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Abstract

Background: There is increasing empirical evidence that whole-genome prediction (WGP) is a powerful tool for
predicting line and hybrid performance in maize. However, there is a lack of knowledge about the sensitivity of WGP
models towards the genetic architecture of the trait. Whereas previous studies exclusively focused on highly
polygenic traits, important agronomic traits such as disease resistances, nutrifunctional or climate adaptational traits
have a genetic architecture which is either much less complex or unknown. For such cases, information about model
robustness and guidelines for model selection are lacking. Here, we compared five WGP models with different
assumptions about the distribution of the underlying genetic effects. As contrasting model traits, we chose three
highly polygenic agronomic traits and three metabolites each with a major QTL explaining 22 to 30% of the genetic
variance in a panel of 289 diverse maize inbred lines genotyped with 56,110 SNPs.

Results: We found the five WGP models to be remarkable robust towards trait architecture with the largest
differences in prediction accuracies ranging between 0.05 and 0.14 for the same trait, most likely as the result of the
high level of linkage disequilibrium prevailing in elite maize germplasm. Whereas RR-BLUP performed best for the
agronomic traits, it was inferior to LASSO or elastic net for the three metabolites. We found the approach of genome
partitioning of genetic variance, first applied in human genetics, as useful in guiding the breeder which model to
choose, if prior knowledge of the trait architecture is lacking.

Conclusions: Our results suggest that in diverse germplasm of elite maize inbred lines with a high level of LD, WGP
models differ only slightly in their accuracies, irrespective of the number and effects of QTL found in previous linkage
or association mapping studies. However, small gains in prediction accuracies can be achieved if the WGP model is
selected according to the genetic architecture of the trait. If the trait architecture is unknown e.g. for novel traits which
only recently received attention in breeding, we suggest to inspect the distribution of the genetic variance explained
by each chromosome for guiding model selection in WGP.
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Background

Whole-genome prediction (WGP) is expected to reshape
plant breeding fundametally in the near future [1-3].
Whereas the approach has been initially proposed [4]
and rapidly implemented in animal breeding [5], recent
empirical studies demonstrated also its potential in hybrid
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maize breeding [6-8]. Recently, we showed that WGP
allows a reliable screening of large germplasm collections
of diverse maize inbred lines for their potential to create
superior hybrids [9]. However, these studies exclusively
focused on predicting highly polygenic traits such as grain
yield or biomass accumulation with genetic architectures
close to the infinitesimal genetic model [10].

In maize, several economically important traits are
genetically less complex with few quantitative trait loci
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(QTL) explaining a large proportion of the genetic vari-
ance. Examples include pest and disease resistances or
nutrifunctional compounds such as bioavailable minerals
[11] or B-carotene [12]. In addition, disease resistances
are often found to be controlled by a combination of
race-specific resistance loci with large effects involved in
pathogen recognition, and a large number of loci with
small effects involved in basal resistance. Such a mixed
QTL effect distribution can be found in maize e.g. for
rust [13], Giberella ear rot [14,15] or to a lesser extent for
Northern corn leaf blight [16,17].

For such traits, the assumption of normally distributed
SNP effects underlying ridge regression, the most com-
monly applied WGP model, is severely violated. Heslot
et al. [18] found for polygenic traits in several plant
species only minor differences between ridge regression
and models with different assumptions of the underlying
distribution of SNP effects. However, these differences are
expected to be much larger for traits controlled by only
a few QTL. Recently, Clark et al. [19] simulated this sit-
uation under the assumption of the historical population
structure of Holstein cattle. They found that under the
assumption of either few common or few rare quantita-
tive trait loci, a Bayesian variable selection model (BayesB)
outperforms ridge regression by far. For Holstein cattle,
Hayes et al. [20] found also the BayesA model to be supe-
rior to ridge regression in the case of coat color or milk-fat
percentage.

