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Abstract

Background: Cultivated peanut (Arachis hypogaea) is an allotetraploid species whose ancestral genomes are most
likely derived from the A-genome species, A. duranensis, and the B-genome species, A. ipaensis. The very recent
(several millennia) evolutionary origin of A. hypogaea has imposed a bottleneck for allelic and phenotypic diversity
within the cultigen. However, wild diploid relatives are a rich source of alleles that could be used for crop
improvement and their simpler genomes can be more easily analyzed while providing insight into the structure of
the allotetraploid peanut genome. The objective of this research was to establish a high-density genetic map of
the diploid species A. duranensis based on de novo generated EST databases. Arachis duranensis was chosen for
mapping because it is the A-genome progenitor of cultivated peanut and also in order to circumvent the
confounding effects of gene duplication associated with allopolyploidy in A. hypogaea.

Results: More than one million expressed sequence tag (EST) sequences generated from normalized cDNA libraries
of A. duranensis were assembled into 81,116 unique transcripts. Mining this dataset, 1236 EST-SNP markers were
developed between two A. duranensis accessions, PI 475887 and Grif 15036. An additional 300 SNP markers also
were developed from genomic sequences representing conserved legume orthologs. Of the 1536 SNP markers,
1054 were placed on a genetic map. In addition, 598 EST-SSR markers identified in A. hypogaea assemblies were
included in the map along with 37 disease resistance gene candidate (RGC) and 35 other previously published
markers. In total, 1724 markers spanning 1081.3 cM over 10 linkage groups were mapped. Gene sequences that
provided mapped markers were annotated using similarity searches in three different databases, and gene ontology
descriptions were determined using the Medicago Gene Atlas and TAIR databases. Synteny analysis between
A. duranensis, Medicago and Glycine revealed significant stretches of conserved gene clusters spread across the
peanut genome. A higher level of colinearity was detected between A. duranensis and Glycine than with Medicago.

Conclusions: The first high-density, gene-based linkage map for A. duranensis was generated that can serve as a
reference map for both wild and cultivated Arachis species. The markers developed here are valuable resources for
the peanut, and more broadly, to the legume research community. The A-genome map will have utility for fine
mapping in other peanut species and has already had application for mapping a nematode resistance gene that
was introgressed into A. hypogaea from A. cardenasii.
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Background
Cultivated peanut (Arachis hypogaea L.) is a major crop
in most tropical and subtropical areas of the world and
provides a significant source of oil and protein to large
segments of the population in Asia, Africa and the
Americas. In the U. S., peanut is a high-value cash crop
of regional importance, with major production areas
concentrated in the Southeast. Plant breeding efforts to
pyramid genes for disease and insect resistances, quality,
and yield is hampered by the polyploid genetics of the
crop species, the multigenic nature of many traits (e.g.,
yield), and the difficulty of selecting for many traits
in the field (e.g., soil borne diseases). Thus, secondary
selection methods that are environmentally neutral
would greatly facilitate crop improvement efforts. Mole-
cular markers fit this criterion, but only recently have
markers been developed that reveal sufficient polymorph-
isms in A. hypogaea and related species to have wide-
spread application in peanut breeding. Preliminary steps
for utilizing molecular markers for crop improvement
are developing collections of polymorphic markers and
utilizing them to construct dense and high-resolution
genetic maps.
Constructing a high-quality genetic map depends

largely upon finding one or more marker systems that
can detect high levels of polymorphism between two
individual parents. Unfortunately, low levels of molecu-
lar polymorphism were observed within tetraploid
(2n = 4x = 40) A. hypogaea throughout the 1990s and
early 2000s with the marker systems available at that
time [1,2]. However, compared with the limited numbers
of polymorphic markers detected for the tetraploid, the
same marker systems can uncover high levels of mole-
cular polymorphism within and between the diploid
(2n = 2x = 20) peanut species. This polymorphism led
researchers to create molecular maps for Arachis. The
first molecular map in peanut was constructed between
the diploids A. stenosperma Krapov. and W.C. Gregoryx
and A. cardenasii Krapov. and W.C. Gregory by Halward
et al. [3] who used Restriction Fragment Length Poly-
morphisms (RFLPs) to associate 117 markers into 11
linkage groups. Additional maps were subsequently pub-
lished using Randomly Amplified Polymorphic DNA
(RAPD) [4] and Simple Sequence Repeats (SSRs) [5,6].
Burow et al. [7] published the first tetraploid map
in peanut based on 370 RFLP loci across 23 link-
age groups by utilizing the complex interspecific cross,
Florunner × 4x [A. batizocoi Krapov. and W.C. Gregory
(A. cardenasii × A. diogoi Hoehne)]. Another interspeci-
fic tetraploid linkage map of 298 loci and 21 linkage
groups was derived from a backcross population be-
tween A. hypogaea and a synthetic amphidiploid [8].
Only recently have linkage maps been developed from
crosses between A. hypogaea genotypes, most with less
than 200 loci and with more than the expected 20 link-
age groups [9-13]. An exception is the recently published
map containing 1114 loci across 21 linkage groups
that was constructed in part with highly polymorphic
markers derived from sequences harboring miniature
inverted repeat transposable elements [14]. Therefore,
there is a continuing need to generate dense linkage
maps for the cultivated tetraploid peanut that will not
only cluster the markers into the expected 20 linkage
groups to cover the haplotype chromosomes, but also
to facilitate marker-trait association and eventually assist
in its genetic improvement.
The domesticated peanut is thought to have arisen

