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Abstract

Background: In the post-genomic era several methods of computational genomics are emerging to understand
how the whole information is structured within genomes. Literature of last five years accounts for several
alignment-free methods, arisen as alternative metrics for dissimilarity of biological sequences. Among the others,
recent approaches are based on empirical frequencies of DNA k-mers in whole genomes.

Results: Any set of words (factors) occurring in a genome provides a genomic dictionary. About sixty genomes were
analyzed by means of informational indexes based on genomic dictionaries, where a systemic view replaces a local
sequence analysis. A software prototype applying a methodology here outlined carried out some computations on
genomic data. We computed informational indexes, built the genomic dictionaries with different sizes, along with
frequency distributions. The software performed three main tasks: computation of informational indexes, storage of

analysis

these in a database, index analysis and visualization. The validation was done by investigating genomes of various
organisms. A systematic analysis of genomic repeats of several lengths, which is of vivid interest in biology (for
example to compute excessively represented functional sequences, such as promoters), was discussed, and
suggested a method to define synthetic genetic networks.

Conclusions: We introduced a methodology based on dictionaries, and an efficient motif-finding software
application for comparative genomics. This approach could be extended along many investigation lines, namely
exported in other contexts of computational genomics, as a basis for discrimination of genomic pathologies.
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Background

Genomes are sequences of nucleotides from hundreds
to billions of base pairs long. As sequences of symbols
they determine dictionaries, that is, formal languages
constituted by words occurring in them. They encode
the language of life, as dictating the functioning of all
the organisms we consider living beings. A main open
problem in science is to find a key to understand such an
encrypted language, which more or less directly affects the
structure and the interaction of all the cellular and multi-
cellular components [1]. It is like having at hand a book,
the language of which has still to be deciphered [2,3].
Namely, the international long-term project ENCODE [4]
is searching for encyclopedias, lexicons, catalogs, of DNA
biochemically annotated elements in human genome.
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Working on genomic dictionaries requires the elabo-
ration of enormous moles of data. As an example, the
dictionary of all the substrings of length 18 occurring
in Drosophila melanogaster’s genome has more than 116
millions of words, which require, only to be stored, non-
trivial implementations of ad hoc procedures. To the best
of our knowledge, exhaustive studies on collections of k-
mers were carried out for values of k which do not exceed
13 (see for example [5-8]).

The starting point of our analysis was the computa-
tion of all k-mers, with kK = 6,12,18, of given genomes,
listed in Table 1. Some properties of such specific dictio-
naries and their compared statistics guided our research
along lines of development which were in part already
present in the literature [9,10], and in part took us towards
new topics, which emerged just from the empirical evi-
dence of computed data. An interesting concept in this
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Table 1 A list of genomes investigated in the paper
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Organism Genome Length (in bp) Genes Type

Nanoarchaeum equitans 490,885 536 Minimal archaeum
Mycoplasma genitalium 580,076 476 Minimal bacterium
Mycoplasma mycoides 1,211,703 1,016 Venter's experiment bacterium
Haemophilus influenzae 1,830,138 1,717 First sequenced bacterium
Escherichia coli 4,639,675 4,685 Bacterium model (K-12)
Pseudomonas aeruginosa 6,264,404 5,566 Ubiquitous bacterium
Saccharomyces cerevisiae 12,070,898 6,275 Unicellular eukaryote (Yeast)
Sorangium cellulosum 13,033,779 9,700 Longest genome bacterium
Homo sapiens chr. 19 63,800,000 2,066 Highest gene density H. chromosome
Caenorhabditis elegans 100,267,632 19,000 Worm (around 1000 cells)
Drosophila melanogaster 129,663,327 14,000 Insect (fruit fly)

Homo sapiens chr. 1 247,000,000 3,511 Longest Human chromosome

context is that of hapax (a Greek term, meaning “once’,
coming from philology, where it is used for denoting a
“word said once”). In manuscripts these words are rel-
evant for authorship attribution, in genomes they seem
to play essential roles in the genome organization as
opposed to repeat strings, which instead occur more than
once.

In Table 1 a list is reported of twelve (out of the sixty
we have investigated) genomic sequences, to which we
applied the methodology described below. They corre-
spond to genomes of well known organisms, constitut-
ing biological models, of relevance in various kinds of
genomic analysis. The sequences were downloaded from
public websites as FASTA files, and processed by a dedi-
cated Java software that we developed.

In the following basic terminology for genomic dictio-
naries and multisets, and genomic profiles/distributions,
is introduced, along with a simple example focused
on a specific DNA sequence. Results are reported in
terms of both an analysis of dictionaries of k-long
hapaxes and repeats, together with the introduction
of three related dictionary-based informational indexes,
and the definition of k-repeat sharing gene networks.
Section Discussion is then developed around a phase-
transition observed in k-dictionaries from k =12 to
k =18, and around the structure of genomic informa-
tion which emerges when dictionary cardinality trends
and multplicity-comultiplicity distributions are com-
pared with those of randomly permuted sequences. A
description of the software suite developed to perform
all our computations is finally presented in section
Methods.

