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Abstract

Background: Phytophthora sojae is the primary pathogen of soybeans that are grown on poorly drained soils.
Race-specific resistance to P. sojae in soybean is gene-for-gene, although in many areas of the US and worldwide
there are populations that have adapted to the most commonly deployed resistance to P. sojae (Rps) genes. Hence,
this system has received increased attention towards identifying mechanisms and molecular markers associated
with partial resistance to this pathogen. Several quantitative trait loci (QTL) have been identified in the soybean
cultivar ‘Conrad’ that contributes to the expression of partial resistance to multiple P. sojae isolates.

Results: In this study, two of the Conrad QTL on chromosome 19 were dissected through sequence and
expression analysis of genes in both resistant (Conrad) and susceptible (‘'Sloan’) genotypes. There were 1025 single
nucleotide polymorphisms (SNPs) in 87 of 153 genes sequenced from Conrad and Sloan. There were 304 SNPs in
54 genes sequenced from Conrad compared to those from both Sloan and Williams 82, of which 11 genes had
SNPs unique to Conrad. Eleven of 19 genes in these regions analyzed with gRT-PCR had significant differences in
fold change of transcript abundance in response to infection with P. sojae in lines with QTL haplotype from the
resistant parent compared to those with the susceptible parent haplotype. From these, 8 of the 11 genes had SNPs
in the upstream, untranslated region, exon, intron, and/or downstream region. These 11 candidate genes encode
proteins potentially involved in signal transduction, hormone-mediated pathways, plant cell structural modification,
ubiquitination, and basal resistance.

Conclusions: These findings may indicate a complex defense network with multiple mechanisms underlying these
two soybean QTL conferring resistance to P. sojae. SNP markers derived from these candidate genes can contribute

to fine mapping of QTL and marker assisted breeding for resistance to P. sojae.
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Background

Phytophthora sojae Kaufm. and Gerd. is a yield limiting
soil borne pathogen of soybean (Glycine max L. Merr.).
This disease is most prevalent for soybean grown in
poorly drained soils, and symptoms include pre- and
post-emergence damping-off, root and stem rot, yellow-
ing and wilting of lower leaves of the plants [1,2]. P. sojae
is characterized as a hemi-biotrophic pathogen. P. sojae
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haustoria are produced during the early intracellular bio-
trophic stage and as the pathogen colonizes root tissues.
At later stages of infection, light tan to brown symptoms
develop leading to necrosis and cell death. Resistance to
P. sojae in soybean is conferred by both single, dominant
genes, known as Rps genes, that confer resistance to spe-
cific pathotypes (races) and partial resistance which is
inherited as quantitative trait loci (QTL) [1,2]. In both
types of resistance, zoospores move to the roots where
they encyst, germinate, and penetrate within the first six
hours after inoculation (hai) [3-5]. In Rps mediated re-
sistance, the hyphae from avirulent P. sojae strains were
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only found in the first three cell layers. In partial re-
sistance, hyphae colonized deeper into the cells of the
root cortex. At 48 hai, hyphae were found in the same
layers of root cells for soybean genotypes that are
highly susceptible or had high levels of partial resist-
ance [4]. The visible haustoria observed at 48 hai, and
disease symptoms at 72 hai, suggested that the bio-
trophic stage of P. sojae occurred within the first 48 hai
and the necrotrophic stage may begin approximately 72
hai in both partial resistant and susceptible soybean
genotypes [4].

A total of 19 QTL have been identified in soybean
genotypes resistant to P. sojae, of which 15 were mapped
from eight separate populations from the resistant culti-
var ‘Conrad’ [6-13]. Of these 15 QTLs, six mapped to
chromosome (Chr.) 2 (formerly Molecular Linkage
Group D1b; MLG D1b), five mapped to Chr. 13 (MLG
F), two mapped to Chr. 18 (MLG G), and the remaining
two mapped to Chr. 19 (MLG L) [6-8,10-12]. Interest-
ingly, the QTL on Chr. 2 and 13 were not consistently
detected with multiple isolates or the different field
assays from these studies [7,8]. Individual QTL that re-
spond differentially to specific isolates of a pathogen and
environmental conditions have also been identified in
several other host-pathosystems [14-17]. In order to
breed for a broad-spectrum durable host resistance, the
selected QTL must be able to confer resistance to mul-
tiple isolates of a pathogen, act stably under different en-
vironment conditions, explain a large percentage of the
phenotypic variation (major-effect QTL), and be con-
firmed in different mapping populations [15]. In an earl-
ier study, one of the QTL on Chr. 18 and two of the
QTL on Chr. 19 responded similarly following inocula-
tion to three isolates of P. sojae and with two different
disease assay methods [11]. These three QTL also
explained a significant proportion of phenotypic vari-
ation that contributed to reduced levels of root rot and
lesion size. Additionally, RILs with the resistant haplo-
types at these QTL had significantly higher yield than
RILs with the susceptible haplotypes in field tests. These
attributes make these QTL strong potential targets for
breeding of broad-spectrum resistance in soybean
against P. sojae.

To improve the efficiency of incorporating these QTL
into cultivar development, identifying the key genes con-
trolling these QTL and characterizing their functions is
key [15]. These genes are not only the best markers for
efficient breeding, but they are also important in under-
standing the mechanisms that contribute to the expres-
sion of partial resistance which still remained largely
unknown. In the soybean-P. sojae interaction, few stud-
ies have explored the molecular mechanisms that con-
tribute to the expression of partial resistance in Conrad
to P. sojae. Pathogenesis-related (PR) protein PR1a, PR2,
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basic peroxidase and matrix metalloproteinase transcript
levels were reported to be higher in Conrad compared
to OX 20-8 (highly susceptible) 3 days after inoculation
(dai) [18]. Two studies reported that preformed suberin,
a component of basal resistance, was higher in whole
roots of Conrad compared to those of the susceptible
line OX760-6 [5,19]. This was proposed to contribute
to a 2-3 h delay in P. sojae penetration through the
epidermis of Conrad compared to the susceptible line.
Whole-genome transcription profiling of eight soybean
genotypes with differential levels of partial resistance
to P. sojae, were analyzed using soybean Affymetrix®
gene chips [10,20-22]. The eight soybean genotypes were
examined at 3 and 5 dai, and ~25,000 genes had statisti-
cally significant responses to infection, with little differ-
ence in transcript levels between these two sampling
time points [20,22]. The infection response of four soy-
bean genotypes, including Conrad and a susceptible cul-
tivar Sloan, was also analyzed in a time course assay at
several locations surrounding lesion development with
the Affymetrix® gene chips [10,21]. Approximately
20,000 genes (53.4%) had significant changes in tran-
script abundance in Conrad and Sloan compared to
mock inoculated controls in response to P. sojae infec-
tion, and the majority of changes occurred at 2, 3, and 5
dai [10]. Under the two QTL on Chr. 19, 76.0% of the
genes had significant infection response in Conrad or
Sloan from this microarray analysis [10] (Figure 1). Inter-
estingly, most of the annotated functions of the genes
from these regions have been reported to be involved in
host defense to plant pathogens. None of the genes in
this region have an R gene-like motif based on the
Williams 82 reference genome [23].

To date, only three genes have been cloned from disease
resistance QTL in plants and they each encode proteins
with diverse functions [24-28], which is in accordance
with the multiple hypotheses for mechanisms underlying
QTL in effectively limiting pathogen colonization [16].
These three genes all had sequence variation between the
resistance and susceptible alleles [25-27]. In this study,
our hypotheses were that i) a complex network of
defense-pathways is underlying each soybean QTL confer-
ring resistance to P. sojae; ii) sequence of the genes under
a QTL between resistant and susceptible genotypes are
different in regions that will affect gene expression; and
iii) sequence analysis will expedite the identification of po-
tential candidate genes in soybean conferring resistance to
P. sojae.

The two QTL on Chr. 19 responded similarly across
different phenotypic assays and isolates of P. sojae, and a
large number of defense genes associated with these
QTL had significant changes in transcript abundance in
response to P. sojae infection. Thus, they are prime can-
didates to explore the variation in gene sequence and
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No. of
genes No. of No. of No. of SNP positions
Total with genes  genes genes No.
no. of micro-  with sequ- with of

Function® genes array data IR" enced SNPs SNPs UP UTR EX IN DN
= Signal transduction 36 19 15 26 15 205 59 8 36 88 14
B Metabolism 32 16 15 20 10 8 27 0 11 36 15
= Unknown 30 11 9 19 9 83 25 5 10 33 10
® Protein modification 24 16 12 18 12 238 55 12 25 125 21
® Transcription factor 20 10 8 15 10 58 23 4 8 23 -
® Transporter 20 9 S 11 7 85 31 3 13 35 3
= Cell wall 12 2 2 11 7 47 23 2 2 17 3
® RNA regulation S 3 2 2 - - - - - -
= Energy 5 3 2 2 1 14 12 - - - 2
H Stress response 4 3 2 2 1 15 - - 2 13 -
= Cytoskeleton 4 2 - 3 2 53 6 1 17 29 -
= Oxidation 4 2 1 3 2 31 5 2 3 21 =

PR protein 1 1 1 1 - - - - - - -

Others 3l 7 S 20 11 107 36 4 11 46 10

Total 228 104 79 153 87 1025 302 41 138 466 78
? Gene functions were categorized based on the descriptions from BLASTP search, and four other
databases (updated on Sept. 2011): Gene Ontology Descriptions obtained from the SoyBase (Grant et al.,
2010); PFAM, PANTHER, and KOG descriptions provided by the Soybean Genome Project, DoE Joint
Genome Institute.
" IR: Infection response—signiticant differences in transcript abundance of inoculated samples compared
to mock-inoculated samples in Conrad or Sloan (microarray data, TST-FDR, P < 0.05).