from a single hybridization event between two diploid
wild species followed by whole genome duplication
approximately 3,500 years ago [15]. This short evolu-
tionary history, along with hybridization barriers be-
tween diploids and the tetraploid have resulted in a
narrow genetic base for the cultivated tetraploid peanut.
On the contrary, diploid Arachis species are genetically
diverse, have simpler inheritance patterns, and most im-
portantly, contain a rich source of agronomically import-
ant traits for peanut improvement. Due to these
attributes, diploid Arachis species have been proposed as
model systems to map the peanut genome. Because the
genomes of progenitor diploid species [i.e., A. duranensis
(A-genome donor) and A. ipaensis (B-genome donor)]
are closely allied to the cultivated peanut [16], mapping
the genome of one or both of these species should be
useful for predicting the positions of loci in the cultivated
peanut. This approach has been employed in wheat
[17,18], alfalfa [19,20], oat [21], and other crop species.
One accession of A. ipaensis and 67 accessions of

A. duranensis have been collected in South America.
The largest concentration of A. duranensis is in southern
Bolivia and northern Argentina, with a few populations
being reported in Paraguay and one in central Brazil
[22,23]. The species is morphologically diverse and the
Bolivia and Argentina types can be separated cytogeneti-
cally and morphologically [24]. Due to the availability of
diverse accessions to produce intraspecific crosses in the
greenhouse, a dense linkage map in the diploid species
A. duranensis was produced using large numbers of
molecular markers derived from transcribed sequences.

Results and discussion
Species relationships
A preliminary study of SSR marker variation among 37
A. duranensis accessions using 556 markers indicated
that the species is highly polymorphic at the molecular
level and individual accessions could be separated based
on a cluster analysis (Figure 1). Interestingly, we found
that A. ipaensis, the proposed B-genome (BB) progenitor
species, clustered with the A-genome (AA) species
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Figure 1 Genetic relationships among A- and B-genome Arachis species. Clustering of A- (A. duranensis and A. stenosperma) and
B- (A. ipaensis and A. batizocoi) genome species according to analysis of data from SSR markers. The two parents used for mapping are
indicated by arrows.
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A. stenosperma and not with the B-genome species A.
batizocoi. Recent molecular cytogenetic analysis of A-
and non-A- (i.e., B-) genome species suggests that karyo-
type diversity among non-A-genome species is extensive
enough to support separation into additional genome
classes where A. ipaensis remains in B sensu stricto while
A. batizocoi is placed into a separate group [25]. There-
fore, A. batizocoi is less typical of B-genome species.
The number of polymorphic SSR markers between

paired A. duranensis accessions ranged from 160 to 375
out of 556, which is 29 to 67% of the total number of
SSR markers screened. This is a significant amount of
variation, which indicates the high genetic diversity
within the species. Based on cluster analysis, success of
crosses, and fertility of F1s, accessions PI 475887 and
Grif 15036 were selected for subsequent mapping stud-
ies using 94 F2 progenies. Screening of the parental
accessions with 2,138 SSR markers derived from A.
hypogaea EST sequences resulted in 1,768 (82.7%) that
were scorable (detected by ABI3730XL genotyping sys-
tems) and 896 (41.9%) that were polymorphic (Guo Y et al:
Comparative mapping in intraspecific populations
uncovers a high degree of macrosynteny between A- and
B-genome diploid species of peanut, Submitted). The
same markers were used to create a map between
two A. batizocoi accessions and to determine syntenic
relationships between the A and B genome species
(Guo Y et al: Comparative mapping in intraspecific popu-
lations uncovers a high degree of macrosynteny between
A-and B-genome diploid species of peanut, submitted).