Basic notations
Let us denote by I' the genomic alphabet of four sym-
bols (characters, or letters, associated to nucleotides):

I' = {A, T, C, G} (then I'*, as usual, denotes the set of all
possible words over I').

A genome G is representable by a sequence over T,
that is, a table assigning a symbol of I' to each position
(from 1 to the length of G). Symbols are written in a linear
order, from left to right, according to the standard writing
system of west languages, and to the chemical orientation
5" — 3’ of DNA molecules. By associating to each sym-
bol of T the set of positions where it occurs, G may be
equivalently identified by four sets of numbers.

All factors (fragments) of a genome G are collected
in the set D(G), while we call k-genomic dictionary of
G (for some k < |G|), denoted by Di(G), the set of
all the k-long substrings of genome G. The k-genomic
table T (G), which mathematically corresponds to a mul-
tiset, is defined by equipping the words of Di(G) with
their multiplicities, that is, the number of their respective
occurrences in G. Let o(G) denote the multiplicity of «
and posg(a) gives the set of positions of « in a genome G
(that is, the positions where the first symbol of « is placed).
Of course, it holds «(G) = |posg(«)|. Hence, the table
Tx(G) may be represented by an association of strings
to their corresponding multiplicities: « +— «(G), with
a € Di(G). The sum of all the multiplicities of elements in
Dy (G) is called the size of T (G), denoted by | Tx(G)|, with
the same sign for string length and for set cardinality (but
the context of use should avoid any confusion). It is easy
to realize that:

IT(G)| = |G| — k + 1.

Word distribution in a genome may be represented
along a graphical profile, which measures the number of
k-words having a given number of occurrences. Words
having the same multiplicity in a k-genomic table Tx(G)
can be grouped and their number is called comultiplicity.
As an instance, for the sequence ATTAGGATCTTAAT,
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we have: six 2-words occurring once (ie., AA, AG, TC,
CT, GA, GG), two words occurring twice (i.e., TA, TT),
one word (i.e., AT) occurring 3 times, and seven 2-words
which do not occur at all.

If we report 2-words multiplicities on the x-axis and
their number (comultiplicity) on the y-axis, we obtain
the chart in Figure 1a. We call such curves multiplicity-
comultiplicity k-distribution (see Figure 2) of a genome.
This kind of charts [5] represents a recent approach in
genome analysis, opening new investigation lines about
the internal logic underlying genome organizations. The
same information may be graphically reported as a rank-
multiplicity Zipf map (usually employed to study word
frequencies in natural languages [11]). As one may notice
by looking at Figure 2, both the middle and final inclina-
tion of Zipf’s curves is different for four of our organisms,
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accounting for the multiplicity range in which we have a
major density of strings. In all cases, we have few units
with maximal multiplicity, indeed Zipf curves initially
slope down steeply.

Several other nice representations of genomic frequen-
cies may be found in the literature, for example by means
of images (in [7], distance between images results in a
measure of phylogenetic proximity, especially to distin-
guish eukaryotes from prokaryotes).

Results

Two important types of factors of genomes are hapaxes
and repeats. A hapax of a genome G is a factor o of G
such that «(G) = 1. A repeat of G is a factor @ of G
such that «(G) > 1. Two or more contiguous occur-
rences of one repeat form a sequence technically called

a

Comultiplicity
=

0 0.5 1 15

2 2.5 3 35

Multiplicity

Figure 1 (a) Multiplicity-comultiplicity 2-distribution of the sequence ATTAGGATCTTAAT. A simple example of a multiplicity-comultiplicity
2-distribution diagram for the specific sequence ATTAGGATCTTAAT is here reported (b) Localization of some repeats. A diagram is shown for
localization of repeats in the range 1.3 - 1.6 x 10* of N. equitans’ genome, where one repeat of 130 occurs, after a few shorter ones (about 30).
Positions versus repeat lengths are respectively reported on the axes.
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Figure 2 Multiplicity-comultiplicity and rank-multiplicity distributions. Some examples of multiplicity-comultiplicity k-distributions and Zipf's
curves [11] are reported, related to the 6-genomic dictionary of Escherichia coli, Saccharomyces cervisiae, Drosophila melanogaster, and chromosome
19 of Homo sapiens respectively. On the left, we report a given multiplicity on the x-axis, and the number of 6-words having that multiplicity on the
y-axis. On the right, we have the corresponding Zipf's distributions, where the words of the 6-genomic dictionary are reported on the x-axis,
according to their decreasing number of occurrences (words with a same number of occurrences are lexicographically ordered), which is on the
y-axis, in logarithmic form.

tandem repeat, if the repeated sequence is shorter than
10 nucleotides, one has a minisatellite or short tandem
repeat. They describe patterns helpful to determine indi-
vidual’s inherited traits, namely to determine parentage or
genealogical information.