Figure 1 Functional categorization of the genes underlying QTL 19-1 and 19-2 for resistance to Phytophthora sojae.

expression patterns between the resistant and suscep-
tible genotypes. Therefore, our objectives were to: i) con-
firm the QTL in an advanced and larger
Conrad x Sloan population (246 RILs); ii) examine the
sequence variation of the genes underlying these QTL
between Conrad and Sloan; iii) analyze the expression
patterns of candidate genes representing different
defense mechanisms underlying these QTL following in-
fection by P. sojae. This research will not only address
an expedited means to identify candidate genes in soy-
bean conferring resistance to P. sojae, but also provide
more polymorphic markers for further fine mapping of
the QTL regions.

F6:8

Results and discussion

QTL confirmation in Fg.g population

These two QTL were identified previously in the Fyg
Conrad x Sloan population of 186 RILs [10,11]. In tray
test assays carried out in the present study, best linear
unbiased predictor (BLUP) values [29] from root lesion
lengths measured at 7 dai from P. sojae isolate 1.S.1.1 in
the Conrad x Sloan Fgg RIL population ranged from
-12.9 to 12.7 (lesion length 21.5 to 51.9 mm) with a
normal distribution, indicating that the resistance was
quantitatively inherited (Figure 2). The broad-sense
heritability estimate for lesion length was 0.87. Conrad
has high levels of partial resistance to P. sojae and
Sloan is moderately susceptible. Both of cultivars per-
formed consistently as checks across replicates.

Hereafter, Conrad and Sloan will be referred to as the R
and S genotypes, respectively. Five QTL with resistance
alleles from R cultivar, two each on Chr. 18 and 19 and
one on Chr. 1 (MLG DI1A), were identified, each
explaining 6.0-19.6% of the phenotypic variation for a
total of 67.2% for interval mapping (IM), and 4.8-11.9%
of the phenotypic variation for a total of 37.1% for com-
posite interval mapping (CIM) (Table 1).

The QTL 18-2, 19-1, and 19-2, which confer resist-
ance to multiple P. sojae isolates, were first mapped in a
Conrad x Sloan Fys population using two different
phenotypic methods [10,11]. In this study, all three QTL
were confirmed in the larger Fgg generation, flanked by
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Figure 2 Lesion distribution of the Fe.g ‘Conrad x Sloan
population inoculated with Phytophthora sojae.
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Table 1 QTL from Conrad against Phytophthora sojae mapped using the Fg.g Conrad x Sloan population
QTL? IM CIM Marker® Selected lines for qRT-PCR®

LOD Exp. Var. (%) LOD Exp. Var. (%) 2022 1960 1974 1854 S
19-1 6.0 1.8 35 48 BARC-047496-12943 + + - - -

Satt527
Glyma19g35340
GML_Osu10*
BARCSOYSSR_19_1243
19-2 94 18.1 79 1.9 Glyma19g40800
BARCSOYSSR_19_1452°
Glyma19g40940
Glyma19g41210
Glyma19g41390
BARCSOYSSR_19_1473
Glyma19g41580
Glyma19g41780
Glyma19g41800
Glyma19g41870

R
+
+
+
+
+
+
+
¥
+
+
+
+
+
+
+

Glyma19g41900 +

+
+
+
+
+
+
+
+
+
¥
+
+
+
+
+
+

Glyma19g42120
Glyma19g42200
Glyma19g42220
Glyma19g42240
Glyma19g42340
Glyma19g42390
BARC-039977-07624
1 3.1 6.0 37 50 BARC-060037-16311

BARC-064441-18673°
BARC-054071-12319

18-1 53 1.7 45 6.1 BARCSOYSSR_18_1707¢
BARCSOYSSR_18_1710

18-2 10.5 196 84 93 BARCSOYSSR_18_1777
BARC-057845-14952
BARC-039397-07314°
BARCSOYSSR_18_1949

e Tt
T T T S S o e i S T e S S S

+ o+ o+ o+ o+ o+ o+ o+

+ o+ o+ o+ o+ o+
|

The QTL presence in the six selected lines for qRT-PCR is also shown.

# QTL were presented as chromosome number, followed by the serial number if there were more than one on the same chromosome;

P Markers tested in each QTL interval: markers started with ‘BARC’ or ‘Sat’ are from the public databases (Choi et al., 2007; Hyten et al., 2010; Song et al., 2010),
and markers started with ‘Glyma’ are the PAMSA markers designed in this study;

€ Conrad (R) alleles for each marker were presented as “+” in the selected lines for qRT-PCR, while “-” referred to the Sloan (S) alleles;

9 Nearest marker under each QTL interval.

similar markers as in the F,.¢ population. The QTL 18-2  to contribute to the expression of partial resistance in
(Gm18: 59016134 to 62263273) co-localized with the other host-pathogen systems [16]. However, the R geno-
position of the R-gene mediated resistance to P. sojae, type in this study does not have known Rps genes, nor
Rps4 (flanked by markers BARC-031121-06998 and does this locus have isolate specificity to P. sojae. Direct
BARC-031193-07008, Gm18: 60469824 to 60780954) sequencing of this QTL region would be necessary to
and Rps6 (flanked by markers Sat_372 and BARC- assess if R-gene-like sequences were present in R or S
017669-03102, Gm18: 61095646 to 62046327) [30-32]. genotypes. In contrast to QTL 18-2, there were no R
Residual function of defeated R-genes has been proposed  gene-like sequences in Williams 82 where the QTL 19-1
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and 19-2 mapped, which indicates the mechanisms
underlying these two QTL that contribute to the expres-
sion of partial resistance are likely to be different than R-
gene mediated resistance. The QTL 19-1 and 19-2
spanned ~4.0 cM and ~4.8 cM, respectively, on the soy-
bean consensus map v4.0 [33]. In this study, these two
QTL had the log of odds likelihood LOD scores of 3.5
and 7.9 (CIM), and accounted for 4.8 and 11.9% of the
variation in lesion length, respectively (Table 1). The ex-
pression of broad-spectrum resistance to multiple iso-
lates, consistent detection through different phenotypic
assays, and detection in two generations of the same
population, make the two QTL on Chr. 19 prime targets
to examine the genetic and mechanistic contributions to-
wards the expression of partial resistance to P. sojae in
soybean. These QTL regions are large and encompass
many genes, thus, numerous molecular markers per
locus may be required to ensure successful introgression
of the critical component(s) of the locus for full expres-
sion of resistance in cultivars.

Sequence variation of genes underlying the QTL between
R and S cultivars

The QTL 19-1 and 19-2 spanned ~0.5 Mb (Gml19:
42819782 to 43332226) and 1.5 Mb (Gm19: 47108989 to
48606553), respectively, on the physical map [23]. A
total of 53 and 175 genes were within QTL 19-1 and
19-2, respectively (Additional files 1 and 2). These genes
were classified into 14 functional categories (Figure 1).
Of these 228 genes, 11 from QTL 19-1 and 142 from
QTL 19-2 were successfully amplified in R and S geno-
types with LR-PCR and sequenced with Illumina GA II,
including 1.2 kb upstream and 400 bp downstream of
the gene coding regions. A total of 1025 single nucleo-
tide polymorphisms (SNPs) were identified between R
and S in 87 genes (nine genes from QTL 19-1 and 76
from QTL 19-2) (Figures 1 and 3, Additional file 3).
The “Transcription factor’ (10 of the 15 genes) and ‘Pro-
tein modification” (12 of the 18 genes) functional groups
had the highest percentage of genes with SNPs between
R and S (Figure 1). Of the 79 genes with significant in-
fection response in R or S from the previous microarray
studies [10,21], 53 were successfully sequenced and 414
SNPs were identified from 29 genes (55% of sequenced
genes). For comparison, 17 of the 25 genes with no in-
fection response from the microarray results were
sequenced and 154 SNPs were identified from 10 genes
(59% of sequenced genes).