Arachis duranensis genetic map
The total number of published SSR markers has now
risen beyond the 2,847 cataloged in a related paper by
Guo et al. (Guo Y et al: Comparative mapping in intras-
pecific populations uncovers a high degree of macro-
synteny between A-and B-genome diploid species of
peanut, submitted) to around 6,000 [26]. Those most
recently reported include: 14 by Gimenes et al. [27]; 51
by Mace et al. [28]; 188 by Proite et al. [29]; 104 by Cuc
et al. [30]; 138 by Yuan et al. [31]; 33 by Song et al. [32];
123 by Wang et al. [33]; 290 by Liang et al. [34]; and
1,571 by Koilkonda et al. [35]. Five hundred and ninety-
eight of these markers are included in the A. duranensis
map (Figure 2). Of the 34 genomic SSR markers mapped
in the current study (Table 1), 24 were mapped previ-
ously in an interspecific population between A. duranen-
sis and A. stenosperma [6,36]. These markers served to
anchor and align the current and previously published
peanut maps (Figure 2). Linkage group assignments of
all markers were consistent between the current map
and that of Bertioli et al. [36] except for the marker
GM117 (AC3C02 on map in reference 36 derived from
GenBank accession DQ099133) that was localized on
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Figure 2 High-density linkage map of Arachis duranensis including 1,724 markers. SNP and SSR markers are prefixed by ‘SNP’ and ‘GM’,
respectively, resistance gene candidate markers are prefixed by ‘RGC’ and ‘GS’. Twenty-four previously published markers (underlined) were
selected from an interspecific map between A. duranensis and A. stenosperma [36] to establish synteny between the current and former linkage
groups. The original linkage group assignments are given in the marker names separated by the pound (#) sign. Loci with significant segregation
distortion (p = 0.05) are labeled with an asterisk. Graphs to the right of the linkage groups represent recombination frequencies. Each data point
represents genetic distances between adjacent markers averaged for a window of 20 markers.
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chromosome 2A (the ‘A’ following a chromosome num-
ber is presented in this study to represent chromosomes
in the A genome of peanut) in their interspecific map,
while mapping to chromosome 10A in the A. duranensis
intraspecific map. Although detailed information for par-
ental alleles in the study by Bertioli et al. [36] was not
presented, GM117 amplified only one locus from each
parent in both their population and ours. It is, therefore,
unlikely that the marker location discrepancy was due to
mapping of multiple loci and perhaps could reflect a
small chromosomal rearrangement. Chromosomal rear-
rangements are not unexpected based on previous cyto-
logical observations in the genus [24,37].
EST libraries of A. duranensis were developed to pro-

duce Single Nucleotide Polymorphism (SNP) markers
for mapping (Table 2). Of the 1,536 SNP markers devel-
oped (Additional file 1), 1,054 were included in the
A. duranensis map (Figure 2). The remaining 482 SNP
markers were either of low quality (GC quality score
<0.25) or they showed segregation patterns (extremely
distorted) that could not be mapped. Of the 1,054
mapped SNP markers, 815 were derived from the cDNA
sequencing project while the other 239 were genomic
legume orthologs.
The A. duranensis map produced in this study con-
tained 1,724 markers combined into 10 linkage groups
with a total genetic distance of 1081.3 cM. MSTMap, a
software program that accommodates large numbers of
markers and utilizes a “minimum spanning tree” algo-
rithm, was used to construct an initial genetic map using
only the codominant markers. The 1,673 codominant
markers were distributed into 810 co-segregating groups
(bins). Although this program has been reported to
be accurate for large-scale mapping projects [38], few
independent studies are available establishing consistency
between MSTMap and other commonly used mapping
software [39]. To confirm the linkage group assignments,
marker orders, and genetic distances determined by alter-
native software, both codominant and dominant markers
were mapped with Joinmap 3.0. Marker orders and gen-
etic distances were highly consistent between MSTMap
and Joinmap 3.0 (Additional file 2).
Significant segregation distortion (p = 0.05) was

observed for 513 (29.8%) markers (Figure 2, Additional
file 3). Chromosomes 4A and 9A carried particularly
long segments of distorted segregation suggesting large-
scale chromosomal selection in these regions. Guo et al.
(Guo Y et al: Comparative mapping in intraspecific



Table 1 Previously published genomic SSR markers mapped in Arachis duranensis

Universal Name Original Name Forward (50-30) Reverse (50-30) Reference

GM7 Ah1TC1D02 GATCCAAAATCTCGCCTTGA GCTGCTCTGCACAACAAGAA Moretzsohn et al. 2005

GM10 Ah1TC1E05 GAAGGATAAGCAATCGTCCA GGATGGGATTGAACATTTGG Moretzsohn et al. 2005

GM13 Ah1TC1H04 CATTACTTCCTAGGTTTGTTTTCCA ATGGCGTGACAACGGAAC Moretzsohn et al. 2005

