and 30× for the 4-, 8-, 16-, and 20-plex experi-
ments, respectively. At 8× coverage – a minimum
SNP detection threshold commonly employed in NGS
studies – 98.3%, 94.1%, 78.8%, 71.0% and 51.7% of
the targeted bases were covered in the control libraries,
4-, 8-, 16- and 20-plex, respectively (Additional file 2
Table S4). Overall, the enrichment process was efficient,
with regard to sensitivity and specificity, as indicated by
the area under curve (AUC) values of 0.989 and 0.988
for the control libraries, and 0.976, 0.911, 0.897 and
0.856 for the 4-, 8-, 16- and 20-plex libraries, respect-
ively (Additional file 3: Figure S2). Full details on the
enrichment metrics can be found in the Additional file 1.

Genotype concordance and overlap analysis in the
BRCA1/2 experiments
The identification of sequence variants in targeted
region(s) is a typical objective of resequencing. To test
how well variants are discovered using our multiplexed
tNGS model, we benchmarked different analysis strat-
egies and focused on SNPs, the most abundant form of
variation. Our SNP discovery results for selected multi-
plexes and different analysis strategies are summarized
in Figure 3 and Additional file 2: Table S5. The initial
SNP calling results using Corona Lite were not promis-
ing (Additional file 2: Table S6). We therefore reran the
mapping and SNP-calling stages using Bioscope. We
compared the SNP overlap and genotype concordance
for several data processing strategies. Additional file 2:
Table S7 shows a genotype concordance rate of 100%
for the non-indexed control samples. The 4-, 8-, 16- and
20-plex experiments yielded an average genotype con-
cordance rate of up to 98%, 79%, 80% and 55%. It was
surprising to us that Bioscope consistently overlooked
a few known ‘gold’ standard SNPs (for the definition
refer to the Methods section) despite high coverages at
the respective SNP positions in all Yoruban samples
(Additional file 2: Table S2 and Table S3). The Bioscope
consensus call output file gave more details than the Bio-
scope SNP file, reporting code ‘h15’ for rs206119 (which
translated into: ‘genome position has low quality, i.e.
needs more and longer reads to map this low-complexity
region’) and codes ‘h4, h10, h9’ for rs206123 (‘too many
invalid dicolors found, no conclusive second allele found,
tri-allelic SNP’). We therefore complemented our anal-
ysis with CLC bio, NextGENe, pibase and IGV. We
streamlined our manual genotype calling in IGV by clas-
sifying a genotype as homozygous if more than 80%
of the reads indicated the same base at that position.
Otherwise we classified it as heterozygous [8].
For the Yoruban sample we observed a good SNP

overlap (15/15) and reached a concordance of 14/15
through visual inspection in IGV. Bioscope called only
13/15 SNPs with the chosen settings and also with many
alternative settings (Bioscope_settings.xls at [19]). Our
manual inspection of the mapped reads at the false