Back to the dictionaries, the set H(G) of hapaxes of G
and the set R(G) of repeats of G of course constitute a
bipartition of D(G) (at least one element of I' is a repeat
and G is a hapax, therefore H(G) and R(G) are nonempty,
also disjoint sets, such that their union is D(G)). We set

Hi(G) = I'* N H(G) and Ry (G) = T* N R(G)

where N is the set-theoretic intersection.

Therefore, given a genome G of length n, for any k < n
we can read it according to the bi-partition of its k-
genomic dictionaries Hx(G) and Rx(G). Size variations of
k-genomic, k-hapax and k-repeat dictionaries, for k = 1,

..., 18, are analyzed in the following (see Tables 2, 3, 4
for numerical data), while the size of “forbidden dictionar-
ies” (those composed by “non-appearing” k-words, said
also “nullomers” [12]), for given genomes, is of course
exponentially increasing with k.

According to data reported in Table 2, in the first three
genomes of the list, |Dg(G)| slightly decreases and repet-
itiveness slightly increases for longer genomes. When the
analyzed genomes length exceeds about 1,800,000 base
pairs, the decomposition of Dg in hapaxes and repeats
keeps the identical respective cardinalities. All the 6-
genomic dictionaries are composed by only repeat words
(i-e., they do not contain any hapax).

In Table 3, the number of hapax words |H12(G)| appears
not related to the length of genome G, and neither to
the cardinality of D15(G); while the ratio of 12-hapaxes
over 12-repeats HRj, appears roughly decreasing with



Castellini et al. BMC Genomics 2012, 13:485 Page 5 of 14
http://www.biomedcentral.com/1471-2164/13/485

Table 2 Indexes related to Dg(G)

Genomic Sequences |Dg| Le |Hs| |Re| HRs
Nanoarchaeum equitans 4,094 0.008 6 4,086 1468 x1073
Mycoplasma genitalium 4,082 0.007 35 4,047 865 x 1072
Mycoplasma mycoides 4,076 0.003 39 4,037 9661 x1073
Haemophilus influenzae 4,096 0.002 0 4,096 0

Escherichia coli ! 0.0009 ! ! !

Table 3 Indexes related to D12 (G)

Genomic Sequences |D12] L1z |H12| 1R12] RD1> HRq, AR>
Nanoarchaeum equitans 431,046 0.87 385,146 45,900 0.11 8.39 2.30
Mycoplasma genitalium 496,194 0.85 435,502 60,692 0.13 7.175 2.38
Mycoplasma mycoides 646,965 0.53 442,836 204,129 0.32 2169 3.76
Haemophilus influenzae 1,495,701 0.81 1,256,043 239,658 0.17 5.240 2.39
Escherichia coli 3,478,923 0.74 2,675,846 803,077 0.24 3.331 244
Pseudomonas aeruginosa 2,949,852 047 1,799, 637 1,150,215 0.39 1.564 3.88
Saccharomyces cerevisiae 6,597,259 0.54 3,977,392 2,619,867 040 1.518 3.08
Sorangium cellulosum 3,863,399 0.29 1,924,969 1,938,430 0.51 0.993 573
Homo sapiens chr19 10,735,683 0.19 3,359,705 7,375,978 0.69 0.455 6.99
C. elegans 13,929915 0.13 3,099,744 10,830,171 0.78 0.286 8.97
D. melanogaster 15,891,212 0.12 1,632,045 14,259,167 0.9 0.114 8.89

the genome length. This is due to the fact that 12-repeat
words constitute a considerable portion of 12-genomic
dictionary, actually a percentage (called RD;p) which
increases with the genome length (from 11% to 90%). The
average 12-factors repeatability index, in the last column,
accounts for the average repeatability of 12-repeats in all
the genomes.

In Table 4, cardinality of D;g and Hig increase with
the genome length, as expected. As a notable result
though, we can see that the 18-repeat-factor ratio RD1g is

Table 4 Indexes related to D1g(G)

firmly fixed (over all the genomes) on a very small por-
tion of the 18-genomic dictionary, mostly ranging from
0.01 to 0.07 (and always less than 1%), independently
on the genome length. The 18-hapax-repeat ratio HRg
does not show a regular behavior with respect to the
length, but its values are considerably greater for longer
words (according to the data, for k = 12 and k =
18). The average 18-factor repeatability index does not
exhibit the regularity of the average 12-factor repeata-
bility with respect to the genome length, it even shows

Genomic Sequences |D1g| Lig |H1g| |R18] RD:g HR1g ARig
Nanoarchaeum equitans 489,465 0.99 488,802 663 0.001 737.25 3.1