GM16 Ah1TC2B01 TTGCAGAAAAGGCAGAGACA GAAAGAAGCTAAGAAGGACCCATA Moretzsohn et al. 2005

GM19 Ah1TC2C07 CACCACACTCCCAAGGTTTT TCAAGAACGGCTCCAGAGTT Moretzsohn et al. 2005

GM22 Ah1TC2D06 AGGGGGAGTCAAAGGAAAGA TCACGATCCCTTCTCCTTCA Moretzsohn et al. 2005

GM24 Ah1TC2E05 GAATTTATAAGGCGTGGCGA CCATCCCTTCTTCCTTCACA Moretzsohn et al. 2005

GM28 Ah1TC3A12 GCCCATATCAAGCTCCAAAA TAGCCAGCGAAGGACTCAAT Moretzsohn et al. 2005

GM32 Ah1TC3E02 TGAAAGATAGGTTTCGGTGGA CAAACCGAAGGAGGAACTTG Moretzsohn et al. 2005

GM38 Ah1TC3H02 CTCTCCGCCATCCATGTAAT ATGGTGAGCTCGACGCTAGT Moretzsohn et al. 2005

GM58 Ah1TC4G06 ATTTCACATTCCCTAGCCCC CATCGACTGACTTGAAAAATGG Moretzsohn et al. 2005

GM59 Ah1TC4G10 TTCGGTCATGTTTGTCCAGA CTCGAGTGCTCACCCTTCAT Moretzsohn et al. 2005

GM66 Ah1TC5D06 GAAATTTTAGTTTTCAGCACAGCA TTTTCCCCTCTTAAATTTTCTCG Moretzsohn et al. 2005

GM68 Ah1TC6E01 CTCCCTCGCTTCCTCTTTCT ACGCATTAACCACACACCAA Moretzsohn et al. 2005

GM69 Ah1TC6G09 GGAGGTTGCATGCATCATAGT TCATTGAACGTATTTGAAAGCTC Moretzsohn et al. 2005

GM71 Ah2TC7A02 CGAAAACGACACTATGAAACTGC CCTTGGCTTACACGACTTCCT Moretzsohn et al. 2005

GM74 Ah2TC7E04 GAAGGACCCCATCTATTCAAA TCCGATTTCTCTCTCTCTCTCTC Moretzsohn et al. 2005

GM76 Ah2TC7G10 AATGGGGTTCACAAGAGAGAGA CCAGCCATGCACTCATAGAATA Moretzsohn et al. 2005

GM83 Ah2TC9C06 CAAATGGCAGAGTGCGTCTA CCCTCCTGACTGGGTCCT Moretzsohn et al. 2005

GM92 Ah2TC11A04 ACTCTGCATGGATGGCTACAG CATGTTCGGTTTCAAGTCTCAA Moretzsohn et al. 2005

GM96 Ah2TC11C06 TCCAACAAACCCTCTCTCTCT GAACAAGGAAGCGAAAAGAA Moretzsohn et al. 2005

GM117 Ah2AC3C02 TCTAACGCACACAAATCGAA CTTGTACCTGCGCCATTCT Moretzsohn et al. 2005

GM126 AS1RI1F06 TGTCTCTCTTCCTTTCCTTGCT CCTTTTGCTTCTTTGCTTCC Moretzsohn et al. 2005

GM162 AS1RN9C02 CGTTACACTGAGCCAGCAACTC ACGGCGGCGATAGTTTCA Moretzsohn et al. 2005

GM170 AS1RN11E05 CTCGGTCCAGAAAACACAGG GTAGAGGCGAAGAAGGCAGAG Moretzsohn et al. 2005

GM218 gi-30419832 GCCACTTTATTCTAAGCACTCC AAGAGACCACACGCTCACA Moretzsohn et al. 2005

GM226 gi-30419936 TCACAGATCCATAGACTTTAACATAGC CCGGTGTGGATTCATAGTAGAG Moretzsohn et al. 2005

GM255 pPGPSeq4H6 CCAACATTGCAGAAGCAAGA CAAAGAGAGGCACACCACAA Moretzsohn et al. 2005

GM286 Ah-193 CTTGCTGAAGGCAACTCCTACG TCGGTTTGTCTCTTTGGTCACTC Moretzsohn et al. 2004

GM324 Ah-649 GGAAATGCCAAATCCATCCTTC GTTGTTCGGTGTGAAAACGGTC Moretzsohn et al. 2004

GM328 Ah-671 AGAAAGAGCACGGGACATTACC ATGAATGAGTGGTCATACGCGA Moretzsohn et al. 2004