Figure 3 SNP metrics for different multiplexes and analysis strategies (third stage of our multiplexed tNGS test model). This figure
summarizes the SNP detection and genotype concordance results of the human BRCA1 and BRCA2 experiments. The results are detailed for
known SNPs within the TR for the 26 barcoded Yoruban samples (two 4-plexes, one 8-, 16- and 20-plex) and the non-barcoded control.
The results shown in this figure were generated using Bioscope 1.0.1 (mapping, SNP-calling), SAET (pre-mapping read enhancement), SAMtools
(SNP-calling), pibase (SNP-typing), and IGV (manual inspection). The identified SNPs were benchmarked against a ‘silver’ and a ‘gold’ consensus of
published and validated genotypes (see Methods section). Known SNPs which we failed to detect with a specific tool are counted as false
negatives (FN, dark grey for the ‘silver’ consensus and brown for the ‘gold’ consensus). Potential novel SNPs which could not be validated with
certainty are counted as false positives (FP, blue for SNPs in only one library and light blue for SNPs in several libraries). The first four groups of
columns show the automatic SNP-calling results, and the rightmost two groups show the manual inspection results. For TR mapping (first two
groups), Bioscope detected more known SNPs than for whole-genome mapping (middle groups, no barcode, 4-plex) and also more FP SNPs.
With SAET read enhancement Bioscope detected fewer known SNPs (second and fourth group, TR 4-plex and no barcode, WG 4-plex) than
without SAET (first and third group). The SAMtools SNP-caller (fifth and sixth groups) performed worse than Bioscope. Our pibase re-analysis
(seventh group) and manual inspection in IGV (rightmost two groups) revealed that the Bioscope and SAMtools SNP-callers filtered out known
SNPs which were detected with pibase and also seen in the mapped reads. A detailed description is given in the Results section. In summary, to
automatically detect SNPs with minimal manual filtering of false positives or false negatives, and to take advantage of short run times, we
recommend a combination of multiplexing technical replicates, mapping to the TR, and backmapping the reads covering the SNPs to the WG
(see Conclusion section).
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negative SNP positions clearly showed a non-reference
allele consensus, i.e. a SNP (Additional file 3: Figure S3
and Additional file 2: Table S8). The CLC bio analysis
(sample “4plex-1 bc05”, a sample from the first 4-plex
with barcode 5) called 15/15 SNPs with a concordance
of 13/15 (or 15/15 if the minor allele threshold for het-
erozygosity was manually adjusted) (Additional file 2:
Table S9). The NextGENe analysis called 12/15 SNPs
(Additional file 2: Table S10). For the Chinese individual
(Additional file 2: Table S1 and Table S11), the Bioscope
genotype concordance rate was near 100% for the 4-plex
samples and the control sample, but the Bioscope SNP
overlap was significantly lower than for the Yoruban
samples. This, we assume, was partially due to the
considerable false positive rate in the HapMap 3 data.
Finally, we analyzed the Yoruban samples to distinguish
potential novel SNPs from false positives or sequencing
errors. We eliminated about 15-20% of SNPs as false
positives using SNP-backmapping (see Additional file 1
and Additional file 2: Table S2). Then we eliminated
about 20-30% of SNPs in the 4-plexes as unconfirmed
using inter-sample concordance checks between
technical replicates (see Additional file 1 and Additional
file 2: Table S12). For one sample and one bioinformatics
strategy (4-plex1bc05, SAET read enhancement, Bio-
scope TR mapping, Bioscope SNP-calling), we manually
inspected the remaining SNPs to assess more accurately
the false positive SNP calling rate after our filtering
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process: Bioscope called 75 SNPs, of which we removed
13 SNPs (17%) by backmapping the SNP and its flanking
25 reference bases to the WG. We then eliminated 22
SNPs (29%) after inter-sample validation within the same
multiplex, considering concordant genotypes shared by
several samples valid and rejecting the rest as potential
false positives. We eliminated 34 SNPs (45%) that were
known in dbSNP130. We eliminated one further SNP
(1.3%) that was known in our ‘silver’ consensus (see
Methods for the definition and details). We inspected
the remaining 11 SNPs (15%) in the IGV viewer (Add-
itional file 2: Table S13a), leaving 5 SNPs (8%) as poten-
tial novel SNPs and estimating the upper bound for false
positives called by Bioscope at 6 SNPs (9%), and the
upper bound for false positives after manual inspection
at 5 SNPs (8%). We repeated this procedure for the non-
SAET reads that resulted in 15 potential novel SNPs
(Additional file 2: Table S13b). Finally, we identified the
most likely potential novel SNPs (Additional file 2: Table
S13c), i.e. those that were present in the SAET-reads and
the raw reads, and subjected these to Sanger sequencing.
As controls, we also selected some unlikely novel SNPs
and a known SNP for sequencing (Additional file 2:
Table S13c). We could not validate the potential novel
SNPs.
Figure 3 (and Additional file 2: Tables S2, Table S3 and