Among these sequences, there was a greater number
of SNPs in the introns and 1.2 kb upstream regions
compared to the exons and UTRs (Figure 1). This was
expected and similar to that observed in the soybean
genome reported from other studies [34]. There was an
average of 1.6 single nucleotide polymorphisms (SNPs)
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43 genes
Cvs. SW
(182 SNPs)
Svs.CW

11 genes
Cvs. SW
(122 SNPs)

33 genes
Svs.CW
(362 SNPs)

(359 SNPs)

Comparison # of SNPs
Conrad vs. Sloan 1025
Conrad vs. Williams82 1888
Sloan vs. Williams82 1872

Figure 3 SNPs detected between Conrad (C), Sloan (S), and
Williams 82 (W). The 1025 SNPs between Conrad and Sloan were
located in 87 genes, which were shown on the graph as three
groups, and the number of genes in each group had only SNPs
detected in the listed comparison.

per 1000 bp (0.16%), which was slightly higher than the
average SNP frequency (1 SNP per 1000 bp) in the genic
and perigenic regions of soybean cultivars calculated
from previous studies [35,36]. Marker assays using the
1,536 SNPs from the “Universal Soy Linkage Panel”, esti-
mated an average of 458 SNPs for each pair of soybean
cultivars based on pair wise comparisons of 96 elite cul-
tivars [33]. Only 320 of the 1536 SNPs were poly-
morphic between the R and S genotypes, which
indicated that the polymorphism between R and S was
slightly lower than the average for pairs of soybean culti-
vars [Cregan and Dorrance, unpublished data]. Thus, an
elevated SNP frequency in the genic and perigenic
regions of defense-related genes may reflect the se-
quence differences in these regions that control the
phenotypic differences in resistance between R and S.

Of the total 1025 SNPs between R and S, 304 SNPs
located in 54 genes within QTL 19-2 occurred in R
compared to both S and Williams 82 (Figure 3). There
were 11 genes that had 122 SNPs unique in R when
compared to S and Williams 82 (Figure 3, Table 2). Both
S and Williams 82 have lower levels of partial resistance
than R, hence we hypothesized that these 304 SNPs, es-
pecially those in the 11 genes, are more likely to contrib-
ute to the expression of high levels of partial resistance.
Of these 304 SNPs, 21 were non-synonymous, located in



Table 2 Eleven genes in which Conrad had unique SNPs vs. Sloan & Williams82

GlymalD/Affy ID? PFAMP GO function® PANTHER? KOG® BLASTP E-value BLAST # of SNP locations IRT_C IR_S
hit species SNPs
Glyma19g40800/- WD domain, - WD repeat WD-repeat protein Transducin/WD40  OE+00  Arabidopsis 47 exon, intron,
G-beta repeat protein WDR6, WD domain-containing thaliana downstream
repeat superfamily — protein
Glyma19g40840/- Pectinesterase/ Pectinesterase activity; - - Pectinesterase; OE+00  Medicago 1 downstream
Plant invertase/ cell wall; cell wall Pectinesterase truncatula
pectin methylesterase modification inhibitor
inhibitor
Glyma19g40940/- Glycosyl hydrolases  Carbohydrate metabolism; - - Glycoside hydrolase OE+00  Arabidopsis 2 upstream, intron
family 28 polygalacturonase activity family 28 protein thaliana
Glyma19g41590/ Haloacid Hydrolase activity 2-deoxyglucose-6- Predicted haloacid- 2-deoxyglucose-6-  0E+00  Ricinus 1 intron - -
Gma.14131.1.51_at dehalogenase-like phosphate halidohydrolase phosphate communis
GmaAffx.26456.1.51_at  hydrolase|Redoxin| phosphatase 2 and related phosphatase,
GmaAffx.76884.1.51_at NHL repeat hydrolases putative
Glyma19g41900/- F-box domain - - - Phloem-specific 2E-82  Arabidopsis 8 upstream,
lectin PP2-like thaliana 5' UTR, exon,
protein downstream
Glyma19g42120/ - - - Uncharacterized heparan-alpha- 0+00  Arabidopsis 1 intron -2-3 —2-3-5
Gma.14232.1.51_at conserved protein glucosaminide thaliana
N-acetyltransferase
Glyma19g42200/ Rapid AlLkalinization  Signal transducer activity - - Rapid AlLkalinization 9e-47  Medicago 11 upstream, 2 -
GmMa.9498.1.51_a_at Factor (RALF) Factor truncatula intron
Glyma19g42210/ RAD9 DNA repair DNA repair Checkpoint 9-1-1  Rad9 OE+00  Medicago 12 upstream, - -
GmaAffx.69813.1.A1_at protein RAD9 complex, RAD9 truncatula exon, intron
component
Glyma19g42220/ Respiratory burst Calcium ion binding iron ~ NADPH oxidase  Ferric reductase, Respiratory burst OE+00  Medicago 29 upstream, 2 2
GmaAffx.33386.1.A1_at NADPH oxidase; jon binding oxidoreductase NADH/NADPH oxidase 2 truncatula exon, intron
EF hand; Ferric activity; FAD binding oxidase and

reductase like
transmembrane
component;
FAD-binding
domain; Ferric
reductase NAD
binding domain

related proteins

8TY/€1/Y9LT-L L1 L/WOD [RAUSIPIWIOIG MMM//:d1Y
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Table 2 Eleven genes in which Conrad had unique SNPs vs. Sloan & Williams82 (Continued)

Glyma19g42240/ Core histone DNA binding Histone H2A Histone 2A Histone H2A 7 2e-73  Arabidopsis 2 upstream, -25 35
Gma.13144.1.51_at H2A/H2B/H3/H4; thaliana 5" UTR
Histone-like

transcription factor
(CBF/NF-Y) and
archaeal histone

Glyma19g42390/- Cyclin, - Family not Cyclin Cyclin-dependent  6e-59  Ricinus 8 upstream,
N-terminal domain named protein kinase, communis intron,
putative downstream

@ GlymalD/Affymetrix probe IDs that match with the predicted genes underlying QTL (http://soybase.org/AffyChip/), where “-" means there was no Affymetrix IDs available for the specific gene;

b PFAM description provided by the Soybean Genome Project, DoE Joint Genome Institute ( http://www.phytozome.net/soybean.php, updated on July 2011);

€ Gene Ontology Descriptions obtained from the (http://soybase.org, updated on July 2011);

¢ PANTHER description provided by the Soybean Genome Project, DoE Joint Genome Institute (http://www.phytozome.net/soybean.php, updated on July 2011);

€ KOG Description assigned by the Soybean Genome Project, DoE Joint Genome Institute (http://www.phytozome.net/soybean.php, updated on July 2011);

fIR: Infection response—significant differences in transcript abundance of inoculated samples compared to mock-inoculated samples in Conrad (C) or Sloan (S) (microarray data, TST-FDR, P < 0.05) at specified time
points (dai); where “-" means there was no significant response observed at any time point after inoculation, a positive value indicates that the gene was up-regulated at the specified time point, and a negative value
indicates the gene was down-regulated at the specified time point [10,21].
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Table 3 SNPs causing non-synonymous changes in Conrad (C) genes compared to Sloan (S) and Williams82 (W)

GlymalD/Affy ID? PFAMP GO function® PANTHER? KOG*® BLASTP function  E-value BLAST SNP position! Amino acid IR?
hit species C SW C s
Glyma19g40800/ WD domain, G-beta repeat - WD repeat protein  WD-repeat protein Transducin/WD40  OE+00 Arabidopsis 47113947 \ M
WDR6, WD repeat domain-containing thaliana
superfamily protein 47116418 L v
47116517 T A
47116586 | V
47116637 G R
47118102 G D
47118156 N S
47118234 S L
47118485 Y H
47119034 vV |
Glyma19g41230/- POT family Oligopeptide transport; Oligopeptide H+/oligopeptide  Nitrate transporter, OE+00  Ricinus 47535046 Q K
membrane; transporter transporter-related  symporter putative communi
activity
Glyma19g41630/ Nicotianamine Nicotianamine synthase - - Nicotianamine 2E-177  Lotus 47867334 R K -3-5 -3-5
GmaAffx.82770.1.51_at synthase protein activity synthase Japonicus
Glyma19g41740/- Calmodulin Calmodulin binding - - Calmodulin-binding 2E-50  Oryza sativa 47939823 S A
binding protein-like protein, putative
47940855 L M
Glyma19g41800/ Kinesin motor ATPase activity Kinesin heavy chain Kinesin Kinesin heavy chain, OE+00  Ricinus 47974179 M K - -
GmaAffx.67321.1.51_at domain microtubule binding (KAR3 subfamily)  putative communis
microtubule motor 47974243 N K

activity

8TY/€1/Y9LT-L L1 L/WOD [RAUSIPIWIOIG MMM//:d1Y
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Table 3 SNPs causing non-synonymous changes in Conrad (C) genes compared to Sloan (S) and Williams82 (W) (Continued)

Glyma19g41900/- F-box domain - - - Phloem-specific 2E-82  Arabidopsis
lectin PP2-like thaliana
protein

Glyma19g42210/ RAD9 DNA repair DNA repair Checkpoint 9-1-1  Rad9 OE+00  Medicago

GmaAffx.69813.1.A1_at protein RAD9 complex, RAD9 truncatula

component

Glyma19g42220/ Respiratory burst Calcium ion binding NADPH oxidase Ferric reductase,  Respiratory burst ~ OE+00 Medicago