Cattle differs greatly in its population structure and
LD level from elite maize germplasm, which has faced
severe genetic bottlenecks during domestication and the
creation of genetically distinct heterotic pools to maxi-
mize exploitation of heterosis in hybrid breeding [21,22].
Hence, results from cattle might not be directly transfer-
able to maize, for which little is known about WGP for
traits with a simpler genetic architecture. Moreover, the
genetic architecture of a trait is often unclear in crops.
Especially if the trait has not yet been extensively dissected
by linkage or association mapping, which might be the
case for traits which gained only recently in importance
such as nutritional properties, nutrient acquisition traits
or traits related to climate change adaptation.

To fill this apparent gap of knowledge, we investi-
gated WGP in a diverse collection of 289 maize inbred
lines with traits which largely vary in their genetic
architecture. To let the genetic basis differ as much as
possible, we chose three highly polgygenic agronomic
traits and three metabolites, each one controlled by a
different major QTL explaining about 22% to 30% of
genetic variance. With this empirical set-up, we asked the
following questions:

e To what extent do distinct WGP models differ in
their prediction accuracies for a diversity panel of
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maize inbred lines if the genetic architecture of the
trait changes dramatically?

e Are there guidelines for plants concerning the choice
of the most promising WGP model?

Methods

Genetic material

The genetic material consisted of 289 maize inbred
lines which were previously described in great detail
[9,23-25]. The population constituted a global sample of
elite breeding material from worldwide sources with a
focus on North America and Europe and encompassed
285 lines from the Dent heterotic pool (Stiff-Stalk and
non-Stift-Stalk) and 4 from the European Flint pool,
which served as check genotypes.

Genotyping

The population was genotyped with the Illumina SNP
chip MaizeSNP50 containing 56,110 SNPs [26]. Quality
control preprocessing of SNPs was performed by elimi-
nating SNPs that did not match the following criteria: (i)
less than 10% missing values, (ii) minor allele frequency of
greater than 2.5%, (iii) no more than three heterozygous
genotypes, and (iv) unique allele assignment for the 22
replicated checks of genotype B73. A total of 38,019 SNPs
remained and were used for further analysis. Linkage dise-
quilibrium (LD) declined to 72 = 0.1 at approximately 500
kb with a mean LD between adjacent SNPs of 0.34 [9].

Field trials

The population was phenotyped in six environments
(three agroecologically diverse locations in the years 2008
and 2009) in Germany [25]. Briefly, the population was
split into three maturity groups based on prior knowledge
of their flowering time. In the trials of each of the three
maturity groups, 100 genotypes, including five common
check genotypes, were randomized in a 20 x 5 «-lattice
design with two replications and were planted in 2-row
plots. Plots were thinned to a final plant density of 100,000
plants/ha. The common check genotypes were used to
adjust for potential differences in the soil fertility among
trials in each environment.

Metabolites

Leaf samples were collected in one location 33 d after sow-
ing and processed using an established GC-MS method
[27]. Genotypic means of Box-Cox transformed metabo-
lite concentrations were obtained using a linear mixed
model analysis including effects for field trial, repli-
cation, block, and batch. The whole metabolic pro-
filing procedure including statistical analysis has been
described in detail previously [9,23]. From the measured
metabolite concentrations, we chose three highly heri-
table substances as model traits: dopamine, ribitol, and
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an unknown metabolite (719700-204). For each metabo-
lite, we found in a genome-wide association (GWA) study
a major metabolite QTL (mQTL) on different chromo-
somes after correcting for population structure and kin-
ship [23]. For dopamine, the major mQTL was found
on chromosome 9 and explained 28.9% of the genetic
variance. For ribitol, the major mQTL was found on chro-
mosome 10 and explained 22.1% oft the genetic variance.
For the unknown metabolite, the major mQTL was found
on chromosome 2 and explained 29.8% of the genetic vari-
ance. The metabolites were uncorrelated with each other
(Ir] < 0.10) and only weakly (|r| < 0.28) correlated with
agronomic traits (Table 1).