Mycoplasma genitalium 569,202 0.98 563,045 6,157 0.01 91.44 2.76
Mycoplasma mycoides 987,645 0.81 913,599 74,046 0.07 12.33 4025
Haemophilus influenzae 1,795,492 0.98 1,775,531 19,964 0.01 88.93 2.64
Escherichia coli 4,557,590 0.98 4,518,585 39,005 0.008 115.84 3.10
Pseudomonas aeruginosa 6,183,215 0.98 6,117,968 65,247 0.01 93.76 2.24
Saccharomyces cerevisiae 11,499,795 0.95 11,307,098 192,697 0.01 58.67 3.96
Sorangium cellulosum 12,640,960 0.96 12,340,846 300,114 0.02 41.12 2.30
Homo sapiens chr19 41,529,106 0.75 39,256,297 2,272,809 0.05 17.27 691

C. elegans 89,444,661 0.89 85,157,627 4,287,034 0.04 19.86 352
D. melanogaster 116,446,627 0.90 112,977,046 3,469,581 0.02 32.56 445
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an exceptionally high value for the chromosome 19 of
H. sapiens.

It is easy to see that any genomic factor containing
a hapax as a substring is an hapax as well. Hence an
hapax within the genome may be elongated (by keep-
ing its property to be an hapax) up to reach the genome
itself, which is of course an hapax. It is then interesting
to evaluate, for each genome G: i) how |Hy(G)| varies
with k (see www.cbmc.it/external/Infogenomics3), ii) the
k-hapax positions (that is, how densely hapax words fall
in the genetic regions), and iii) the shortest length of
an hapax. Also, a k-similarity between genomes G and
G’ could be measured by |Hg(G) N Hi(G')| (we have
some work in progress on the computation of dictionary
intersections).

The concepts of hapax and repeat provide a great num-
ber of related notions which permit to define important
aspects in the analysis of real genomes. In following
sections we will discuss numerical data, reported in tables,
diagrams, and figures, which include the measure of the
ratio between |Hy(G)| and |R;(G)| as a function of k (that
is, how the number of hapax words of a given length
increases or decreases with respect to the number of
repeats of that length). We observed a sort of transition
phase effect in the passage from Dj3(G) to Dig(G), in
almost all genomes of Table 1, where a clear inversion
appears in the ratio hapax-cardinality/repeat-cardinality.

Dictionary based indexes
For a genome G we may define k-lexicality, that is, the
ratio Lx(G) = |Dy(G)|/|Tx(G)|, which expresses the per-
centage of distinct k-factors of G with respect to the all the
k-factors present in G (in Tables 2, 3, 4, it is clear that the
k-lexicality increases with the word length k, and does not
exhibit any regularity with the genome length). Of course,
the inverse of this ratio provides an average repeatability
of k-factors in G.

A more refined measure for the average k-factors
repeatability in G may be now given as:

| Tk (G)\Hi (G|

ARG = = 2 O]

where k-hapaxes have been excluded by both the k-
genomic multiset and the k-genomic dictionary (the
symbol \ represents the set-theoretic difference). Index
ARy (G) counts the proper (average) repeatability of k-
repeats in genome G (see Tables 3 and 4 for computed
numerical values).

Finally, maximal repeats of a genome G are substrings
occurring at least twice and having maximal length. Some
numerical indexes related to this concept are i) the max-
imal repeat length MR(G), ii) the number of different
maximal repeat sequences, and iij) the number of times
each maximal subsequence is repeated (see Table 5).
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Table 5 MR index and MR-repeat distance

Genomic Sequences MR MDnmr/IG]
Nanoarchaeum equitans 139 96.95%
Mycoplasma genitalium 243 0.15 %
Mycoplasma mycoides 10,963 0.019 %
Haemophilus influenzae 5,563 8.05%
Escherichia coli 2,815 0.89 %
Pseudomonas aeruginosa 5,304 1237 %
Saccharomyces cerevisiae 8,375 0.07%
Sorangium cellulosum 2,720 27.68 %
Homo sapiens chr19 2,247 0.02%
C. elegans 38,987 0.10 %
D. melanogaster 30,892 0.02 %

All genomes turned out to have only one repeat having
maximal length (and multiplicity 2), and the distance of
the two positions (in proportion to the genome length) is
reported in Table 5. They are in most cases relatively very
close. Although for k = 6,12, 18, |Ry| increases with the
genome length #, there is no apparent correlation between
n and the MR index (in all cases |[Ryr| = 2).