GmaAffx.33386.1.A1_at NADPH oxidase|EF iron ion binding NADH/NADPH oxidase 2 truncatula

hand|Ferric reductase oxidoreductase activity oxidase and
like transmembrane FAD binding related proteins

component|FAD-binding
domain|Ferric reductase
NAD binding domain

47974369
48050493

48232086

48239628

48240340

STOP

-

w

@ GlymalD/Affymetrix probe IDs that match with the predicted genes underlying QTL (http://soybase.org/AffyChip/), where “-” means there was no Affymetrix IDs available for the specific gene;

® PFAM description provided by the Soybean Genome Project, DoE Joint Genome Institute ( http://www.phytozome.net/soybean.php, updated on July 2011);

€ Gene Ontology Descriptions obtained from the (http://soybase.org, updated on July 2011);

9 PANTHER description provided by the Soybean Genome Project, DoE Joint Genome Institute (http://www.phytozome.net/soybean.php, updated on July 2011);
€ KOG Description assigned by the Soybean Genome Project, DoE Joint Genome Institute (http://www.phytozome.net/soybean.php, updated on July 2011);

f SNP position shown as their coordinate on Chr. 19 reference sequence (http://www.phytozome.net/soybean.php, Glyma1);

9 IR: Infection response—significant differences in transcript abundance of inoculated samples compared to mock-inoculated samples in Conrad (C) or Sloan (S) (microarray data, TST-FDR, P < 0.05) at specified time
points (dai); where “-” means there was no significant response observed at any time point after inoculation, a positive value indicates that the gene was up-regulated at the specified time point, and a negative value

indicates the gene was down-regulated at the specified time point [10,21].
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Table 4 Genes with significant expression differences in Conrad vs. Sloan in qRT-PCR

GlymalD PFAM? GO function® PANTHER® KOG BLASTP E-value BLAST hit Contrasts Sampling points (hai)
species 12 24 48 720" 72.U
Glyma19g35340 Zinc-binding Zinc ion binding Alcohol Alcohol Alcohol OE+00 Ricinus cce -18
dehydrogenase dehydrogenase dehydrogenase,  dehydrogenase, communis RCf 20
related class Il putative :
IC® -15
Glyma19g40800 WD domain, - WD repeat protein  WD-repeat Transducin/WD40 OE+00 Arabidopsis CC -24
G-beta repeat protein WDR6, domain-containing thaliana RC 24
WD repeat protein ’
superfamily IC -19
Glyma19g40940 Glycosyl hydrolases Carbohydrate - - Glycoside hydrolase  OE+00 Arabidopsis CC 1.7
family 28 metabolism; family 28 protein thaliana
RC -19 =16
polygalacturonase
activity IC -22
Glyma19g40950 WRKY DNA Transcription factor - - Putative WRKY 9E-91 Arabidopsis CC -1.7
-binding domain activity; sequence- transcription thaliana RC 20
specific DNA binding factor 42 :
IC
Glyma19g40970  AUX/IAA family Transcription factor - - Auxin-responsive 1E-48  Ricinus CcC
activity protein 1AA20, communis RC o1
putative .
IC —24
Glyma19g41580 - - - - Transcription 1E-30  Arabidopsis CC -27 =73 =32
factor bHLH149 thaliana RC 15 73 55
IC -19
Glyma19g41800 Kinesin ATPase activity Kinesin heavy chain  Kinesin Kinesin heavy OE+00 Ricinus CcC -70 -66 -91 -64 -34
motor domain microtubule binding (KAR3 subfamily)  chain, putative communis RC 20
microtubule motor :
activity IC 54 —-48 -86 -32 47
Glyma19g41900 F-box domain - - - Phloem-specific 2E-82  Arabidopsis CC -19 -19
lectin PP2-like thaliana
protein RC 20 1.5
IC 18
Glyma19g41930 Leucine Protein binding F-box/leucine rich Leucine rich Ubiquitin-protein OE+00 Ricinus CcCc
Rich Repeat repeat protein repeat proteins, ligase, putative communis RC 33
some proteins :
contain F-box IC
Glyma19g42050 Calcineurin-like Protein serine/threonine Serine/threonine Serine/threonine  Serine/threonine- OE+00 Arabidopsis CC
phosphoesterase phosphatase activity protein phosphatase specific protein protein phosphatase thaliana RC 17
phosphatase PP1, PP1 isozyme 8 )
catalytic subunit IC
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Table 4 Genes with significant expression differences in Conrad vs. Sloan in qRT-PCR (Continued)

Glyma19g42120

Glyma19g42200

Glyma19g42220

Glyma19g42240

Glyma19g42340

Glyma19g42460

Rapid ALkalinization
Factor (RALF)

Respiratory burst
NADPH oxidase;
EF hand; Ferric
reductase like
transmembrane
component;
FAD-binding
domain; Ferric
reductase NAD
binding domain

Core histone
H2A/H2B/H3/H4;
Histone-like
transcription factor
(CBF/NF-Y) and
archaeal histone

Protein tyrosine
kinase

Core histone
H2A/H2B/H3/H4|
Histone-like
transcription factor
(CBF/NF-Y) and
archaeal histone

Signal transducer activity

Calcium ion binding iron
ion binding oxidoreductase
activity; FAD binding

DNA binding

Protein-tyrosine kinase
activity; protein amino
acid phosphorylation;
ATP binding

DNA binding
transcription factor
activity

NADPH oxidase

Histone H2A

Mapkk-related
serine/threonine
protein kinases

Histone-like
transcription factor
ccaat-related

Uncharacterized

conserved protein

Ferric reductase,
NADH/NADPH
oxidase and
related proteins

Histone 2A

MEKK and related
serine/threonine
protein kinases

CCAAT-binding
factor, subunit
C (HAP5)

heparan-alpha- 0400
glucosaminide
N-acetyltransferase

Rapid AlLkalinization  9e-47
Factor

Respiratory burst OE +00
oxidase 2

Histone H2A 7 2e-73
NPK1-related OE+00
protein kinase 1 L
ccaat-binding le-114

transcription factor,
putative

Arabidopsis
thaliana

Medicago
truncatula

Medicago
truncatula

Arabidopsis
thaliana

Arabidopsis
thaliana

Ricinus
communis

24

=21
36

29
2.5

24

-39
-34

P < 0.05, Fold difference > 1.5. Empty cell indicates that there was no significant difference, and a negative value indicates the fold that Sloan’s expression ratio was greater than Conrad’s.
@ PFAM description provided by the Soybean Genome Project, DoE Joint Genome Institute (http://www.phytozome.net/soybean.php, updated on July 2011);
© Gene Ontology Descriptions obtained from the (http://soybase.org, updated on July 2011);
€ PANTHER description provided by the Soybean Genome Project, DoE Joint Genome Institute (http://www.phytozome.net/soybean.php, updated on July 2011);

9 KOG Description assigned by the Soybean Genome Project, DoE Joint Genome Institute (http://www.phytozome.net/soybean.php, updated on July 2011);

€ CC: Constitutive contrast—significant fold difference in transcript abundance between Conrad and Sloan (C : S) in mock-inoculated samples at specified time points (HAI);

fRC: Response contrast—significant fold differences in infection response ratios (inoculated / mock-inoculated) in Conrad compared to Sloan (C : S) at specified time points (HAI);

9IC: Infection contrast—significant fold difference in transcript abundance between Conrad and Sloan (C : S) in infected samples at specified time points (HAI);
_h Samples were collected from the inoculation site at 72 HAI;
' Samples were collected from the front of lesion margin at 72 HAI.
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Table 5 Genes with significant expression differences in the R group vs. S group in qRT-PCR. P < 0.05, Fold difference > 1.5

GlymalD PFAM? GO function® PANTHER® KOGY BLASTP E-value BLAST Contrasts Sampling points (hai)
hit species 12 24 48 72" 72U
Glyma19g35340 Zinc-binding Zinc ion binding Alcohol Alcohol Alcohol OE+00 Ricinus cce
dehydrogenase dehydrogenase dehydrogenase, dehydrogenase, communis R 15
related class Il putative ’
Ic?
Glyma19g40800 WD domain, - WD repeat protein WD-repeat protein  Transducin/WD40 OE+00 Arabidopsis CC
G-beta repeat WDR6, WD domain-containing thaliana RC 18
repeat superfamily protein ’
IC
Glyma19g40940 Glycosyl Carbohydrate metabolism; - - Glycoside hydrolase  OE+00 Arabidopsis CC
hydrolases polygalacturonase activity family 28 protein thaliana
) RC -19
family 28
IC -16
Glyma19g40950 WRKY DNA Transcription factor activity; - - Putative WRKY 9E-91  Arabidopsis CC
-binding domain sequence-specific transcription thaliana RC
DNA binding factor 42
IC =15
Glyma19g40970 AUX/IAA family Transcription factor activity - - Auxin-responsive 1E-48  Ricinus CcC -15
protein IAA20, communis RC 19
putative o
IC =22 -18
Glyma19g41580 - - - - Transcription factor ~ 1E-30  Arabidopsis CC -16 -28
bHLH149 thaliana RC 15 23
IC
Glyma19g41780 GATA zinc finger Transcription factor activity; Transcription - GATA transcription 1E-23  Arabidopsis CC
regulation of transcription, factor gata factor 16 thaliana RC 15
DNA-dependent; zinc ion  (gata binding factor)
binding; sequence-specific IC
DNA binding
Glyma19g41800 Kinesin motor ATPase activity microtubule Kinesin heavy chain Kinesin Kinesin heavy chain, OE+00 Ricinus CcC -51 =56 —-67 —-29 -33
domain binding microtubule (KAR3 subfamily)  putative communis RC 20

motor activit

8TY/€1/Y9LT-L L1 L/WOY [RAUSIPIWIOIG MMM//:d1Yy

8THEL ‘TLOT So1wouan JNG ‘v 12 buem

€7 Jo 71 9beq



Table 5 Genes with significant expression differences in the R group vs. S group in qRT-PCR. P < 0.05, Fold difference > 1.5 (Continued)