Agronomic traits

Dry matter yield of whole-plant biomass (t/ha) and plant
height (m) were measured per field plot of the inbred lines.
Lignin content was measured as acid detergent lignin
(ADL) in the harvested plant material of the inbred lines
using calibrated near-infrared spectroscopy (NIRS). The
NIRS calibration model was built using phenotypic data
from 20 inbred lines, 32 testcrosses and 3 hybrids grown
in the same environments as the population of inbred
lines analyzed in this study [24]. Heritability estimates and
genotypic means were obtained using a one-step linear
mixed model analysis as described previously [25]. Using a
1% Bonferroni corrected significance threshold, we could
not find any significant SNP-trait association signal using
the the same GWA model as for metabolites. Since pop-
ulation size, marker density, and heritabilites were suf-
ficiently high for detecting QTL with large effects, the
absence of any significant trait-SNP associations suggest
a highly polygenic genetic architecture for the agronomic
traits with no major QTL.

Genome partitioning of the genetic variance
To further characterize the genetic architectures of the
investigated traits irrespective of the significance thresh-
olds for SNP-trait associations, we compared how the ten
chromosomes contributed to the total genetic variance.
Later on, we will use these results as a guideline for model
selection based on trait architecture.

We adopted the approach of Yang et al. [28] to simul-
taneously estimate the genetic variance explained by each

Table 1 Phenotypic correlations among traits
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chromosome. In order to derive a guideline which is
purely based on trait architecture and not on population
structure artefacts, we additionally corrected for popula-
tion structure by regressing the trait values on the first ten
principal components. This linear model can be written as

10

y=1u+QB+) (Sg)+e (1)

c=1

where y is a vector with # trait values, 1 is a vector of
1’s, Q is a matrix of size n x 10 containing the first 10
principal components calculated from SNP data with g
containing the corresponding regression coefficients, S is
an incidence matrix allocating components of y to com-
ponents of g., which is a vector of length n with random
genotypic effects attributable to chromosome ¢ with g, ~
N(O, Gcogzc) and G, = ZCZCT /pc where Z, is a matrix of size
n x p. with standardized levels of SNP alleles on chromo-
some c. Vector e contains normally distributed residuals
with e ~ N(0,I02). The genetic variance contributed by
chromosome ¢ was then estimated as agzc/ (Ziil (agzc) +
0’62).

Variance components were estimated by restricted max-
imum likelihood (REML) using ASReml-R 3 [29]. Since
matrices G, were often found to be singular, we used the
algorithm of Higham [30] implemented in the function
nearPD of the R-package Matrix [31], to approximate the
nearest positive definite matrices.

WGP models
We investigated five WGP models that have been recently
advocated in the literature for this purpose [4,32-34].

All based upon the classical regression set-up

y=1lp+Zu+e (2)

where y is a vector with » trait values, p is the over-
all mean, 1 is a vector with 1’s, Z is the n x p matrix
of standardized values of SNP alleles, u is a vector with
SNP effects, and e is a vector of residuals with e ~
N(0,I02). Depending on the trait, a combination of geno-
typic and phenotypic information was available for 276 to
280 genotypes which were used for WGP.

- Plant height Lignin content Dopamine Ribitol 719700-204
Dry matter yield 0.62 032 -0.28 0.02 -0.24
Plant height - 0.50 -0.17 0.07 -0.12
Lignin content - - -0.20 -0.11 -0.08
Dopamine - - - -0.10 0.08
Ribitol - - - - -0.03
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RR-BLUP

Ridge regression (RR) tackles the p > # problem in WGP
by minimizing the residual sum of squares (RSS = (y —
14 — Zu)’(y — 14 — Zu)) by bounding the Euclidean

(L3) norm of u to a constraint: ||u||y = ,/ f:l ul2 < CRR

which leads to a homogeneous shrinkage of all SNP effects
towards zero (Figure 1). The RR estimator is given by

GpR = arg min(RSS + Age|lull). (3)

The Lagrangian multiplier Apr is a regularization
parameter which controls the amount of shrinkage. It can
be estimated as ARg = 0.2/02 by regarding u as random
effects with u ~ N(0,I02) with 02 being the SNP effect
variance estimated by REML. In this setting, Grgr is equiv-
alent to the best linear unbiased predictor (BLUP) of u
[35,36].