Any substring of a repeat word is still a repeat, with an
own multiplicity along the genome, and inside the repeat
word itself. A further index is thus defined over genomes
G, called MR(G) (maximal repeat length), as the maxi-
mal length of words y such that y (G) > 1. An algorithmic
way to find it (for our genomes) starts from repeats out of
D13(G) (that are less than three a half millions) and checks
how much they may be elongated on the genome by keep-
ing their status of repeat words. Data related to the MR
index computed over our genomes are reported in Table 5,
where the only MR-long repeat of each genome exhibits
a non-trivial structure (that is, different than polymers
with a same nucleotide or similar patterns), and complex
repeats are obtained for many lengths.

The importance of word repeatability is crucial in
understanding the information content of texts. A genome
analysis in terms of (shortest) hapaxes and (maximal)
repeats, providing their relative distribution within the
genome, highlights the associative nature of DNA as a
container of information [13]. Localization (see Figure 1b)
and frequency (see Figure 2) of DNA fragments of specific
length is indeed crucial in understanding the information
organization of genomes [14].

Repeat-sharing gene networks

Once we discovered that the percentage of repeats in dic-
tionaries is “low” (and decreasing with k), we focused on
studying the positions of 18-repeats along the genome,
in order to check if they are more densely present in
encoding regions or non-coding ones. This investigation
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allowed us to design a synthetic gene network in the fol-
lowing way: nodes are genes, and they are connected by
an edge if they have at least one common repeat (that is,
there exists a repeat which is a proper factor common to
the two genes). An interest for this kind of diagram (see
examples in Figures 3 and 4) finds a motivation in the
hypothetic communication between genes due to compe-
titions for short endogenous RNA sequences (around 20
bases long) proposed in [15].

We have work in progress to investigate these k-
parametrized labeled gene networks by standard meth-
ods of graph theory and network analysis. Gene nodes
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with higher degrees turned out to be actually involved
in important long genetic pathways, and for specific val-
ues of k, between 16 and 18, drastic changes may be
observed in the network conformation, while emerging
several clusters of genes. However, this is out of the
scope of this work, even if it will be a natural extension
of it.

Discussion

In this session we would like to specifically discuss the
computational results reported in all the tables, and
the importance of reading a genome by its mutliplicity-
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Figure 3 Repeat sharing gene network of N. equitans. A subgraph is pointed out of the 18-repeat sharing gene network of Nanoarcheaum
equitans, a short genome (see Table 1) which is mostly (93%) formed by genes. As we may notice on the right, the gene NEQ475 is linked with the
NEQ186 and NEQ457. It contains at least two occurrences of each of three different repeats, has 8 distinct repeats in common with NEQ186 and
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connections, and a quite high number of common repeat in the others.

[5640, 5696, 6136,
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[5640%6696]
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Figure 4 Repeat sharing gene network of E. coli. A subgraph is pointed out of the 18-repeat sharing gene network of Escherichia coli, whose
genome has an high percentage (89%) of genes. Four genes in the figure on the right turn out all connected, by only one repeat in half of the

comultiplicity k-distribution. In both cases internal
structural properties of genomes emerge which highlight
regularity indicators, based on the number and distribu-
tion of repeats.

For all our genomes of Table 1, listed according to an
increasing genome length order, we report in Tables 2, 3,
and 4 numerical data related to the computation of
Di(G), Hk(G), Rk (G) for k= 6, 12, and 18, respectively?.

A peculiar phenomenon regarding hapax statistical
distribution may be observed passing from the 12- to
the 18-genomic dictionary (see Tables 3 and 4). For all
the genomes, by enlarging the k value, the number of
hapax increases, even relatively to the number of repeats
(roughly speaking, “most of the 12-words are repeats
while most of 18-words are hapax”). Indeed, by computing
HRy = % for k = 12, 18, we see that repeatability gener-
ally increases with genome length for k = 6,12, while this
regularity disappears for k = 18.

More interestingly, the (relative) amount of hapaxes
increases by some orders of magnitude with k passing

from 12 to 18. Based on this observation coming from
computational experiments, one could suppose that by
increasing the word size, genomic dictionaries composed
of only hapaxes may be computed (which would have
been good news for genome reconstruction algorithms
[16,17]). This intuition though has been invalidated by fur-
ther computations (see Table 5). In fact, repeats having
length of several thousands have been found within each
of our genomes (see for example Figure 5, and the web-
site www.cbmc.it/external/Infogenomics3), and 12 — 18
represents a sort of phase transition from scarce to
abundant hapax/repeat distribution. This phenomenon
would surely deserve a more detailed and generalized
analysis.

Random vs real genomes

We have carried out a systematic study of repeat dis-
tribution, of real and randomly permuted genomes
(that are, random sequences having the same nucleotide
frequencies of the original genome), in order to get
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new information on the structure of such relevant
motifs [14].