GM565 pPGSseq17E3 TTTCCTTTCAACCCTTCGTG AATGAGACCAGCCAAAATGC Ferguson et al. 2004

GM664 GM664 CTTCACCTCCAAAATCAACCA ACCGCTGACATTTGATTGTTC Guo et al. 2011

GM671 GM671 TGGATGCTGTAAGGAATGGAC TTATCGAGCTTGCCTCAGAAA Guo et al. 2011

Markers were renamed in order to follow a unified marker nomenclature. The complete list of renamed markers can be found in Guo et al. (Guo Y et al:
Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A-and B-genome diploid species of peanut, Submitted).
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populations uncovers a high degree of macrosynteny be-
tween A-and B-genome diploid species of peanut, Sub-
mitted) found that a single linkage group (4/9B) in A.
batizocoi was syntenic with chromosomes 4A and 9A of
A. duranensis implicating inversion and reciprocal
translocation events as the underlying chromosomal
rearrangements in this B-genome species. Recombination
frequencies were generally low in the central, presumably
centromeric chromosomal regions of A. duranensis and
increased toward the telomeres, a pattern typical of many
plant species [40,41]. More even distribution was
observed along chromosome 3A and only slightly sup-
pressed recombination was observed around the presum-
able location of the centromere (Figure 2).
Across the A. duranensis linkage map, each linkage

group spanned on average 108.1 cM (77.3-145.6 cM)
and included 172.4 markers (119–266) (Table 3). This is
considerably denser than the previously published AA,



Table 2 cDNA sequence reads generated for single
nucleotide polymorphism (SNP) discovery in Arachis
duranensis*

Accession Sequencing
Platform

Tissue type Total

Developing seed Root

PI 475887 Sanger 22,356 21,487 43,843

PI 475887 454 212,938 266,575 479,513

Grif 15036 454 296,242 235,245 531,487

Total 531,536 523,307 1,054,843

* Assembly is deposited at NCBI as Accession: PRJNA50587.
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BB, and AABB maps consisting of only a few hundred
markers. For example, the A. ipaensis × A. magna B-
genome map published by Moretzsohn et al. [5] had 149
SSR markers grouped into 10 linkages, whereas the
B-genome SSR-based map in our related paper consists
of 449 loci in 16 linkage groups (Guo Y et al: Compara-
tive mapping in intraspecific populations uncovers a
high degree of macrosynteny between A-and B-genome
diploid species of peanut, Submitted). The A-genome
map produced using the interspecific hybrid A. duranen-
sis × A. stenosperma had 339 SSRs that were mapped
into 11 linkage groups [6,42]. For A. hypogaea, there are
now several maps with the most dense consensus map
containing 324 loci on 21 linkage groups [11].
The map produced in the current study is the first

high-density map available in peanut, and because it was
generated from a progenitor species of A. hypogaea, we
anticipate that it will have significant applications for
analyzing the cultivated genome. For example, the data
generated in this map was used by Nagy et al. [43]
to more precisely map the Rma gene for nematode
resistance that originated from an introgression line
between A. hypogaea and A. cardenasii. The A-genome
SNP array also has been useful at the tetraploid level
for genotyping a recombinant inbred line population
Table 3 Genetic distances and distribution of markers on
the ten linkage groups of A. duranensis

Linkage group Genetic distance (cM) Markers

1A 96.8 186

2A 103.9 119

3A 145.6 266

4A 115.8 149

5A 131.7 178

6A 109.8 181

7A 82.3 141

8A 77.3 180

9A 106.5 171

10A 111.4 153

Total 1081.3 1724
derived from a cross between cultivated peanut and a
synthetic A. ipaensis x A. duranensis tetraploid (Ozias-
Akins, unpublished).

Gene annotation and comparative mapping
Homology search of the 1,724 mapped loci resulted in
significant hits for 1,463 loci in at least one of the three
databases: Medicago, Uniprot and GenBank NR data-
base, and 580 of the mapped loci gave significant simi-
larities in either of the two gene ontology databases:
Medicago Gene Atlas and TAIR (Additional file 4).
Altogether 1,366 gene ontology terms were assigned to
the 580 genes. These were distributed among the three
major gene ontology categories as follows: 521 molecular
functions, 534 biological processes, and 311 cellular
components (Additional file 4).
The sequences used to create the A. duranensis map