For computational convenience, RR-BLUP can be trans-
formed to a mathematically equivalent model

y=1lu+Sg+e (4)

with g being a vector of random genotype effects with
var(g) = Gag2 and whole-genome relationship matrix G =

ZZ" /p. The solution vector of SNP effects can then be
obtained as igg = ZTG~!g [37]. Here, G is an inner-
product kernel which allows to perform all computations
in the space of n genotypes instead of p SNPs, a short-
cut which is well established in the field of kernel-based
machine learning [38].

LASSO

As an alternative to ridge regression, it was suggested to
use an L; penalty to tackle the p > n problem [39]. This
estimator was termed least absolute shrinkage and selec-
tion operator (LASSO) and has recently been suggested
for whole-genome prediction [32,40,41]. The estimator is
given by

ap, = arg rr}lin(RSS + ALllall1) (%)

which bounds the Manhattan (L;) norm of u to a con-
straint: [[u]|; = 21;:1 |uil < cL. The LASSO penalty
is a diamond shaped constraint which allows not only
to shrink coefficients towards zero but to set some coef-
ficients to exactly zero (Figure 1). Unlike RR, LASSO,
cannot be ’kernelized; i.e., it is not possible to transform
the LASSO estimator into an equivalent kernel regres-
sion problem in the space of n genotypes [38]. Hence,
LASSO regression has to be carried out with the full set of
SNPs. Here, we used the R package glmnet, a fast imple-
mentation using cyclic coordinate descent to compute the
complete LASSO path solution [42].
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RR-BLUP

Figure 1 Visualization of the RR-BLUP estimator (Gigr) and the
LASSO estimator (11;) as solutions to a least-squares problem
with different penalization [38,39]. We illustrate a two-dimensional
case. The blue ellipses show the contours of the RSS function around
the ordinary least-square solution (iprs). The ridge estimator is the
point at which the innermost elliptical contour touches the circular

ridge penalty \/u? + u3 < crgr. The LASSO estimator is the point at
which the innermost elliptical contour touches the diamond shaped
LASSO penalty |u1| + |uz| < cp. Contrary to the ridge penalty, the
LASSO penalty allows estimations to be exactly zero.

Elastic net

The LASSO penalty is known to be somewhat indifferent
to the choice among a set of strong but correlated vari-
ables. The RR penalty, on the other side, tends to shrink
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the coefficients of correlated variables toward each other
[38]. The elastic net (EN) estimator is a compromise which
can be written as

upN = arg min(RSS+Apn (e [ul 1+ (1= )ull2)), (6)

and is a weighted mixture between the RR penalty (@ =
0) and the LASSO penalty (@ = 1) [33]. While the RR
penalty encourages highly correlated variables to be aver-
aged, the LASSO penalty encourages a sparse solution
[38]. We again used the implementation in glmnet and
performed a grid search to find the combination of « and
AN, which yielded the lowest mean squared error in the
training population.

Reproducing kernel Hilbert space (RKHS) regression

The theory of RKHS regression is rooted in the field
of kernel-based machine-learning [38] and has recently
been advocated for whole-genome prediction [34]. The
approach uses equation 4 but replaces the inner-product
matrix G with a kernel matrix K. The motivation behind
RKHS regression lies in the ability to effectively per-
form non-linear regression in a higher-dimensional fea-
ture space so it might capture non-additive genetic effects,
if present. Here, we used a Gaussian kernel on genetic dis-
tances with Kj; = exp(—GD,-j/Gz), where GDj; is the modi-
fied Rogers’ genetic distance (Euclidean distance scaled to
fall between 0 and 1) between genotype i and j, and 6 is a
smoothing parameter which controls the rate of decay of
Kj; with increasing genetic distance. The optimum value
for 0 was chosen from a sequence from 0.1 to 100 at which
the maximum likelihood was obtained.

BayesB

As a Bayesian approach, we used a modified version of
BayesB, which has a prior assumption that the SNP effects
are t-distributed with a point-mass at zero [4]. Following
the suggestions of Yang and Tempelman [43], we mod-
eled several hyperparameters as uncertain too. Details of
the priors used can be found in Table 2. To fit the model,
we ran the Gibbs-sampler for 50,000 iterations. The first
5,000 iterations were discarded as burn-in and only sam-
ples from every 10% post burn-in iteration were stored.
For computational convenience, we reduced the number
of markers to 5,000 SNPs for which we did not observe
any decline in prediction accuracy up to the numerical
precision reported in this study.