Glyma19g41870

Glyma19g41900

Glyma19g41930

Glyma19g42050

Glyma19g42120

Glyma19g42200

Glyma19g42340

Protein
phosphatase 2C

F-box domain

Leucine Rich
Repeat

Calcineurin-like
phosphoesterase

Rapid Alkalinization
Factor (RALF)

Protein tyrosine
kinase

Protein serine/threonine
phosphatase activity

Protein binding

Protein serine/threonine

phosphatase activity

Signal transducer activity

Protein-tyrosine kinase
activity; protein amino
acid phosphorylation;
ATP binding

Protein phosphatase 2c Serine/threonine

F-box/leucine rich
repeat protein

Serine/threonine
protein
phosphatase

Mapkk-related
serine/threonine
protein kinases

protein
phosphatase

Leucine rich repeat
proteins, some
proteins contain
F-box

Serine/threonine
specific protein
phosphatase PP1,
catalytic subunit

Uncharacterized
conserved protein

MEKK and related
serine/threonine
protein kinases

Protein phosphatase
2¢, putative

OE+00

Phloem-specific lectin 2E-82

PP2-like protein

Ubiquitin-protein
ligase, putative

Serine/threonine-
protein
phosphatase PP1
isozyme 8

heparan-alpha-
glucosaminide
N-acetyltransferase

Rapid Alkalinization
Factor

Mitogen activated
protein kinase
kinase kinase 3,
mapkkk3, mekk3,
putative

OE+00

OE+00

0+00

9e-47

OE+00

Ricinus
communis

Arabidopsis
thaliana

Ricinus
communis

Arabidopsis
thaliana

Arabidopsis
thaliana

Medicago
truncatula

Ricinus
communis

IC
cC
RC
IC
cC
RC
IC
cC
RC
IC
cC
RC
IC
cC
RC
IC
cC
RC
IC
cC
RC
IC

-54 -62 7.

-6.2

20

28
2.1

=27

20

R group: lines with the Conrad haplotype (Conrad, the RILs 2022, and 1960); S group: lines with the Sloan haplotype (Sloan, the RILs 1974, and 2022). Empty cell indicates that there was no significant difference, and a

negative value indicates the fold of greater expression ratio in the group with the Sloan haplotype.
@ PFAM description provided by the Soybean Genome Project, DoE Joint Genome Institute (http://www.phytozome.net/soybean.php, updated on July 2011);

® Gene Ontology Descriptions obtained from the (http://soybase.org, updated on July 2011);
€ PANTHER description provided by the Soybean Genome Project, DoE Joint Genome Institute (http://www.phytozome.net/soybean.php, updated on July 2011);
4 KOG Description assigned by the Soybean Genome Project, DoE Joint Genome Institute (http://www.phytozome.net/soybean.php, updated on July 2011);

€ CC: Constitutive contrast—significant fold difference in transcript abundance between the group with Conrad haplotype and the group with Sloan haplotype in mock-inoculated samples at specified time points

(hai);

f RC: Response contrast—significant fold differences in infection response ratios (inoculated / mock-inoculated) in the group with Conrad haplotype compared to the group with Sloan haplotype at specified time

points (hai);

9IC: Infection contrast—significant fold difference in transcript abundance between the group with Conrad haplotype and the group with Sloan haplotype in infected samples at specified time points (hai);
_h Samples were collected from the inoculation site at 72 HAI;
' Samples were collected from the front of lesion margin at 72 HAI.

8TY/€1/Y9LT-L L1 L/WOY [RAUSIPIWIOIG MMM//:d1Yy

8THEL ‘TLOT So1wouan JNG ‘v 12 buem

€7 Jo €| abeq


http://www.phytozome.net/soybean.php
http://soybase.org
http://www.phytozome.net/soybean.php
http://www.phytozome.net/soybean.php

Wang et al. BMC Genomics 2012, 13:428
http://www.biomedcentral.com/1471-2164/13/428

60.00
50.00
40.00
30.00
20.00
10.00

0.00

B 3 dai
® 7dai

Lesion length (mm)

2022 1960 1974

Conrad

1854 Sloan

Soybean lines

Figure 4 Lesion lengths of the six lines for qRT-PCR after
inoculation with Phytophthora sojae. The data at 3 day after
inoculation (dai) were collected from the gRT-PCR assay while the
data at 7 dai were collected from the mapping study of the
Conrad x Sloan Fgg population. For each time point, bars with
different letters indicate the significantly different lesion lengths
(P<0.05).

eight genes (Table 3) and potentially contribute to the
differences in partial resistance by modified protein
structure(s).

Twenty-seven of 29 selected SNPs (one per gene) were
verified by a modified polymerase chain reaction (PCR)
amplification of multiple specific alleles (PAMSA) [37].
Locus-specific primers could not be found for the SNP in
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Glymal9g42510, of which a highly homologous copy was
present on Chr. 3. Sanger sequencing of the PAMSA ampli-
cons of the second gene not confirmed by PAMSA, Gly-
mal9g41420, identified a 22 bp deletion instead of the
predicted SNPs at 918-939 bp upstream (Additional file 4).
This gene is predicted to encode a serine/threonine pro-
tein kinase and microarray analysis indicated a similar
level of down-regulation in both R and S at 2 dai [10].
Thus, the deletion in the upstream region most likely did
not cause the infection response observed in both R and
S in the microarray analysis.

Candidate genes underlying the QTL and their expression
patterns

Microarray data was available for 21 of the 53 genes
from QTL 19-1, and 83 of the 175 genes under QTL
19-2 [10,21]. Of these, 15 genes from QTL 19-1 and 64
from QTL 19-2 responded significantly to infection in
R or S genotypes. The highest percentages of genes
(78.9-93.8%) with infection response were observed in
the ‘Signal transduction, ‘Metabolism, ‘Unknown, and
‘Transcription factor’ categories (Figure 1). To further
differentiate the potential candidate defense genes

@]
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Figure 5 Signaling genes from QTL 19-1 and 19-2 with significant infection response in gRT-PCR assays. A. Glyma19g35340 (Alcohol
dehydrogenase, class Ill); B. Glyma19g40800 (transducin/WD40 domain-containing protein); C. Glyma19g41870 (Protein phosphatase 2C); D.
Glyma19g42050 (Calcineucin-like phosphatase); E. Glyma19g42200 (Rapid alkalinization factor RALF); F. Glyma19g42340 (MAP3K-ANP1-like). Bars
labeled with different letters indicate the significantly different infection response between samples at a specific time point (P < 0.05). Letters only
appear above the bars of time points for which there were significant differences between Conrad and Sloan.
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within the QTL regions, one gene from QTL 19-1
and 18 genes from QTL 19-2 were examined for their
expression patterns in response to P. sojae infection at
12, 24, 48, and 72 hai in R, S, and four selected RILs
using qRT-PCR (Tables 1, 2, 3, 4, and 5, Additional
files 1, and 2). The genes were selected based on their
annotated functions, sequence variation and differential
expression patterns from microarray data between R
and S. Eight of the genes had microarray data with
significant infection response in R, of which six genes
had SNPs between R and S. A total of 15 genes in
qRT-PCR assay had SNPs between R and S, with eight
genes harboring unique sequence in R compared to
both S and Williams 82. The presence of R and S
alleles of these genes in the four RILs was verified by
PAMSA (Table 1).

During the qRT-PCR experiments, lesion symptoms
were not visible until 72 hai, which was the same timing
as symptom development reported in the microarray
assays [10,21]. Samples for analysis were collected at the
inoculation site for the first three time points. At 72 hai,
significantly longer lesions were observed in S and RIL
1854 in comparison to the remaining four lines (P <0.05,
Figure 4); tissue samples were collected both above the
lesion margin, similar to the microarray assays [10,21,22],
and at the inoculation site. Most changes of transcript
abundance were observed at 48 and 72 hai, which was
similar to the previous findings that most of the tran-
script abundance changes in the expression of partial re-
sistance to P. sojae in soybean occurred 48 hai or later
[10,18,22]. Similar expression patterns were obtained
with qRT-PCR compared to microarray data for six of
the eight genes at all time points. However, Gly-
mal9g42240 and Glymal9g42460 (Histone-like tran-
scription factors) had suppressed transcript levels at 48
hai in microarray assays [10], but not in the qRT-PCR
assays.