Table S5) summarizes our different bioinformatics strat-
egies and SNP-calling results for the same 26 indexed Yor-
uban samples and the non-barcoded Yoruban control. We
explored whether TR mapping increases SNP-calling sensi-
tivity compared to WG mapping, expecting a higher rate of
false positive SNPs for TR mapping as a trade-off. The first
four groups, in Figure 3, show automatic SNP-calling
results using Bioscope without any manual inspection. The
automatic detection of known SNPs (our internal ‘silver’
standard) worked best for the non-barcoded control and
the 4-plex. There was very little difference in sensitivity be-
tween TR and WG mapping. However, SAET read-
enhancement decreased the Bioscope detection rate for
known SNPs slightly, for example from 48/66 SNPs to 44/
66 SNPs in the 4-plex using TR mapping. This was surpris-
ing because SAET led to an increase in the mapping cover-
age. After TR mapping (first two groups in Figure 3), SNP-
backmapping, and manual inter-sample genotype concord-
ance computation, we obtained 3–15 potential novel SNPs
(for instance, 15 candidate SNPs for the SAET-enhanced
reads in the 4-plexes). For WG mapping (third and fourth
group in Figure 3), we only obtained one potential novel
SNP at most. Groups number five and six in Figure 3 show
results from the mapping with Bioscope and the SNP-
calling with SAMtools mpileup, for genotype quality
thresholds of 0, 9, 19 and 29. The sensitivity of
SAMtools‘SNP-calling is slightly inferior to that of Bio-
scope. SAMtools also called more false positives than
Bioscope. Bioscope mapping and pibase genotyping (sev-
enth group) clearly yielded the best results. A subjective
manual inspection in IGV (eighth and ninth groups)
revealed evidence or at least some traces of all known SNPs
in the Yoruban control (original reads mapped to TR) and
the 4 plex1bc05 (original reads and SAET-enhanced reads
mapped to TR). But it also yielded more discordant SNPs
than pibase.

Fourth stage: read-backmapping approach for public
exome data
In the fourth stage we applied our combined mapping
approach (TR mapping and read-backmapping to WG)
to two human exome Illumina HiSeq2000 data sets: a fe-
male CEU HapMap individual and her father (Additional
file 2: Table S14). The entire process (mapping to the
TR, read-filtering, initial SNP-calling, read-extraction,
read-backmapping to the WG, and final SNP-calling) was
two-fold faster, required only 10 hours (instead of
~22 hours) of computational time per exome on an eight-
core linux compute node (Additional file 2: Table S15). At
the initial SNP-calling stage, SAMtools called 71,488 var-
iants for the daughter (Additional file 2: Table S16) of
which 16,518 were homozygous, and 77,055 for the father,
of which 17,052 were homozygous. After read-
backmapping to the WG and final SNP-calling, 38,602
variants remained for the daughter and 38,763 for the
father. This means that ~50% of the originally called var-
iants were eliminated as likely false positives resulting
from force-mapped reads (Additional file 3: Figure S4). It
should be noted that some of the eliminated variants
could be true variants in homologous regions of the gen-
ome. After filtering away the variants outside the exome,
20,745 remained for the daughter and 20,901 for the
father. We estimated the false negative rate of SAMtools
SNP-calling in the target region to be 9% (Additional file
2: Table S16), by computing the overlap with known SNPs
in HapMap chip data (file: hapmap3_r1_b36_fwd.CEU.qc.
poly.recode.map/ped at [20]). By comparison, we also per-
formed mapping to the WG, SNP-calling, and filtering of
non-exome variants, which required 22 hours of computa-
tional time. This resulted in only 20,183 SNPs for the
daughter and 19,912 for the father, and showed that our
approach has the potential to ‘rescue’ 3%-5% of valid SNPs
which may not be detected using WG mapping. The
SAMtools false negative rate in WG was only 6.5%. The
SNP overlap between our approach and the conventional
approach was only 92% (Figure 4), reflecting the problem
of SAMtools not detecting all true SNPs, which we already
mentioned in the BRCA1/2 experiment (Figure 3). It
should be noted that we used all SNPs without filtering
away low-quality SNPs, to reduce the number of false
negatives. The concordance between TR/backmapping
and WG is 99% when including these unfiltered SNPs,