Validation

A five-fold cross-validation scheme was applied and
repeated 20 times. In each repetition, the dataset was
divided into 5 disjoint subsets of genotypes whereas one
subset served as the validation set and the other four
subsets served as the training population to estimate
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Table 2 Priors used for BayesB

Parameter Prior
Uj N(©,02)
Uuz,-lvu,SS 0 with probability 7,
X% (vy, S2) with probability (1 — 7,)
Vu Gamma(k = 5,0 =2)
S Gamma(k = 0.1,6 = 10)
Ty Beta(w = 7,8 =3)
o2 X2V, 2 = 02(Ve — 2)/Ve)

Ve = 4001, 52 estimated with REML

the model parameters for predicting the left-out geno-
types in the validation set. In each of the five rounds,
the Pearson correlation between the observed and pre-
dicted phenotypic values was calculated. The procedure
was repeated twenty times to yield 100 cross-validation
runs. The predictive ability was then calculated as the
Pearson correlation (r(y)) between the observed (y) and
predicted (y) phenotypic values. The "prediction accuracy’
estimates the correlation (r(g 5)) between the predicted (8
and unobserved true genetic values (g) and was calculated
by rgg = r(y5/h where h is the square root of the heri-
tability on a line-mean basis for the agronomic traits. For
metabolites, the square root of the estimated repeatability
was used.

Results

The contribution of the individual chromosomes to the
genetic variance differed largely between metabolites and
agronomic traits (Figure 2). For the metabolites, the chro-
mosomes containing the major mQTL (chromosome 9 for
dopamine, chromosome 10 for ribitol, and chromosome
2 for the unknown metabolite) captured by far the largest
portion of the genetic variance, leaving the remaining
genetic variance equally distributed over the remaining
chromosomes.

For the agronomic traits, the total genetic variance was
largely uniformly distributed over all chromosomes. Using
the same GWA model as for the metabolites [23], we
found that for dry matter yield and plant height, the chro-
mosomes which captured the largest portion of genetic
variance contain the strongest GWA signals. However,
in no instance was the 1% Bonferroni corrected signifi-
cance threshold surpassed (dry matter yield: chr. 6, P =
4.06 x 107°, position 139,284,469, explained genetic vari-
ance 8.8%; plant height: chr. 3, P = 8.6 x 107, position
163,617,228, explained genetic variance 8.0%).

When excluding chromosomes containing either these
two association signals or major mQTL, we observed
a tendency that longer chromosomes captured more
genetic variance than shorter ones (Figure 2B). This trend
was significant (P < 0.10) for lignin content (r = 0.88,P =
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Figure 2 Characterization of the genetic architecture of different
traits by genome partitioning of the genetic variance. (A)
Cummulative genetic variance explained by individual chromosomes.
(B) Genetic variance explained by each chromosome (number in
points). The chromosomes containing either major mQTL for
metabolites or putative minor QTL for agronomic traits lie above the
red line. (C) Genetic variance explained by chromosomes plotted
against the genetic variance explained by the GWA signals on these

chromosomes.

Page 6 of 9

7.0 x 107*) and dry matter yield (» = 0.60,P = 0.09).
The grey area in Figure 2B was therefore regarded as the
range in chromosomal genetic variance explainable by the
length of the chromosome. On the other side, the genetic
variance contributed by the left-out chromosomes was
highly correlated (r = 0.98, P = 0.003) with the explained
genetic variance of the individual SNPs found by GWA
mapping (Figure 2C).

The total genetic variance summed over all chromo-
somes amounted to 0.91 for dry matter yield, 0.94 for plant
height, 0.91 for lignin content, 0.89 for dopamine, 0.91 for
ribitol, and 0.90 for the unknown metabolite. These values
were close to the heritabilities and repeatabilities obtained
from the phenotypic analysis (Table 3).