Overall, sixteen of the genes analyzed with qRT-PCR
had significant differences in transcript levels between R
and S in either mock-inoculated samples, infected sam-
ples, or infection response (P <0.05, fold difference > 1.5,
Table 4). These three types of expression contrasts were
also analyzed between the three lines harboring the R
haplotype (R group, Table 1) and the three lines with the
S haplotype (S group, Table 1) with significant differ-
ences observed for 15 genes (P<0.05, fold difference >
1.5, Table 5). Significantly different infection responses
in 11 genes were observed between R and S, as well as
between the R and S group (Tables 4 and 5). Eight of the
11 genes had SNPs in upstream, UTR, exon, intron, or
downstream region. The annotated functions and differ-
ential expression patterns of these 11 genes suggested
their potential association with the higher level of partial
resistance in R compared to S.
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Signaling genes

Five genes with annotated functions in signal transduc-
tion were found to be associated with the high level of
partial resistance in R. Calcineurin-like phosphatase
(Glyma19g42050) is a Ca®*- and calmodulin-dependent
serine/threonine phosphatase. It was up-regulated at
48 hai in the R group, which was 24 h earlier
than the S group (Figure 5). This gene is involved in
calcium-signaling, which is an important component
of plant-pathogen interactions [38]. Repression of
calcineurin-like proteins resulted in hypersensitivity to
abscisic acid (ABA), indicating their roles as negative
regulators of an ABA signaling pathway [39,40]. ABA
was also reported to be a negative regulator of R-gene
mediated resistance against P. sojae in soybean through
suppression of salicylic acid (SA)-mediated defense
pathways [41,42]. The results from this study indicated
calcineurin-like phosphatase in the defense pathways
could contribute to the high level of partial resistance
in R genotype. Its potential interaction with ABA-
signaling needs to be further explored in future studies
in the soybean partial resistance to P. sojae.

MAP3K is part of the MAP kinase cascade, which is
known to be one of the early signaling events in PAMP-
triggered immunity (PTI). The MAP3K-ANPI gene in
Arabidopsis was reported to suppress early auxin re-
sponse but activate MPK3 and MPK6, which are the
positive regulators of plant defense in PTI [43,44]. In
this study, a MAP3K-ANPI-like gene Glymal9g42340
with 11 SNPs in S compared to both R and Williams 82,
with seven in the upstream, three in the introns, and
one synonymous SNP was identified. The MAP3K-
ANPI-like gene was up-regulated during infection in the
R genotype at 48 and 72 hai. This gene also exhibited
significantly higher transcript abundances in the R group
than the S group at the inoculation sites 72 hai (Figure 5,
Table 5). These transcriptional results make this a candi-
date gene that may be involved in regulating soybean
defense to P. sojae.

Class III alcohol dehydrogenase (ADH), is also known as
the glutathione-dependent formaldehyde dehydrogenase
(FALDH) or S—nitrosoglutathione reductase (GSNOR). It
functions in nitric oxide (NO) signaling, which is an
important signaling pathway in regulating defense gene
expression, defense hormone interplay, and oxidative stress
response during plant-pathogen interactions [45-48]. In
Arabidopsis the orthologous gene, ADH2, has been
demonstrated to positively regulate basal resistance to
Pseudomonas syringae and Hyaloperonospora parasitica
through activating SA-mediated defense pathway [46].
However, another study reported that down-regulation of
ADH2 increased the basal resistance in Arabidopsis to
H. parasitica [48]. In this study, an ADH2 ortholog in
soybean (Glymal9g35340) had 19 SNPs in S compared
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Figure 6 Transcription factors from QTL 19-2 with significant infection response in qRT-PCR assays. A. Glyma19g40950 (WRKY
transcription factor); B. Glyma19g40970 (Auxin-responsive transcription factor); C. Glyma19g41580 (putative bHLH transcription factor); D.
Glyma19g41780 (GATA Zinc-finger transcription factor); E. Glyma19g42240 (Histone-like transcription factor); F. Glyma19g42460 (Histone-like
transcription factor). Bars labeled with different letters indicate the significantly different infection response between samples at a specific time
point (P<0.05). Letters only appear above the bars of time points for which there were significant differences between Conrad and Sloan.
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to both R and Williams 82, in the upstream, exon (one
of the two SNPs was non-synonymous), intron, 3 UTR
and downstream regions. It was down-regulated at the
inoculation sites 72 hai in the S group only (Figure 5).
The suppression of this gene may potentially contribute
to the susceptibility of soybean to P. sojae.

Rapid alkalinization factor (RALF) was first identi-
fied in a search for bioactive defense peptides in
tobacco, and it was reported to promote extracellular
alkalinity and activate MAP kinases [49]. Significantly
higher levels of RALF activation were observed in
the resistant variety of chickpea in comparison to the
susceptible one at 48 hai with Fusarium oxysporum
[50]. Interestingly, in a study with poplar, methyl jas-
monate (MeJA) treatment was found to strongly sup-
press RALF expression [51], which may indicate that
the defense pathways associated with activation of

RALF were different than the jasmonic acid (JA)-
mediated pathway. In this study, a RALF-encoding
gene (Glymal9g42200) had unique sequence in R
compared to both S and Willams82 (Table 2). It was
up-regulated in the R group at 48 hai, which was
24 h earlier than the S group (Figure 5). These
results suggest its potential association with partial
resistance in R.

A transducin/WD40 domain-containing protein (Gly-
mal9g40800) had unique sequence in R compared to both
S and Williams82 (Table 2). It was down-regulated in the
S group only at the inoculation site 72 hai (Figure 5).
Members of this class of genes in other plant species
have been reported to be up-regulated in the resistant
response to pathogen infection, such as in potato
against P. infestans [52] and in Arabidopsis against
Colletotrichum higginsianum [53]. The suppression of this
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Figure 7 Genes from different functional categories in QTL 19-2 with significant infection response in qRT-PCR assays. A. Metabolism:
Glyma19g42120 (heparan-alpha-glucosaminide N-acetyltransferase); B. Protein modification: Glyma19g41930 (putative ubiquitin-protein ligase); C.
Cell wall: Glyma19g40940 (Glycosyl hydrolases family 28); D. Cytoskeleton: Glyma19g41800 (Kinesin motor); E. oxidation: Glyma19g42220
(Calcium-binding oxidoreductase); and F. Other: Glyma19g41900 (putative phloem-specific lectin PP2). Bars labeled with different letters indicate
the significantly different infection response between samples at a specific time point (P < 0.05). Letters only appear above the bars of time points
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gene in soybean may potentially contribute to the suscep-
tibility to P. sojae.

Genes involved in hormone-mediated pathways

Auxin signaling and transport has been found in several
other pathosystems to promote plant susceptibility to
bacterial and fungal pathogens [54-56]. In Arabidopsis,
PTI suppressed the binding of Auxin-responsive TFs to
the promoters of downstream genes, hence down-
regulating the auxin-response pathway [57]. In soybean-
P. sojae interactions, transcript abundance of a PIN1-like
auxin transport protein and an auxin-induced protein
were both found to be up-regulated in S but were sup-
pressed in R at 3 and 5 dai [10]. In this study, an auxin-
responsive TF (Glymal9g40970) was up-regulated only
in the S group at the infection front 72 hai (Figure 6). At
the same time, the infected samples of S group also had
significantly higher transcript abundance than the R
group (Table 5). These results suggest the potential role
of auxin may be in the susceptible response, and one of

the partial resistance mechanisms in R may be the sup-
pression of P. sojae-induced auxin-signaling.

A bHLH TF, MYC2, was reported to positively regu-
late JA response to wounding and insect attack, but
negatively regulate the JA response to pathogen infection
[58]. This gene has been proposed to be a key regulator
in the crosstalk among SA-, JA-, ET-, and ABA-
mediated signaling pathways [59,60]. A putative bHLH
TF (Glymal9g41580) in this study had one SNP at the
251 bp upstream in R compared to both S and Williams
82, and the other synonymous SNP in an exon. Signifi-
cantly higher level of up-regulation was observed with
this gene in the R group at the inoculation site 48 and
72 hai (Figure 6, Table 5), which again indicated the
potential involvement of these hormone-mediated
pathways in soybean partial resistance to P. sojae.

As observed in previous studies [4], the disease symp-
toms in this study were first observed in soybean roots at
72 hai with P. sojae, which indicated that biotrophic stage
of infection occurred at inoculation site during the first
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48 hai, while necrotrophic stage can be seen at 72 hai.
The genes encoding bHLH and auxin-responsive TFs, to-
gether with the calcineurin-like phosphatase encoding
gene, MAP3K-ANP1-like gene, and RALF signaling gene
discussed earlier, were all induced in R group during bio-
trophic infection. Based on the functional studies of these
genes in different pathosystems combined with the ana-
lyses in this study, it indicates the potential involvement
of SA-mediated pathway, accompanied by suppression of
auxin-, and/or ABA-mediated pathways contributing to
the expression of partial resistance to P. sojae in soybean.
Interestingly, auxin-, ABA-, or JA-signaling have each
been reported to work antagonistically with SA against
(hemi)biotrophic pathogens, and elevated SA levels will
suppress these three hormone-mediated pathways
[59,60]. The cross-talk among these hormone-mediated
pathways and their contribution to partial resistance in
soybean against P. sojae should be a focus in future
studies.