Figure 4 Venn-Diagram of target-region-mapping SNPs,
whole-genome-mapping SNPs, and HapMap chip data SNPs
(fourth stage, exome data). This Venn-diagram shows the
total numbers of known SNPs and unknown SNPs (italics) in
the exome TR from target-region mapping with SNP-cleanup by
read-backmapping to the whole genome (TR+Back), whole-genome
mapping (WG), and HapMap SNP-chip data from HapMap individual
NA12878 (HapMap). The figure implies that the detection rate for
unknown SNPs was increased three-fold by combining both mapping
approaches (whole genome and target-region mapping).
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showing that the backmapping method is applicable. Our
results also suggest that SAMtools false negatives can only
be reduced by using the TR/backmapping method as well
as the WG method.

Discussion
We here present a novel and more specific ‘two-stage’
mapping/SNP-calling approach, which can speed up
the analysis of a human exome sample by 12 hours on
an 8-core compute node, and which can be applied to any
targeted enrichment sample/region. We evolved this
approach when we analyzed targeted enrichment runs and
found that conventional mapping and SNP-calling takes
up a wasteful amount of time and computing resources.
In our targeted enrichment experiments, we first eval-

uated a scalable multiplexed protocol for high coverage
tNGS to investigate cost saving and quality control
potential. We subjected barcoded (indexed) SOLiD
libraries instead of gDNA to one selected microarray-
based sequence capture method. We tested this pre-
enrichment sample multiplex approach by sequencing
68 E. coli genes as well as two human cancer genes
(BRCA1 and BRCA2) in three independent stages and
different multiplexing folds on the SOLiD system. We
achieved good and reproducible coverage profiles for the
TRs across most of the different multiplexed samples,
enriching human exonic as well as intronic regions with
less than 10% strand bias (Additional file 2: Table S17).
Nevertheless, our enrichment design successfully cap-
tured only 54% of human BRCA1/2 regions. This weak-
ness of the tested enrichment design would also apply to
other hybridization-based sequence capture bait designs
that subject targets to repeat masking before probe
design. For this reason, longer capture baits and iterative
refinement of the bait design would be required for such
genomic regions with low complexity. To evaluate
the SNP discovery performance we then analyzed our
sequencing data employing different mapping and ana-
lytical tools, which have rapidly evolved within the last
two years (see Figure 2). We found that SNP detection
in enriched regions - even at high coverages - depends
strongly on the tools and their settings. These SNP-
callers, including the widely used SAMtools [16], do not
seem to be well-trained to handle enrichment data, and
thus produced a significant fraction of false positive and
negative SNP calls (Figure 3). To partially overcome this
common mapping/SNP calling problem we proposed to
combine the advantages of WG mapping (lower false
positive SNP detection rate) with TR mapping (faster
processing with higher SNP detection rate) (Figure 3)
and developed our novel ‘two-step’ mapping approach.
In this approach we first mapped raw reads to the TR to
achieve faster mapping and SNP-calling, due to the
smaller reference sequence, and to detect more SNPs,
due to mapping more reads into low-complexity regions
and obtaining higher coverages. We followed the first step
with a SNP-cleanup mapping step to reduce false posi-
tives: In this step, only the SNP-supporting reads and
their paired mates are mapped back to the WG (Add-
itional file 3: Figure S4). Our novel approach resulted in
more valid SNPs being detected and a more than two-
fold speed-up of the time-consuming exome analysis.
Inadequate enrichment and/or coverage can prevent