Prediction accuracies of WGP ranged between 0.45 and
0.82 with standard deviations between 0.05 to 0.12 across
traits and models (Table 3). The largest differences in
accuracies between models ranged from 0.05 to 0.14 for
the same trait. Between RR-BLUP and RKHS, we found no
difference in the prediction accuracies above 0.01 for any
trait.

For agronomic traits, prediction accuracies were highest
for RR-BLUP with a drop of 0.09 to 0.12 if LASSO or elas-
tic net was used and with a drop of 0.01 to 0.11 if BayesB
was used.

The ranking of the prediction accuracies for the WGP
models was reverse for metabolites. Here, prediction
accuracies were highest for LASSO or elastic net with a
drop of 0.05 to 0.14 when using RR-BLUP. For metabo-
lites, no differences in the prediction accuracies above
0.01 were observed between RR-BLUP and BayesB. For
dopamine and the unknown metabolites, the mQTL were
precisely found with LASSO, elastic net and also RR-
BLUP (Figure 3). For all three models, their largest abso-
lute SNP effect matched exactly with the SNP identified by
GWA mapping. However, the three models differed dras-
tically in their sparsity in SNP effects, and the distance
over which the mQTL effect was distributed. Whereas
the mQTL effects declined sharply with LASSO or elastic
net, they were diluted over a much longer distance with
RR-BLUP.

Discussion

We found in a diverse panel of elite maize inbred lines that
prediction accuracies obtained with five different WGP
models were remarkable similar, even for traits with dras-
tically deviating genetic architecture. Our results suggest
that small gains in accuracies (up to 0.14) can be gained
if the WGP model is selected according to the genetic
architecture underlying the trait.

Recently, Heslot et al. [18] reported similar small dif-
ferences for seven parametric WGP models when com-
paring them for different presumable highly polygenic
agronomic traits over eight datasets of barley, Arabidopsis
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Table 3 Prediction accuracies (r(g, 5)) and their standard deviations (s.d.) for different WGP models

Trait h? RR-BLUP LASSO Elastic net RKHS BayesB
(g8 s.d. g8 s.d. rg,&) s.d. r(g,&) s.d. r(g,8) s.d.
Dry matter yield 0.93 061 0.07 0.51 0.11 0.56 0.08 061 0.07 0.59 0.08
Plant height 0.97 0.57 0.09 045 0.11 0.48 0.11 0.57 0.09 0.56 0.08
Lignin content 0.88 0.69 0.07 0.60 0.08 0.60 0.10 0.68 0.07 0.58 0.09
Dopamine 0.97 0.74 0.06 0.79 0.06 0.79 0.06 0.74 0.07 0.75 0.06
Ribitol 0.95 0.49 012 0.61 0.10 0.63 0.10 0.50 0.10 0.50 0.11
719700-204 0.96 0.79 0.06 0.82 0.05 0.82 0.05 0.80 0.05 0.80 0.08

Results are averaged over all 100 cross-validation runs. For the agronomic traits, h” is the heritability on a line-mean basis and for the metabolites, the repeatability is

shown.

thaliana, maize, and wheat. For the metabolites, however,
our results differ from those obtained from Clark ez al.
[19], who investigated the influence of genetic architec-
ture on prediction accuracies achieved by RR-BLUP or
BayesB. Whereas these authors found only slight differ-
ences for simulated traits with a genetic architecture close
to the infinitesimal genetic model, BayesB outperformed
RR-BLUP by an increase in prediction accuracy of = 0.4 if
the trait is controlled by either a few common or a few rare
QTL. Simulation also predicted a drop in prediction accu-
racy in case of RR-BLUP for traits controlled by a small
number of QTL [44]. Although LASSO, elastic net, and
BayesB showed higher accuracies compared to RR-BLUP