We produced some diagrams showing how the num-
ber of genomic, hapax, and repeat words of a given
length varies with respect to the length (see website www.
cbmc.it/external/Infogenomics3), and a common remark-
able finding is the similar shapes of the curves, where
the transition aforementioned occurs. Cardinality trends
of sets Dr(G) (dictionary words), Rix(G) (repeat words),
and Hy(G) (hapax words), for k = 1,...,18 are com-
pared for genomes and their random permutations, and
specifically for Human chromosome, a greater differ-
ence between random and non-random situation may be
clearly observed (see Figure 6).

If we compare the dictionaries of the genome with
those of its random permutation (in Figure 6, respec-
tively, big blue versus small red dots), we find quite
similar curves. However, even when diagrams follow
the same general trends, specific characters of these
curves correspond to features which are typical of
the single genomes [18]. In general, random values
are always considerably greater than non-random val-
ues, for both hapax and whole dictionaries, while the
opposite appears for repeats, before and after the
distribution peaks.

All the data were confirmed along with several random
permutations. However, apart of the comparison with per-
muted sequences, we would like to observe the shape of
|Rk| in itself. Only in a limited range of values for &, Ry has
a significant size, and such a range is [7,17] for all the ana-
lyzed genomes, with a pick around the value k = 10, while
both shifting towards the values 11, 12 for the pick, with
the increasing of genome length.

Multiplicity-comultiplicity charts have been computed
for all the genomes as well, by means of an application of
the software described in the Methods section. displays
some of them for 6-words of four organisms: Escherichia
coli, Saccharomyces cervisiae, Drosophila melanogaster
and Homo sapiens (chromosome 19). Blue bars are related
to real genome sequences and red bars concern random
permutations of the same sequences. At a first glance, in
real genome distributions (blue bars) we notice a com-
mon trend, very similar to a Poisson distribution, with
specific peculiarities which characterize each genome.
On the other hand, random permutations of genomic
sequences have multimodal distributions which depend
on base frequencies.

We observe that the multplicity-comultiplicity dis-
tribution of Escherichia coli has multiplicities (x-axis)
between about 0 and about 5,400, whereas Drosophila
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melanogaster has multiplicities between about 5,000
and about 330,000. On the other hand, the maximum
comultiplicity is 8 for Escherichia coli, and is 3 for
Drosophila melanogaster (in Figure 7, see the y-axis of
the first and the third charts). These parameters are very
different even if the “shape” of the genomic sequences
in the two charts is quite similar. In order to perform a
comprehensive analysis of multplicity-comultiplicity dis-
tribution we have dealt with them as probability dis-
tributions, and we have computed about 25 statistical
indexes which characterize them, such as, maximum,

minimum and mean multiplicity, maximum, minimum
and mean comultiplicity, standard deviation, kurtosis,
skewness, mode, entropy, etc. In [18] these indexes have
been successfully employed to classify genomes according
to their organism kingdom.

As a conclusion, in Figure 7 we would like to point
out that in cases of random permutations of genomes,
multimodal shapes may be observed, which depend on
the base frequencies of genomes. However, the appar-
ently more ordered concentrations of word multiplicities,
around the modes, can be explained by considering that
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frequencies allow us to classify (and count) words corre-
sponding to the same multiset (Parikh vector equivalent).
Consequently, due to the random effect, being the words
with the same multiset equally probable, they concen-
trate around the multiplicity associated to this probability.
These distribution differences between randomly per-
muted genomes and real genomes is another measure of
the information content that genomes have with respect
to casual sequences.

Conclusions

Bipartition of a genomic dictionary in hapax and repeat
words emphasizes the roots of precise string categories
which are related to the functional organization of
genomes. The set of 18-repeats in our genomes has a dig-
ital size which is a couple of orders smaller than the whole
genome, and it seems to have a role of “lexical” coding,
that is, a semantics external to the genome. Other ele-
ments, with a notably bigger digital size, seem to have
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a role of addressing, delimiting, coordinating, just like
position-identification tags.

The definition, computation, and analysis of well char-
acterized dictionary based genomic indexes have pointed
out some phenomena of genomic regularity and speci-
ficity. They can highlight our knowledge about the inter-
nal logic of genome structure and organization, as well as
about evolutional and functional attributes of genomes (as
in [18], specifically devoted to genome clustering).

Future work
There are several lines of development that our research
is intended to pursue. We are already working on some
of these, mainly focused on the study of intersections
among genomic dictionaries. It would be interesting to
check the relationship between words recurrent in dic-
tionary intersections and those which are known to be
conserved along the evolutive lineages. Another research
line concerns the inter-genomic character of hapaxes and
repeats. The question is about which hapaxes (respec-
tively repeats) of a given genome occur in other genomes
of a certain class by keeping their status of hapax (resp.
repeat) when compared to the new context of words.
Finally, we conclude with a fundamental question which
points out a novel perspective related to the approach
developed in the paper: what is the essence of a genome?
For genome functions, two aspects are essential: the pres-
ence of some factors and their relative positions. Dis-
covering which factors are essential, the classes related
to their roles, and the mechanisms for expressing their
relative positions, could provide essential properties of
genomes, even without a detailed knowledge of their
whole sequence. The approach outlined in this paper
could be considered as a first step in the exploration of this
perspective.