the detection of real nucleotide variants, leading to
higher false negative rates, particularly for heterozygotes
[21,22]. In general, 20-fold coverages are deemed neces-
sary for reliable sequence variation calling in data
from the 454 platform [23], Illumina Genome Analyzer
[24], and SOLiD [24-26]. Other studies recommend a
sequence coverage higher than 30× to minimize the risk
of failing to detect true SNPs [27], and at least 33× to
enable the correct genotyping of most of the heterozy-
gous positions [21]. These high coverage thresholds are
backed by a simulation of the SNP detection perform-
ance at the NOD2 gene, which is associated with Crohn’s
disease; it fell rapidly when the achieved coverage was
below 40× [28]. But a high coverage is not the only pre-
requisite for accurate detection of sequence variation
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[6]. Rather, SNP detection seems to be significantly
affected by the chosen alignment tools and SNP callers,
as revealed from the results of our analyses (discussed
further below). This is also in agreement with the results
of a comparative analysis [29] of different alignment
tools, which showed that there was a disturbingly low
level of agreement between genome alignments pro-
duced by different tools. It concluded that it was not
possible to make definitive qualitative statements con-
cerning the alignment tools, as there are distinct trade-
offs in their behaviours. Indeed, the 1000 Genomes
Project Consortium [30] reported that their NGS geno-
typing accuracy at heterozygous sites was 95% and
higher in some regions, dropping off to 70%-80% or
lower in “harder to access regions of the genome”. To
avoid false positives, the novel SNPs published by the
consortium are the consensus of two or more independ-
ent groups, sequencing platforms, and pipelines.
Our experimental results (Figure 3) show that the

enrichment and sequencing led to highly covered bases
and the greatest number of SNP calls for the non-
barcoded controls and the 4-plexes. They also illustrated
that all SNP-calling tools performed weakly, with the
exception of pibase and ‘manual’ inspection of aligned
reads in IGV. Depending on the SNP-caller, WG map-
ping is generally characterized by a lower false positive
and a slightly higher false negative SNP detection rate.
The reverse holds true for TR mapping. Accordingly,
combining both mapping approaches may help to rescue
undetected true SNPs, and filter false positive SNP-calls.
Regarding SNPs in non-repeat-masked regions, we feel
confident that TR mapping with read-backmapping to
the WG is an accurate and reliable method, because we
discovered 4 genotyping errors in the HapMap data
(21% of the non-reference genotypes) within our TRs.
We supported this conclusion by Sanger sequencing
(Additional file 3: Figure S5). When comparing our
BRCA1/2 SNPs with the HapMap3 SNP chip data, we
detected up to 4.4× more known SNPs than have been
published as HapMap chip data.
SNP-callers were originally optimised for low or mod-

erate variations in coverage. In other words, extremely
high coverages or high coverage gradients are currently
challenging from the bioinformatics point of view. Even
for non-enriched samples, some degree of automatic or
manual postprocessing is required specifically to distin-
guish SNPs from misalignments [30]. A previous study
[23] confirms our findings and emphasizes that manual
inspection is an essential part of the analysis. As large-
scale manual inspection is unfeasible and prone to
subjective errors, we use the pibase software [17], manu-
script under review) for interrogating BAM files [16],
re-typing SNPs, and other analysis tasks. As shown in
our BRCA1/2 and exome analyses, the re-typing of SNPs
in targeted enrichment experiments is cbuindispensible
(for example, using pibase). We further recommend, if
cost allows, to duplicate samples (which is easily per-
formed in a multiplexed experiment) and validate com-
puted SNPs by inter-sample concordance checks
between these technical replicates.
The bioinformatic processing of eukaryotic and meta-