also were compared to the genomes of two legumes
where 995 loci on the A. duranensis map could be
mapped to M. truncatula, and 2,711 matches could be
found in G. max (with potentially two hits per mapped
locus). While a majority of the dots in the synteny plots
appear to be random (Figure 3), there are definite clus-
ters of markers, and striking examples of colinearity (red
arrows), especially for the comparisons to Glycine. Pre-
sumably there has been extensive single gene movement
since the last common ancestors in one or both species,
but many genes remain in the ancestral locations and
can be detected. Overall, the synteny patterns for G.
max showed the recent whole genome duplication
within Glycine, with each location in peanut showing
corresponding synteny at two locations in Glycine. Co-
linearity between Medicago and Arachis is much less
conserved than between Arachis and Glycine. This could
be due to extensive inversions in either genome, or more
likely, due to preliminary ordering of sequences within
the Medicago unfinished genome assembly. In general,
the patterns showed strong synteny on the chromosomal
ends in both genetic and physical distance, while the
central regions of chromosomes tended to show less
synteny. Presumably this could be attributed to pericen-
tromeric heterochromatin which is known to define less
recombinogenic regions where genomic rearrangements
are more likely to persist [44]. Chromosome arms tend
to be maintained as syntenic between Glycine and Ara-
chis, but there is evidence that chromosome arms have
been translocated in some cases so that synteny exists at
the chromosome arm level, but less so at the whole
chromosome level.

Conclusions
This investigation provided a large number of de novo
EST sequences that were deposited into GenBank. The
markers developed here are valuable resources for peanut



Figure 3 Synteny between diploid A-genome peanut (A. duranensis, 2n = 20) and Glycine max (2n = 40). Arrows indicate clusters of genes
in common between the two genomes. For plotting the data on the Y axis, the peanut genome for each chromosome is proportional in size to
the total map size in centimorgans. For the X axis, the unit of measure is scaled to bp within the chromosomal assemblies of the respective
genomes. The plot was obtained with a visual basic program that plotted the x-y coordinates of each hit. The total number of matches for each
pair wise comparison is listed at the upper left corner.
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and, more broadly to the legume research community.
This research presents the first high-density molecular
map in peanut with 1,724 markers grouped into the 10
expected linkage groups for an A-genome species.
Because the map was produced with the progenitor
species A. duranensis which contributed the A genome
of A. hypogaea, it will serve as the reference map for
both wild and cultivated species. Lastly, synteny was
found between Arachis and the Glycine and Medicago
genomes, which indicates that markers developed for
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other legume species may be of value for crop improve-
ment in peanut. The A-genome map will have utility for
fine mapping in other peanut species and has already
had application to mapping a nematode resistance gene
that was introgressed to A. hypogaea from A. cardenasii.

Methods
Plant materials
Thirty-seven accessions of A. duranensis, 14 accessions
of A. stenosperma (A genome), one accession of A.
ipaensis, and eight accessions of A. batizocoi (B genome)
were obtained from the USDA or NCSU germplasm col-
lections. Plants were then grown in greenhouses at the
University of Georgia at Athens. The accessions evalu-
ated are shown in Figure 1. Hybrids were made between
three pairs of A. duranensis accessions, including PI
468200 × PI 468198, PI 468319 × PI 475885, and
PI 475887 × Grif 15036. The hybrid combination
PI 475887 × Grif 15036 was one of the most poly-
morphic as revealed by using a panel of SSR markers
as described below and thus was selected for subse-
quent mapping. PI 475887 was originally collected by
Krapovickas, Schinini, and Simpson near Salta,
Argentina during 1980, and Grif 15036 was originally
collected by Williams, Simpson, and Vargas near
Boqueron, Paraguay during 2002 [22]. Crosses were
made by manually emasculating flowers of the female
parent PI 475887 during the late afternoon and pollin-
ating stigmas between 8 and 10 am the following
morning with pollen from the male parent Grif 15036.
An F2 population was developed by self-pollinating
multiple F1 individuals. The intraspecific F2 population
(n = 94) from a hybrid between two A. duranensis
accessions was then used for mapping studies.

Molecular diversity between and within A- and B-genome
diploid species
DNA was isolated from leaf samples of A. duranensis,
A. ipaensis, A. stenosperma, and A. batizocoi accessions
using a modified CTAB method [45,46]. The 60 DNA
samples were amplified using 709 different SSR primer
pairs (GM1-GM709) that had been generated from
sequences reported in the literature [6,29,47-53] and
screened for polymorphisms. SSR markers were geno-
typed on an ABI3730XL Capillary DNA Sequencer
(Applied Biosystems, Foster City, CA) as described in
a related paper by Guo et al. (Guo Y et al: Compara-
tive mapping in intraspecific populations uncovers a
high degree of macrosynteny between A-and B-genome
diploid species of peanut, Submitted) using forward
primers labelled with FAM, HEX, or TAMRA fluoro-
phores. Microsat [54] was used for construction of a
distance matrix based on the proportion of shared
bands (D = 1 - ps) from 556 primer pairs amplifying
polymorphic fragments. The matrix was imported into
Phylip v3.67 [55] for the construction of the neighbor-
joining tree.