Genes involved in modification of plant cell structures
Modification of plant cell structures is an important as-
pect of plant defense response and three genes, each
involved in modification of cell wall, cytoskeleton, and
phloem structure, potentially contributed to the expres-
sion of partial resistance to P. sojae. Glycosyl hydrolase
28 (GH28) hydrolyses pectin is one of the major com-
ponents of plant cell walls [61-63]. Many bacterial and
fungal pathogens secret this enzyme to help them
penetrate plant cells [64-66]. In this study, a GH28-
encoding gene (Glymal9g40940) had a unique sequence
in R as compared to both S and Williams82 (Table 2).
Transcription for this gene was down-regulated at 48
hai in the R group, which was 24 h earlier compared to
the S group (Figure 7) and may indicate the suppres-
sion of cell wall degradation as one of the many com-
ponents in the expression of partial resistance in
soybean against P. sojae.

Kinesin motor is one of the cytoskeletal motors, which
may participate in defense responses when a plant is
challenged by environmental stresses or pathogen attacks
[67,68]. A kinesin motor (Glymal9g41800) in this study
had a predicted premature stop codon in R, and the
resulting peptide is predicted to be missing 650 amino
acids from the C-terminus compared to both S and Wil-
liams 82 (Table 3, Additional file 4). It had significantly
lower transcript abundance in both mock-inoculated and
infected samples of the R group than the S group
(Tables 4 and 5), possibly due to the predicted truncated
protein in R; however, this needs to be validated. In
addition, this gene was up-regulated at the inoculation
site 72 hai only in the R group (Figure 7), which may
indicate the potential involvement of the R allele in
soybean partial resistance against P. sojae.
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Plant lectins belong to a large gene family with diverse
functions, one of which is the anti-microbial function in
plant defense [69-71]. Soybean cultivars with R-gene
mediated resistance towards P. sojae were found to have
two-fold more lectins in seeds than susceptible cultivars
[72]. Phloem-specific lectins are also known to be
related with defined stages of phloem differentiation
[73], and their interaction with mesophyll plasmodes-
mata are known to increase the size exclusion limit of
movement between cells [74]. In this study, a putative
phloem-specific lectin PP2 gene (Glymal9g41900) had
unique sequence in R compared to both S and Wil-
liams82 (Table 2 and 3). It was up-regulated at the in-
oculation site at 48 and 72 hai across all the resistant
and susceptible lines, however, significantly higher fold
changes were observed in the R group at 48 hai (Figure 7,
Table 5). Thus this gene may also potentially contribute
to the higher level of partial resistance of soybean to
P. sojae.

Genes involved in ubiquitination

Ubiquitination, which functions in protein modification
and degradation, has been found to be an important regu-
lator of plant defense response, such as the oxidative burst,
hormone signaling, gene induction, and programmed cell
death [75]. Ubiquitin ligases are the key enzymes to select
target proteins for ubiquitination. These ligases have been
reported to regulate SA-, JA/ET-mediated pathways and
they could have either positive or negative effect on plant
defense [75,76]. In this study, a putative ubiquitin-protein
ligase (Glymal9g41930) was activated at the inoculation
site 72 hai in the R group only (Figure 7), which may
indicate this gene as a positive regulator of soybean
partial resistance against P. sojae.

From the 11 genes discussed earlier, three genes, an
auxin-responsive TF, a transducin/WD40 domain-
containing protein, and a class III alcohol dehydrogen-
ase, all had significant infection response in S group
only. Their annotated functions suggested that these
responses may potentially contribute to the soybean sus-
ceptibility to P. sojae. The response of auxin-responsive
TF was observed 72 hai at infection front, where bio-
trophic infection occurred; whereas the other two genes
were down-regulated 72 hai at inoculation site, where
the necrotrophic phase is in progress. Distinct effector
proteins have been found to be secreted by another
oomycete pathogen, P. infestans, during biotrophic and
necrotrophic stages of infection [77]. Thus, secreted
effectors from P. sojae may also mediate the different
stages of infection, potentially targeting these three
genes as well as others to suppress the defense response.
Further studies are needed to assess if the sequence vari-
ation of these genes contributes to the pathogen
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effector-target recognition process, which in turn con-
tribute to the higher level of partial resistance.

Conclusions

It is usually difficult to demonstrate the effect of each in-
dividual gene underlying a QTL on partial resistance due
to the large number of genes with minor and additive
effects on the phenotypes [78]. In this study, we utilized
sequence and expression analysis to efficiently identify
candidate genes underlying the soybean QTL conferring
resistance to P. sojae. Two QTL were dissected by se-
quence and gene expression analysis between the resist-
ant and susceptible genotypes. A list of candidate genes
was identified, including those potentially involved in sig-
nal transduction, hormone-mediated defense pathways,
plant cell structural modification, and ubiquitination.
Also, several genes from this list have been reported for
their roles in PTI in heterologous systems, which may in-
dicate that basal resistance may be another component
of partial resistance. These findings supported our hy-
pothesis that defense to P. sojae may be a coordinated,
multifaceted response to infection. Eleven of the 15 genes
with SNPs had significantly different changes in tran-
script abundance between the R and S genotypes in re-
sponse to P. sojae infection in the qRT-PCR assay, which
also supports our hypothesis that SNP analysis could ex-
pedite the identification of candidate genes involved in
partial resistance. In addition to transcriptional regula-
tion examined in this study, other regulatory mechan-
isms, including post-transcriptional and translational
regulation, could contribute to the differential partial re-
sistance levels between R and S and represent interesting
targets for future studies. Whole-genome sequencing of
these two cultivars may aid in the discovery of Conrad-
specific genes, which may contribute to partial resistance.
Overall, this study provides an initial list of candidate
genes for further study and additional SNP markers for
fine mapping and marker-assisted breeding of soybean
partial resistance to P. sojae.

Methods

Plant resources

An Fgg recombinant inbred line (RIL) population was
developed from a cross of soybean cultivar R (Conrad)
by S (Sloan). This population was advanced by single
seed descent from the Fys population that was used in
the studies of [10,11].

Inoculum and phenotypic assay

The 246 RILs of the Fgg Conrad x Sloan population
were evaluated for the expression of resistance by
measuring lesion length following inoculation with P.
sojae isolate 1.S.1.1 (vir la, 1b, 1 k, 2, 3a, 3b, 3¢, 4,
5, 6, 7, 8) using the tray test assay, of which the
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procedure was described in detail previously [6,10,79].
Roots of 7-day-old soybean seedlings were inoculated
20 mm below the crown. Seven dai, the lesion on
each seedling was measured from the point of inocu-
lation up to the top of lesion margin. The experimen-
tal design was an augmented randomized complete
block (RCB), with at least 82 RILs evaluated within
each block. The R and S parents were included in
each block and there were three blocks within each
experiment. Each RIL was evaluated three times in
three separate experiments. For phenotypic data ana-
lysis, BLUP values of each RIL was obtained using a
mixed model analysis with the mean lesion length of
the 10 plants in each tray, as described in [6,9-11].
Heritability, on a family mean basis, was calculated as
described in [10].

QTL mapping

DNA from each RIL was extracted using the same
method as [10]. For this population, 147 RILs were ran-
domly selected and genotyped using the Illumina BeadX-
press® Assay (Illumina Inc., San Diego, CA) according
to manufacturer’s protocol. DNA samples were first
quantified with Picogreen® dsDNA quantification kit
(Invitrogen Inc., Carlsbad, CA) and ~250 ng each
(50 ng/ul) was used for BeadXpress genotyping, includ-
ing several activation and ligation steps followed by
PCR, hybridization to SNP-specific beads, washing, and
plate scanning at the Molecular Cellular Imaging Center
(MCIC, OARDC, Wooster, OH). The genotype data was
analyzed using the Genome Studio Software® (Illumina
Inc., San Diego, CA). A total of 151 SNP markers
[33,35,80] were used to build the genetic map using
JoinMap ® 4.0 with the Kosambi function [81]. A pre-
liminary analysis with interval mapping to identify po-
tential QTL on 147 RILs in response to P. sojae
inoculation with MAPQTL® 5.0 [82] and single marker
association with one-way ANOVA (Proc GLM, SAS
9.1.3, SAS Institute Inc. Cary, NC) was done.