genomic sample data sets can occupy a compute cluster
for days to weeks. For multiplexed targeted enrichment
of human samples (1536 samples can be sequenced in a
single SOLiD run), the genome-sized data traffic may
overload the compute cluster when too many samples
are processed in parallel. Compared to BioScope, other
pipelines such as BWA alleviate this problem, but a
complete exome run using BWA, SAMtools and Picard
nevertheless takes about a full day. Our aim was to cut
the computational time significantly by mapping to the
small TR (100 kb of BRCA1/2 regions, or 61 MB of
exome regions, compared to 3 Gb of human genome)
and cleaning up force-mapped reads. For exomes, we
cut run time by more than half, enabling overnight
runs on an 8-core node, or turnaround within a work-
ing day (4–5 hours) on a 16-core node. This run time
cut is necessary to match the speed of new high-
throughput platforms such as the Illumina HiSeq2500,
which takes 27 hours for producing 120 Gb (see Add-
itional file 2: Table S18 for details on potential energy
saving calculations).

Conclusions
We successfully demonstrated our novel time-saving
‘two-step’ mapping approach using Illumina HiSeq2000
human exome data from the 1000 Genomes Project.
This approach consists of TR mapping with subsequent
SNP-cleanup by read-backmapping to the WG. We
developed this approach after designing targeted enrich-
ment experiments and experiencing an odyssey of run-
time and SNP-detection problems when we used a wide
range of mapping and SNP-calling tools. We recom-
mend our approach and the employed tools (BWA,
SAMtools, Picard, VCFtools, pibase) for a reliable and
efficient analysis of exome and targeted enrichment data.
To attain confident results, we specifically recommend
the SNP-validation between duplicated samples and a
final in silico validation using recently developed soft-
ware and/or manual inspection.

Methods
The study design for our tNGS test model is shown in
Figure 1. In our test model, we began the procedure by
constructing the SOLiD sequencing fragment libraries
(with and without barcodes) and pooling the desired li-
braries. Then, for each individual sample or pool we
selected and enriched the TRs using the HybSelect
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sequence capture technology ([31-33]; Febit biomed
GmbH, Heidelberg, Germany). This included three main
steps: hybridization of the genomic DNA library to a
Geniom biochip containing target-specific DNA capture
probes, washing off non-captured DNA fragments, and
elution of the captured fragments. Then, we resequenced
the enriched products using the SOLiD 3.0 system plat-
form (Life Technologies, Foster City, CA, USA). Details
for each step (first, second, and third experimental
stages) are fully described in the Additional file 1. Based
on these experiments, we finally developed a novel ‘two-
stage’ mapping/SNP-calling approach, which we demon-
strated to work on human exome data from the 1000
Genomes Project.

SOLiD sequence analysis (stages 1–3)
We performed read mapping and SNP calling with
SOLiD Corona Lite and later switched to Bioscope
(a pre-release version of v1.2), after the manufacturer
advised that the Corona Lite SNP-caller (pre-release
diBayes) was not designed for enriched samples (because
of high coverages, steep coverage gradients and/or PCR
duplicates). Our Bioscope mapping and SNP-calling set-
tings (Bioscope plan and ini files) are fully documented
on the project homepage [19]. For SNP-calling we fol-
lowed the manufacturer’s recommendations for enriched
samples and set ‘call.stringency = high_coverage’ and
‘coverage.iqr.het.high = 10000’. These settings tell the
SNP-caller that the coverage is ‘high’, that SNPs must
be supported by reads on both strands, and that very-
high-coverage SNPs are not artifacts. The filtering of
base qualities and reads (low quality reads, duplicate
reads) is carried out internally by the Bioscope SNP-
caller using its own methods, and is reported in a ‘con-
sensus call output file’.