Methods
The genome analysis described so far requires a rigor-
ous protocol and a sophisticated technological infrastruc-
ture in order to be performed systematically. Dictionaries,
tables, distributions and related indexes, described so far,
need a lot of computational resources to be calculated,
and advanced data exploration and visualization tools to
be analyzed. We have developed a process (and a related
software suite), shown in Figure 8, for informational index
generation and analysis. It involves three main phases: (i)
acquisition of genomic sequences from public databases,
(ii) computation of informational indexes, which are sub-
sequently stored in a database, (iii) visualization, explo-
ration and quantitative analysis of these informational
indexes.

Sequences were downloaded as FASTA files from NCBI
genome database [19], UCSC Genome Bioinformatics
website [20] and EMBL-EBI website [21], and they were
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stored, with their accession numbers and identifica-
tion data, on our server. About sixty sequences have
been analyzed so far, corresponding to genomes of well
known organisms, often constituting biological models, of
remarkable relevance in the genomic analysis. All classes
of Archea, Bacteria, and Eucaryotes® are represented.

The software employed to process genomic sequences
and to compute informational indexes is a sophisticated
service oriented architecture based on Java web services.
The Java EE application model guarantees the scalability,
accessibility, and manageability needed by our applica-
tion. Each index is computed by a specific web service
which receives as an input a genomic sequence with some
additional parameters, and stores the results in a MySQL
database, representing the data warehouse of our infras-
tructure.

Optimized data structures and algorithms were
required to perform index computation since huge
amount of data had to be processed. The entire appli-
cation is hosted by a high performance server having
16 processors and 24GB of RAM. Our index database
currently contains about 100GB of data, consisting of
300 millions of records. The amount of information gen-
erated by web services is sometimes very large (e.g., a
12-genomic dictionary D;2(G) could have up to 412 ~ 16
millions of words) and the storage of this information in
databases could require quite a lot of time and specific
database setting. The advantage to use web services to
compute informational indexes is that they can be called
by many kinds of application clients. In this section we
have described only a Java application client, but web
clients or non-Java clients (e.g., Microsoft .Net or Matlab
clients) could be employed as well. Web services guar-
antee a great interoperability and extensibility to our
application.

The visualization and exploration of such an enormous
dataset requires specific tools as well. We have adopted
a data access solution, called Qlik®View [22], coming
from the world of Business Intelligence (where sophisti-
cated elaborations of huge moles of economic and finan-
cial data are performed). This tool enables an interactive
exploration of large and complex datasets by means of a
patented in-memory associative technology.

Figure 9 shows a screenshot of the Qlik®View appli-
cation, which has two main sections. A navigation
menu, on the left, by which the user can select genome
sequences, organism kingdoms and dictionary parame-
ters. A central area containing visualization elements of
genomic indexes, such as tables, charts, lists of words, and
diagrams.

Tabs differ only in the central area, where infor-
mational indexes are displayed by means of several
kinds of graphical objects provided by Qlik®View. This
way to visualize and browse the information is very



Castellini et al. BMC Genomics 2012, 13:485 Page 13 of 14
http://www.biomedcentral.com/1471-2164/13/485

Data analysis

Data visualization

ETL and exploration
A
ral N
Data extraction Data transformation Data loading @ QlikView
/ Computationof \ ’
a—> istical ind < B e
Database of
Genome J2EE. Statistical Data mining
sequences Web services, # Indexes
) ‘ Sun Glassfish (Data warehouse) - MATLAB d\:{w
Public application server - ‘ i)
databases m
é; /."‘...%q MysoL
= N2 o
\ Java / ~— o s @
@ @ Knowledge
sharing/spreading
Google Charts
Joomlal’

GO

Figure 8 Genome analysis process and software architecture.