A total of 57 SSR and 32 SNP markers which targeted
the potential QTL regions were genotyped on the 246
RILs. For SNP genotyping, a modified PCR Amplifica-
tion of Multiple Specific Alleles (PAMSA) technique was
used [37]. The procedures of SNP and SSR genotyping
were as described in [11]. The genetic map for these po-
tential QTL regions was re-constructed using ]oinMap®
4.0 with the Kosambi function [81]. Interval mapping
(IM) and composite interval mapping (CIM) of QTL
were performed using MAPQTL® 5.0 [82]. The walking
speed for QTL analyses was 1.0 centimorgan (cM). Per-
mutation tests with 1000 iterations were performed on
each linkage group and on the whole genome to esti-
mate significant LOD scores [83].
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Functional categorization of genes underlying the QTL
Genes underlying the QTL were categorized into 14
groups based on their functional annotations from NCBI
BLASTP search and four other databases (GO Function,
PFAM, PANTHER, and KOG) [23]. Grouping criteria,
modified from [84], included: 1) Signal transduction,
which involves calcium signaling genes, G proteins,
kinases and phosphatases, and other signal transducers;
2) Metabolism, including genes in both primary and sec-
ondary metabolic pathways; 3) Unknown, including
genes with no annotations or no characterized functions
from all mentioned databases; 4) Protein modification,
including genes involved in proteins synthesis, degrad-
ation and other structural modification processes; 5)
Transcription factor; 6) Transporter; 7) Cell wall, which
includes genes in synthesis and modification of different
cell wall components; 8) RNA regulation, which involves
RNA-binding genes; 9) Energy, which includes genes
associated with ATP and electron transfer; 10) Stress re-
sponse; 11) Cytoskeleton, which involves actin, kinesin,
and microtubule-related genes; 12) Oxidation, which
includes genes encoding enzymes involved in oxidation;
and 13) Pathogenesis-related (PR) protein; and 14)
Others, which includes genes not in the previously men-
tioned categories.

Long-range PCR (LR-PCR)

Gene sequences were extracted from the soybean refer-
ence genome which was generated from the cultivar
Williams82 [23]. A total of 217 pairs of gene-specific pri-
mers were designed using BatchPrimer3 [85] for 186
genes underlying the QTL 19-1 and 19-2. For each
gene, a 1.2 kb upstream region and a 400 bp down-
stream region were included for primer design. LR-PCR
was performed with a 30 ul PCR reaction which con-
tained 30 ng of genomic DNA template, 1 x Phusion HF
buffer (New England Biolabs Inc., Ipswich, MA.),
200 uM dNTPs, 0.4 uM forward and reverse primers,
and 0.6 U of Phusion® High-Fidelity DNA Polymerase
(New England Biolabs Inc., Ipswich, MA.). PCR reac-
tions were performed using the following conditions: 98°
C for 2 min, 35 cycles of 98°C for 10 sec, (lower Tm cal-
culated by the nearest neighbor method+3)°C for
30 sec, and 72°C for 6 min, followed by a final extension
at 72°C for 10 min. PCR products were purified by the
E-Gel® Clonewell 0.8% SYBR Safe™ agarose and 2%
SizeSelect™ agarose (Invitrogen Inc., Carlsbad, CA),
and the Zymoclean™ Gel DNA Recovery kit (ZymoRe-
search Inc., Irvine, CA). The purified PCR products were
quantified in 2% agarose gel with ethidium bromide
staining. Equal amounts (30 ng) of each PCR product
amplified from R and S cultivars were pooled separately
and precipitated with 100% EtOH to remove the fluores-
cent dyes which bound to DNA from the E-gels. The
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purified PCR product pools were quantified again in 2%
agarose gel prior to library construction.

Library construction for lllumina GA Il sequencing
Approximately 3 pg of combined PCR products from R
or S were used for library preparation. PCR products
were digested with NEBNext dsDNA Fragmentase (New
England Biolabs Inc., Ipswich, MA.) according to manu-
facturer’s instructions. Reactions were carried out in a
total volume of 60 pl with 6 pl of fragmentase and incu-
bated in a 37 C water-bath for 25 minutes. The reac-
tions were cleaned using QIAQuick PCR Purification Kit
(Qiagen, Valencia, CA). Fragmented DNA was used for
[lumina Paired-End (PE) library preparation, using the
PE library preparation kit (Illumina Inc., San Diego, CA)
as instructed in the manual. To reduce the over-
representation of the amplicon ends in sequencing [86],
a 400-bp library instead of a standard 200-bp one was
constructed. The fragments were end-repaired and phos-
phorylated using T4 DNA polymerase, Klenow DNA
polymerase and T4 PNK and were 3' adenylated using
Klenow Exo- (3' to 5' exo minus). Illumina PE adapters
were ligated using DNA Ligase, followed by purification
on a 2% TAE-agarose gel (Certified Low-Range Ultra
Agarose, Biorad). A band of 400+25 bp was cut and
purified, using QIAQuick Gel Extraction Kit (Qiagen,
Valencia, CA). Enrichment of adapter ligated fragment
and the addition of sequences necessary for flow cell
binding was done by performing fifteen rounds of PCR,
using Illumina PE 1.0 nd PE 2.0 primers. DNA fragment
size distribution in the libraries was done with an Agi-
lent Technologies 2100 Bioanalyzer using the Agilent
DNA 1000 chip kit. The libraries were quantified, using
quantitative PCR with PhiX sequencing control as a
standard (Illumina, San Diego, CA). PE sequencing was
done, using the Illumina GAII platform at MCIC
(OARDC, Wooster, OH).

Sequence data analyses

Initial quality assessment of sequence reads was per-
formed using Fastqc. Sequence reads with poor quality
were filtered (adaptive_qualitytrim.pl). The pre-processed
FASTQ files were aligned using the MOSAIKALIGNER
set of tools (version 0.9.0891 of the MOSAIK Software
Suite; (http://bioinformatics.bc.edu/marthlab/Mosaik). All
reads were aligned to the Chr. 19 sequences from the soy-
bean reference genome [23]. SNPs between the reference
sequence (Williams82) and samples were identified using
Partek Genomics Suite version 6.5 (Partek, St Louis, MO).
False-positive SNPs which located outside the amplicons
and/or had less than 20 X coverage were removed. The
alignment data from the R and S are available at NCBI Se-
quence Read Archive (SRA) under accession SRA056409.
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SNP verification

Twenty-nine SNPs were selected for verification by
PAMSA technique [3], based on the 0.1 Mb interval and
predicted gene function. The SNP genotyping procedure
was as described in [11]. For one SNP that was not veri-
fied by PAMSA, the PCR products from SNP genotyping
were purified by Zymoclean™ Gel DNA Recovery kit
(ZymoResearch Inc., Irvine, CA) and sent for Sanger se-
quencing at MCIC (OARDC, Wooster, OH).

gRT-PCR assays

The tray test protocol was also used for the qRT-PCR
time course assay. P. sojae isolate 1.S.1.1 was used to in-
oculate R, S, and four selected RILs with different com-
bination of R or S haplotypes at QTL (Table 1). Samples
were collected at 12, 24, 48, and 72 hai. At the first three
time points, the inoculation site was sampled; and at 72
hai, lesions were measured and the 0.75 mm from the
edge of lesion margin and above was sampled for RNA
extraction. For control, mock-inoculated tissues were
sampled at the same site as the inoculated samples at
each time point. Samples were frozen in liquid nitrogen
immediately after collection. The whole assay was
repeated once, with two trays per replicate, 10 seedlings
per tray. Plant tissue samples collected from all the trays
per treatment were pooled for each biological replicate.
RNA preparation, cDNA synthesis, and qPCR proce-
dures were as described in [10], except the SuperScript®
II First-Strand Synthesis System was used instead (Invi-
trogen Inc., Carlsbad, CA). The same house-keeping
genes used in [10] were used in this study: a putative
ubiquitin gene (Gma.441.1.S1_at) and a putative F-box
protein (Gma.6079.1.51_at). Nineteen candidate genes
from the QTL 19-1 and 19-2 regions were selected based
on their annotated functions, sequence variation between
R and S, and available microarray data [10,22]. PCR effi-
ciency (E) of each primer pairs can be estimated from
standard curves with the equation (1 + E) =10 1/slope) [g7].
Levels of transcript abundance were calculated using the
equation (1 +E)2Y where ACt equaled the value when
the average Ct value of the reference genes was subtracted
from the Ct value of target gene. Infection response of a
target gene was represented by the transcript level fold
differences in inoculated (i) samples relative to mock
(m) controls, which was calculated from the equation:
(1 + Egene)A(CTm - CTi) / AVg((l +Eref)A(CTm - CTi))y
where ref indicated a house keeping gene and Avg was
the average of two house-keeping genes. Contrasts of
LSMeans were performed among the six soybean lines,
or between the three lines with the R haplotype (R group)
and those with the S haplotype (S group) for three types
of comparisons (SAS 9.2, SAS Institute Inc. Cary, NC): 1)
infection response; 2) transcript abundance at mock-
inoculated samples; and 3) transcript abundance at

Page 21 of 23

inoculated samples. The significant differences of these
comparisons were determined by: 1) P<0.05; 2) fold
difference > 1.5.

Additional files

Additional file 1: Genes underlying QTL 19-1 with predicted
functions and microarray data.

Additional file 2: Genes underlying QTL 19-2 with predicted
functions and microarray data.

Additional file 3: SNPs detected between Conrad and Sloan in
sequenced genes underlying QTL 19-1 and 19-2.

Additional file 4: Sequence polymorphisms in Conrad (C) in

comparison to Williams82 (W) and Sloan (S) in Glyma199g41420 and
Glyma19g41800, respectively.
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