SOLiD reference sequences
We mapped the 50-mer reads using two separate map-
ping strategies for each sample: WG mapping (i.e. the
normal procedure) and TR mapping (i.e. the computa-
tionally faster procedure). For E. coli WG mapping we
used the E. coli K-12 M1655 genome (GenBank U00096;
Refseq NC_000913) as our mapping reference. For
human WG mapping we used the NCBI36/hg18 assem-
bly as our mapping reference. For TR mapping we con-
structed a single FASTA reference sequence consisting
of greater TRs, each separated by a block of 50 Ns (i.e.
taking into account the read length of 50). Greater TRs
consisted of the actual TRs, extended by 49 bases and
merged with adjacent TRs if an overlap occurred. The
reason for defining greater TRs was to map reads which
partially overlap actual TRs. For E. coli we targeted 68
genes with a total length of 90 kb. For the human samples
we targeted 198 small regions with a total length of 90 kb
in two genes (a reduction of the size of the intended
TRs from 165 kb to 90 kb because of the repeat-masker
to enable designing efficient capture probes).

SOLiD coverage and technical reproducibility analyses
We wrote R-scripts [34] for the coverage analyses and
plots, using the mapping statistics files and the base-wise
coverage files generated by Corona Lite and Bioscope.
Our coverage metrics included percentage on-target
reads (specificity), average depth of coverage (ADoC),
covered TR bases (completeness), percentage TR bases
at various coverage depths (2×, 5×, 15×, etc.), on-target
versus off-target coverages (AUC), and enrichment factor
(EF, see Additional file 1, formula (1)). For visualizing the
coverage uniformity between all barcoded samples of the
same plex and comparing with non-barcoded samples,
we generated a zoomed-in multi-sample coverage plot
for each TR (see Additional file 3: Figure S6). To analyze
the technical reproducibility of coverages between sam-
ples we created a scatter plot and computed Pearson’s
coefficient of correlation for pairs of samples, and
summarized these coefficients for all samples in the form
of a correlation matrix (Additional file 3: Figure S7).

Consensus SNP list for SNP-calling benchmark in the
SOLiD BRCA1/2 experiments
As validated references for our own SNP-calling, we cre-
ated consensus SNP lists for the Yoruban HapMap indi-
vidual NA18507. We created our ‘gold’ consensus from
the HapMap3 data ([20]), WG Illumina NGS data [21]
(file: pgYh1.txt.gz at [35]), WG SOLiD NGS data (file:
Yoruban_snp_18x.gff at [36]), and by Sanger resequen-
cing, resulting in 15 non-reference genotypes in the TR
(Additional file 2: Table S19). This eliminated 4 of 19
HapMap SNPs (21%), which is broadly in line with the
HapMap3 website (28 June 2012) estimate of a 12%-14%
false positive rate. We created our ‘silver’ consensus of
66 non-reference genotypes from the WG Illumina data
and the WG SOLiD data. For the Beijing Han Chinese
HapMap individual NA1856 our benchmark SNP list
was the HapMap3 SNP list with 28 non-reference geno-
types (Additional file 2: Table S19), due to the unavail-
ability of ‘highly’ covered WG data (see Results/
Discussion sections in the Additional file 1).

SNP cleanup by ‘read-backmapping’
To clean up SNPs obtained after our fast TR mapping
approach, we initially tested a ‘SNP-backmapping’ approach
(see Results and Additional file 1). This did not eliminate
all potential false positive SNPs (Figure 3). We then
developed our ‘read-backmapping’ approach to eliminate
all force-mapped reads: First, only those reads (and, if
present, their paired mates) that cover SNPs are mapped
to the WG, which identifies reads that map better or



ElSharawy et al. BMC Genomics 2012, 13:417 Page 10 of 12
http://www.biomedcentral.com/1471-2164/13/417
equally well to a different locus. Then, each SNP is re-
typed using only those reads that remain mapped
uniquely over the SNP. The read-backmapping method
corresponds exactly to the WG mapping, except that
only the SNP-covering reads (and their paired mates, if
appropriate) are mapped (and not all initial reads). To
implement this method, we wrote Python scripts [19]
and utilized existing freely available standard tools. We
based our implementation on the current standard align-
ment format BAM [16] and the current standard gen-
omic region format BED [37]. Our implementation is
not applicable to SOLiD Corona Lite, SOLiD Bioscope
v1.0.1 or pre-release v1.2, as these pipelines do not gen-
erate BAM files. As a note, BioScope and its successor
LifeScope are not freely available. Therefore, we here
show results for freely available data and pipelines from
the 1000 Genomes Project [30].