Marker development
Simple sequence repeat (SSR) markers
A total of 101,132 unigenes (37,916 contigs (GenBank Acc.
No. EZ720985-EZ758900) and 63,216 singletons) from
tetraploid peanut ESTs (GenBank Acc. No. CD037499-
CD038843, ES702769-ES768453, GO256999-GO269325,
GO322902- GO343529 and short-read Sequence Read
Archive accessions SRX020012, SRX019979, SRX019972,
SRX019971) representing ca. 37 Mb of the A. hypogaea
genome were mined for 2,138 EST-SSR markers (GM710-
GM2847) (Guo Y et al: Comparative mapping in intraspe-
cific populations uncovers a high degree of macrosynteny
between A-and B-genome diploid species of peanut,
Submitted). Unigenes in the transcript assembly were
screened for perfect repeat motifs using SSR-IT http://
www.gramene.org/db/markers/ssrtool) and for imperfect
motifs using FastPCR (http://primerdigital.com/fastpcr.
html). The repeat count (n) threshold for each motif type
was set for n ≥ 5. SSR markers were genotyped on an
ABI3730XL Capillary DNA Sequencer (Applied Biosys-
tems, Foster City, CA) using forward primers labelled
with FAM, HEX, or TAMRA fluorophores. PCR was per-
formed in a 12 μL reaction mixture containing 1.0 × PCR
buffer, 2.5 mM Mg++, 0.2 mM each of dNTPs, 5.0 pmol
of each primer, 0.5 unit of Taq polymerase, and 10 ng of
genomic DNA. Touchdown PCR was used to reduce
spurious amplification. The SSR markers were screened
for length polymorphisms using GeneMapper 3.0 software
(Applied Biosystems, Foster City, CA). Of the 2,138 EST-
SSR primer pairs tested, markers derived from 598 could
be mapped. A set of 34 SSR markers from genomic
sequences of Arachis previously screened for polymor-
phism between parents of the A. duranensis mapping
population (Guo Y et al: Comparative mapping in intras-
pecific populations uncovers a high degree of macrosyn-
teny between A-and B-genome diploid species of peanut,
Submitted) were also mapped (Table 1).

Single-stranded conformational polymorphism
(SSCP) markers
SSCP markers were developed from genomic DNA tem-
plates for previously described NBS sequences isolated
by targeting conserved sequence motifs in NBS-LRR
encoding genes [56,57] and from Arachis unigenes
showing similarity to R-gene homologs identified by min-
ing a peanut transcript assembly [43]. SSCP fragments
were amplified using touch-down PCR and detected by
silver-staining as previously described [58-60]. A total
of 380 SSCP markers were evaluated for polymorphism
between the parents PI 475887 and Grif 15036. The

http://www.gramene.org/db/markers/ssrtool
http://www.gramene.org/db/markers/ssrtool
http://primerdigital.com/fastpcr.html
http://primerdigital.com/fastpcr.html
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resistance gene analog markers are prefixed by either ‘GS’
or ‘RGC’ in the map. cDNA sequences for unigenes
targeted for SSCP marker development in the present
study were deposited in GenBank (Acc. No. GF100476-
GF100638). One additional marker, the SCAR marker
S197 linked to a root-knot nematode resistance gene in
Arachis hypogaea [43,61] was also mapped.

Development of single nucleotide polymorphism (SNP)
markers
Total RNA was isolated from roots of young seedlings
(up to four trifoliate) and from developing seeds (up to
developmental stage R6) of the two parental genotypes,
PI 475887 and Grif 15036 (alias DUR25 and DUR2,
respectively). cDNA libraries were developed using the
Mint cDNA synthesis kit (Evrogen) and normalized
using the Trimmer cDNA normalization kit (Evrogen).
cDNA sequences were generated by Sanger and 454 GS-
FLX sequencing methods and assembled using the tool
Mira [62]. Altogether, more than one million cDNA
sequence reads were generated from A. duranensis PI
475887 and Grif 15036. These were assembled into
81,116 unique transcripts (unigenes) (GenBank Accn.
No. HP000001-HP081116). Assemblies were searched
for single nucleotide polymorphisms (SNPs) that fulfilled
the following two criteria: (a) the SNP position is
covered at least by two reads from each genotype, and
(b) at least 80% of the reads call the SNP in the particu-
lar genotype. Using these criteria, we identified 8,478
SNPs in 3,922 unigenes. To facilitate the selection of
candidate SNPs for designing and building Illumina
GoldenGate SNP genotyping arrays, putative intron
positions were predicted by aligning Arachis contigs with
Arabidopsis and Medicago genomic DNA sequences
identified by BLAST analyses. SNPs within 60 bp of a
putative intron were eliminated, thereby reducing the
collection of candidate SNPs to 6,789 in 3,264 unigenes
from which 1,236 high-quality SNPs, each representing
separate unigenes, were selected for genotyping. SNPs
were also detected by allele re-sequencing in a subset of
768 conserved legume orthologs identified by coauthors
(R.V. Penmetsa, N. Carrasquilla-Garcia, A. D. Farmer
and D.R. Cook), and 300 of these SNPs were added to
the GoldenGate array. SNP genotyping on the Golden-
Gate array was conducted at the Emory Biomarker
Service Center, Emory University. The BeadStudio (Illu-
mina) genotyping module was used for calling geno-
types. Markers with GC quality scores lower than 0.25
were excluded from subsequent analysis.