— e Es
P Bl EIR View Selections Lwout Settings Bookmuks Reports Took Object Mindow Help -8x
(AR IR z!ggf;l; Cleae = | @Back ned | i Lock i Uokock
i 8L () ) () () O A ) ) ) 0 (0 ) U BETIEICEEREY. £ S EC 1Y |
|_Home | Genome basic indexes ® | Genome Dictionary Indexes ® | Genome dictionary indexes (nom1) 9| Genome ¥ L for © | Minimal Forbidden Length_® | Max Long Repeats @ | Zipf charts ® | Repeat positions © | Miscellany
Q v
nWordsNorm2
Current Selections - "
Genome 4 trancBs i genDiciExpName
dvafaita, 0 = Debanomyeshanse: T
. . Laita, : — MycoplasmaMycoides.
Omithormmchusanatinusdh 7. P h — OOy hud NS Lénk
ta, . u — SathiromrtedCorewds 406
ngurOct 270 6 1 o l‘ L‘ 4
l i ’f‘ Iy 1y
Bookmarks 2 LTV i "
soloct Boioark 2% "‘j‘,-‘v.\! b h T TRTTYNTVRET WV Y | S
%0 01 02 03 o4 05 05 o7 08 09 0
o Acd Bookmark X Remove Bookmark = nOcesNom2
y 2) an.p an@-o
(creorse ') 'u”l) e 1 ﬁ'ﬁimuox:uw o,szuw o,wmsz“w 0,00956 nWordsCum
2 0 0,000332834 0,604444 00122668 0,0218% 12
3 66 0,000499251 0916667 0,0161923 0,03802 9enDicExphame
Genomes » N 9 0,000065668 0819444 0,014475 0,055 10 . — Lens
s 9 0,000832085 0819444 0,014475 0,06657 —— = MYCODLASMAMNCOES Tast-LONG
6 57 00009502 0,791667 00135843 0,080 s L R
3 1 ooosns 0,0434783 000244141 0,0002441 — SsccharomycesCernisiaeChilV fo-Leng
7 57 0,00116492 0,791667 00139843 0,099
8 2 0,00133134 1 00176644 0,112
9 @ 0,00149775 0,666667 00117763 0,1243
0 & omnr "es  omisee  oime
1 a6 0,00183059 0638389 0,01128% 01511
2w omes osorm  oom oo
11 ommeim  opeom  omosendt  oooees
13 2 0,00825397 0,0952381 0,000488281 00004382 1.000 2000 3000 4000 5.000 6000
13 0 0,00216342 0,559556 0,00981354 0,1702 B Oceurrences genDwt
114 1 0,00886899 0047619 0000244141 0,0007324.
14 1 0,0098661 0,0434783 0000244141 0,0007324.
“ . - o T BT
Animaa
m Statistics (Normalization 2) Bn.o
g @ len gen... ® Genome length zero0CCWo... ..
e (s P e T a2 o o ) P 0327755 s
Ving. MycoplasmalMycoces. 6 €009 72 1.211.703 ol 4076 4056 0,995117 2,80066 0,00336397 4.037
Oertherbynchusany. & 1419 2 1.399.480 0 4.0 0% 1 39,0099 0,00321717 4.006
SaccharomyCesCere. L 80 17 1.531.919 o 4.0% 056 1 238993 0,00257378 4.096
Dictionary Word Lengths
w0t :
Gename kingdom - °
729912182741 — O4/11/2011 18:35:55° £
Figure 9 Visualization and exploration of informational indexes by means of a Qlik® View application called InfoGenomics.
Multiplicity-comultiplicity distributions of four genomic sequences are visualized in the same (central) chart in order to visually compare their
profiles. The figure shows a table where number of occurrences and related number of words are listed, and can be selected in order to focus the
exploration on specific features. A second chart, placed on the right, shows cumulative distributions, and a table placed on the bottom shows
statistical indexes (e.g., mean, standard deviation) related to the distributions.




Castellini et al. BMC Genomics 2012, 13:485
http://www.biomedcentral.com/1471-2164/13/485

powerful and enables the user to achieve a deep insight
into the genomes. The following list summarizes the
functionalities developed so far which contained in
the tabs: genome basic indexes (genome identificators,
base frequencies, gc-content, etc.); k-Dictionaries and
Multiplicity-Comultiplicity distributions; normalizations
of indexes at the previous item; statistical parameters (e.g.,
mean, standard deviation, mode, k-empirical entropy,
etc.) related to Multiplicity-Comultiplicity distributions;
dictionary intersections; maximal repeat lengths; dictio-
nary size trends.

Endnotes

2When analyzing downloaded genomes, in some cases we
have found a number num of unavoidable words, defined
as those containing IUPAC (variable) symbols, which can
assume one of the values A, T, C, G (see http://www.mun.
ca/biochem/courses/3107/sym-bols.-html). When they
are present in a genome, such as the case of Haemophilus
Influenzae, they are eliminated from the computation
of all words in the genome, then the k-genomic dictio-
nary is built up not from » — k 4+ 1 genomic k-long
words, but from the n — k — num + 1 regular words.
Specifically, as value of num we have found: for H. influen-
zae’s 6/12/18-genomic dictionary, respectively 646, 1,271,
1,877; for D. melanogaster’s 6/12/18-genomic dictionary,
respectively 1,225,656, 1,226,400, 1,227,144; for H. sapi-
ens’ 6/12/18-genomic dictionary, respectively 1,171,155,
1,173,045, 1,174,935.

PA most detailed description of these genomes may
be found in: http://use-rs.rcn.com/jkimball.ma.ultranet/
BiologyPages/G/Genome-Sizes.html.
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