Stage four: illumina data from the 1000 genomes project
To evaluate the performance of our backmapping pipe-
line we used publicly available sequence data of a Hap-
Map CEU family trio (ID 1463) who had been repeatedly
sequenced within the 1000 Genomes Project [30]. As
representative exome examples, we chose two runs sub-
mitted by the Broad Institute ([38]) where the genomic
DNA of the father and his daughter had been prepared
as paired-end exome libraries (Hybrid Selection) and
sequenced on an Illumina HiSeq 2000. To test our
approach on genomic data, we selected a third run sub-
mitted by the Broad Institute, where a paired-end WG
library of the mother’s gDNA had been sequenced on an
Illumina Genome Analyzer II. The data are publicly
available from the sequence read archive [39]: female
NA12878 (SRR098401), her father NA12891 (SRR098359),
and her mother NA12892 (SRR032860). More details on
the Illumina runs are given in Additional file 2: Table S14.

Conventional mapping and SNP-calling (whole genome
reference)
We aligned the reads to the human genome reference
NCBI GRCh37 [40] using BWA [41], converted its SAM
output to BAM format with SAMtools [16]. Then we
removed duplicates with Picard [42]. Finally, we called
variants using SAMtools with the option “mpileup –E”
for higher sensitivity but lower specificity [43].

Mapping and SNP-calling (exome reference)
The exome-based reference sequence for the TR map-
ping was created as follows: We downloaded a file of
exonic regions, represented by the compatible Consen-
sus Coding Sequence (CCDS) file ‘CCDS.20110907.txt’
at [44]. We then converted the CCDS file into BED-
format [37] with a self-written Python script, resulting in
287,287 lines – chromosome, start, and stop for each
exon. Next, we used another self-written Python script
to extract the reference bases for each BED region from
the WG reference GRCh37. The script included a pad-
ding of ± 50 bases to account for reads that only partly
originated from an exon. The script also merged the
overlapping regions, resulting in 183,410 sequences, and
concatenated the sequences into a single sequence using
50 Ns as a buffer between sequence regions. The same
script generated a text file with the coordinate trans-
formation table between the regions of interest in
the TR coordinates and the original WG coordinates.
Finally, we mapped the reads of the three individuals
against this new reference and called SNPs in the TR,
using the conventional mapping and SNP-calling pipe-
line described above for the WG reference.
Backmapping of SNP-supporting reads
We uniquely extracted reads covering heterozygous
SNPs, from the BAM-file. As the reads had been
sequenced from paired-end libraries, we also extracted
the according mate from the BAM-file and created new
FASTQ files containing these reads and their (possibly
unmapped) mates. We implemented the read-extraction
process in a self-written shell script which used VCF-
Tools [45], SAMtools, and Picard. Finally, we aligned the
extracted reads to the WG reference GRCh37, converted
formats, and removed duplicate reads using the steps
and programs previously described.
Final SNP typing
Using a self-written Python script and the coordinate
transformation file (see above), we transformed the coor-
dinates in the SNP-list from the exome reference coord-
inate system to the genomic coordinate system. We
divided the SNP-list into heterozygous SNPs and homo-
zygous SNPs. Because the heterozygous SNPs can be
artifacts resulting from the alignment of non-exonic
reads to the exome reference, we extracted the corrected
genotype at the SNP-coordinates from the backmapped
WG BAM file using the pibase software.
Additional files
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