Map construction
The program, MSTMap [39] was used to build a core
genetic map including all codominant markers using
the cut-off p-value of 10-12 for clustering markers into
linkage groups. The recombinant inbred line2 (RIL2) al-
gorithm and Kosambi function were used to calculate
genetic distances. The program Joinmap 3.0 [63] was
used to localize the dominant markers and to confirm
the marker order, a range of LOD scores of 5–16 was
used to create groups. The Kosambi mapping function
was used for map length estimations. Markers were
tested for segregation distortion by the chi-square test.
Graphic presentation of the map was drawn using Map-
chart 2.0 software [64].

Gene annotation
The cDNA sequences included in the genetic map have
been used to search for homologous genes in the Medi-
cago (www.medicago.org), Uniprot (www.uniprot.org)
and GenBank NR (http://www.ncbi.nlm.nih.gov/genbank)
databases using various blast algorithms. Gene ontology
annotations were also added by searching Medicago
Gene Atlas (http://mtgea.noble.org) and The Arabidopsis
Information Resource (TAIR, www.arabidopsis.org) data-
bases. A significance threshold of E =1e-5 was applied in
all inquiries.

Synteny between Arachis, Medicago, and Glycine
The EST sequences used for marker-development were
compared to the whole genome sequences of Glycine
max and Medicago truncatula to establish synteny.
Sequences for the genomes G. max V5 and M. trunca-
tula MT3.0 were obtained through www.phytozome.net.
The sequences associated with each locus on the A. dura-
nensis peanut map (Additional file 1 and Additional file 5)
were searched against the respective whole genome
sequences using blastn and E < =1e-6. For comparison to
Medicago, only the best match was retained because dip-
loid peanut and M. truncatula are at the same relative
ploidy level. However for Glycine, the two best matches
for each peanut sequence were retained because of the re-
cent polyploidy within soybean and the high level of reten-
tion of duplicated genes in the species. Blast hits to
scaffolds or Bacterial Artificial Chromosomes (BACs) not
anchored to the chromosomal assembly in the target
genomes were discarded. Plotting the data and proces-
sing of blast results were performed with Visual Basic
programs written for this study.

Additional files

Additional file 1: SNP markers on Illumina GoldenGate array.
Marker ID along with sequence information for OPAs and target ESTs
are provided.

Additional file 2: Comparative genetic mapping of Arachis
duranensis using two different software programs on the same
dataset. Genetic maps were constructed by MSTMap (left) using 1673
co-dominant markers and Joinmap 3.0 (right) using 1724 markers.
Linkage group assignments, marker orders and genetic distances were

http://www.medicago.org
http://www.uniprot.org
http://www.ncbi.nlm.nih.gov/genbank
http://mtgea.noble.org
http://www.arabidopsis.org
http://www.phytozome.net
http://www.biomedcentral.com/content/supplementary/1471-2164-13-469-S1.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-13-469-S2.pdf
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highly consistent, except for the order among a few closely linked loci.
Marker positions determined by Joinmap 3.0 are provided in Additional
file 6.

Additional file 3: Mapped markers with segregation distortion
(p = 0.05) and their position on the map. Column A lists the marker
positions on each chromosome, column B indicates marker name,
column C is the chromosome number, columns D to H list the number
of individuals in each genotype class, and columns J and K provide χ2

and P values, respectively.

Additional file 4: Annotated loci mapped in Arachis duranensis.
Columns B to J include homologs identified in the Medicago (B-D),
GenBank-NR (E-G) and Uniprot-Sprot (H- J) databases. Columns L to S
include gene ontology (GO) terms identified in the three major GO
categories: molecular function (N, O), biological process (P,Q) and cellular
component (R,S).

Additional file 5: Sequences associated with SSR and SSCP markers
for synteny analysis. Column A is the marker name and column B is the
Genebank ID or sequence used as query for synteny analysis.

Additional file 6: Marker positions for the linkage map.
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