RR-BLUP
5 0.004
2 0002 ‘ » T
S 0,000 i w3 -
o YR prry " Ty g
= -0.002
9 _0.004
T T T T T T T T T L)
1 2 3 4 5 6 7 8 9 10
Chromosome
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g 0.1 ‘
% 0.0 i‘ ! T I‘ W 1
o -0
Z 02
D o3
T T T T T T T T 1 1
1 2 3 4 5 6 7 8 9 10
Chromosome
Elastic net
0.2
g 0.1 | ‘
s 0.0 TR Il\u e | o o——d i
T o1 | [
a -0
z 02
-0.3 A
T T T T T T T T L
1 2 3 4 5 6 7 8 9 10-
Chromosome
Figure 3 SNP effects for dopamine obtained by using either
RR-BLUP, LASSO, or the elastic net model. The position of the
mQTL is indicated as a red triangle.

for metabolites, we found the differences to be remarkable
small in case of LASSO or elastic net and negliable in the
case of BayesB.

One major reason of the minor differences in predic-
tion accuracies among the different models lies in the high
level of LD found in elite breeding germplasm of maize.
Our results suggest that with this level of LD (> = 0.1 at ~
500 kb), accuracies are quite similar irrespective whether
the effect of large QTL are precisely captured (as in the
case of LASSO, elastic net, or BayesB) or spread over
a larger region (as in the case of RR-BLUP and RKHS).
Since our population was highly diverse for elite maize
germplasm in Europe, it is unlikely that breeders are con-
fronted with lower levels of LD unless they work with
highly exotic germplasm for which LD has been reported
to decline within 5-10 kb [45].

Moreover, the high similarity of RKHS and RR-BLUP
suggest that either (i) non-additive, epistatic genetic
effects are not present, (ii) these are so small that they
are negligible in WGP for the investigated traits, or (iii)
RKHS regression is unable to capture them. In either case,
for prediction purposes RKHS does not seem to yield
any advancements over RR-BLUP for situations compara-
ble to our germplasm and traits. Dominance, as another
source of non-additive genetic, effects cannot be present
in the inbred lines investigated in this study. For pre-
dicting heterozygeous F; maize hybrids, however, it has
been shown that modeling dominance effects can result in
higher prediction accuracies [8].

Although BayesB reached for 5 of the 6 traits a higher
prediction accuracy than the worst model, we cannot rec-
ommend it because of the excessively larger computation
time and the negliable differences in prediction accuracies
compared with RR-BLUP in case of the metabolites as the
result of probably only sampling error.

We found the approach to partition genetic variance
over chromosomes useful for guiding the breeder which
WGP model to prefer in the case of little or no prior
knowledge on the genetic architecture. Whereas for the
agronomic traits an approximately linear increase of
cumulative explained genetic variance matched with a
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superiority of the Ly penalty (RR-BLUP), the L; penalty
(LASSO) or a mixture of both penalties (elastic net) per-
formed better in the case of the metabolites with a strong
convex curve curvature (Figure 2A). Although for dry
matter yield and plant height, barely significant associa-
tion signals with a proportion of explained genetic vari-
ance < 9% led to a chromosomal genetic variance slightly
above the range expected from length of the chromosome
(Figure 2B), these effects were too small to justify the use
of the elastic net or LASSO.

As an alternative to this approach, Hayes et al. [20] esti-
mated successively the genetic variance explained by each
chromosome segment and compared it with the genetic
variance captured by the remaining part of the genome.
To correct for the non-independence of neighbouring seg-
ments, they applied a bias correction using an expectation
maximization (EM) algorithm. Such a correction is not
necessary if the variance components for all chromosomes
are estimated simultaneously as applied in this study; this
is a further advantage besides its straightforward imple-
mentation using standard mixed model software packages
such as ASReml.

Conclusions

Our empirical data of WGP in a large panel of diverse
maize inbred lines suggest that (i) different WGP models
differ only slightly in their prediction accuracies, irrespec-
tive of the number and effects of QTL found in association
analysis, (ii) small gains in prediction accuracies can be
obtained if the WGP model is selected according to the
genetic architecture of the trait, (iii) genome partitioning
of genetic variance offers a straightforward approach for
model selection if the genetic architecture is unknown.
The question of which WGP model to choose is therefore
not expected to hamper implementation of WGP in maize
breeding.
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