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Abstract

Background: Hitchhiking mapping and association studies are two popular approaches to map genotypes to
phenotypes. In this study we combine both approaches to complement their specific strengths and weaknesses,
resulting in a method with higher statistical power and fewer false positive signals. We applied our approach to
dairy cattle as they underwent extremely successful selection for milk production traits and since an excellent
phenotypic record is available. We performed whole genome association tests with a new mixed model approach
to account for stratification, which we validated via Monte Carlo simulations. Selection signatures were inferred
with the integrated haplotype score and a locus specific permutation based integrated haplotype score that works
with a folded frequency spectrum and provides a formal test of signifance to identify selection signatures.

Results: About 1,600 out of 34,851 SNPs showed signatures of selection and the locus specific permutation based
integrated haplotype score showed overall good accordance with the whole genome association study. Each
approach provides distinct information about the genomic regions that influence complex traits. Combining whole
genome association with hitchhiking mapping yielded two significant loci for the trait protein yield. These regions
agree well with previous results from other selection signature scans and whole genome association studies in cattle.
Conclusion: We show that the combination of whole genome association and selection signature mapping based
on the same SNPs increases the power to detect loci influencing complex traits. The locus specific permutation
based integrated haplotype score provides a formal test of significance in selection signature mapping. Importantly
it does not rely on knowledge of ancestral and derived allele states.
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Background
Linking genotype to phenotype is one of the central
questions in biological sciences. Current approaches to
map intraspecific variation to causative sequence varia-
tion use either a quantitative genetics framework (asso-
ciation mapping) or rely on population genetic theory
(hitchhiking mapping).

Population genetic theory predicts that a favorably
selected allele is either lost or increases in frequency
until fixation [1]. With the spread of a beneficial allele,
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linked, non-selected sites also increase in frequency, a
phenomenon that has been termed hitchhiking [1].
Based on this principle, genome scans were performed
in a large number of species such as human, maize, Droso-
phila, Arabidopsis thaliana and Plasmodium falciparum
[2-10]. Selection signatures in cattle based on SNP data on
single chromosomes were reported on Bos taurus (BTA)
chromosomes 6 [11], 19 [12] and 29 [13]. Barendse et al.
[13], Gibbs et al. [14] and Hayes et al. [15] published gen-
ome wide maps of diversifying selection between Bos
taurus dairy and beef cattle, Flori et al. [16] between three
different French dairy cattle breeds, and Gautier et al. [17]
among several West African cattle breeds. Qanbari et al.
[18] employed an extended haplotype homozygosity test
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and published a genome wide map of recent selection
within the German Holstein dairy cattle population. Gau-
tier et al. [19] also used this signature of selection within a
recently admixed Caribbean cattle breed. Furthermore
these authors employed a modified version of Rsb scores
proposed by [20] to detect local excess or deficiency from
a given ancestry relative to the average genome admixture
levels. Qanbari et al. [21] recently published a genome
scan in several dairy and beef breeds including German
Brown Swiss cattle based on integrated haplotype scores
and when contrasting breeds employing Fgr statistics.
However, disentangling selection from nuisance signals
caused by the demographic history of a breed or species
based on genome wide polymorphism data remains
challenging.

Stringent artificial selection resulted in an enormous
improvement of production traits over the last couple of
decades, especially for traits with moderate to high herit-
ability. In combination with the availability of high den-
sity SNP arrays and high quality phenotypes, this intense
selection renders the genome of dairy cattle an optimal
model to look for signatures of recent positive selection.

While for genetic model organisms very powerful
genomic tools are available, these species frequently lack
phenotypic records to link signatures of selection in the
genome to actual variation in phenotype unless a huge
additional phenotyping effort is undertaken. This is the
great advantage of using livestock species, as numerous
production- and fitness traits are routinely recorded and
used in breeding value estimation.

The estimated breeding value (EBV) expresses the
genetic merit of a breeding animal estimated based on
their own performance and performances of all available
relatives. In the case of dairy bulls this typically includes
hundreds to thousands of daughters. Furthermore EBVs
are corrected for systematic environmental effects.
Therefore the breeding value of an animal is the sum of
its genes’ additive effects based on Fisher’s infinitesimal
model [22], which assumes a very large (effectively infi-
nite) number of loci each with very small effect. Although
only approximatively correct, application of this model in
selection paved the way for efficient livestock breeding.

Since Sax’s experiments with beans in 1923 [23] we
know however, that there are so called quantitative trait
loci (QTL) that have a bigger than infinitesimal effect
and that these loci can be mapped i.e. via linkage ana-
lyses. Such QTL mapping studies as a quantitative
genetics approach have been very successful in cattle,
see [24-26] for a summary.

Rapid improvements in high throughput SNP geno-
typing technologies and commercially available high
density SNP arrays for livestock species allowed live-
stock geneticists to turn towards whole genome associa-
tion (WGA) mapping approaches in the recent past e.g.
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[27-29] or see [30] for a review in livestock. The number
of individuals that need to be genotyped to achieve rea-
sonable power in a stand alone WGA is nevertheless
still limiting [31].

Population genetics provides information that is inde-
pendent of phenotypic information on putative loci
under strong directional artificial or natural selection.
We show in this paper that combining a population
genetics signal with association tests based on quantita-
tive genetics in a composite statistic, increases power and
reduces the number of false positive signals for localizing
the source of selection.

In a similar vein, [32] proposed a composite test statis-
tic of several selection signature signals to increase power
to detect selection. Barendse et al. [13] discussed the
potential of combining genome wide scans for selection
and whole genome association studies. However, as these
authors were looking for signatures of diversifying selec-
tion based on Fgy values the combination with associa-
tion results is not straightforward. Akey at al. [33]
followed up a region on dog (Canis familiaris) autosome
13 that showed evidence for selection in the Shar-Pei dog
breed with association mapping and finally dissected the
molecular basis of the typical skin wrinkling phenotype
in this breed. Ayodo et al. [34] found that in a case-
control candidate gene approach in humans the statistical
power to detect disease variants can be increased by
orders of magnitude by weighting candidates by their evi-
dence of natural selection.

Our composite statistic combines a long-range haplo-
type statistic, based on genomic signatures of (new)
positive mutations that are not yet fixed in a single
population, and the regression coefficient based on
allele-count indicator variables of a WGA - as the quan-
titative genetic approach. Both estimators rely on the
underlying linkage disequilibrium (LD) between the cau-
sal variant and the genotyped SNP. We further propose
a new mixed model approach to account for stratifica-
tion in population based association studies, and we
introduce a modified extended integrated haplotype
score test statistic to detect selection. Using computer
simulations and real data we show that the combination
of both tests increases the power for localizing the target
of selection relative to a single test and reduces the
number of false positive signals.

Methods
Experimental Design
The highest selection pressure in the overall breeding
goal in Brown Swiss cattle over the last decades was put
on protein yield, the main trait of interest in this study
to ensure high power for both mapping approaches.

The 140 highest and 148 lowest bulls with respect to
protein yield EBV and a minimal EBV-accuracy (r?,
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degree of determination) of 0.9 were chosen out of 973
progeny tested Brown Swiss bulls for selective genotyp-
ing [35]. Up to two generations were present among the
genotyped bulls. The bulls descend from 90 different
sires and 121 maternal grandsires. Sire and maternal
grandsire family size ranged from 1 to 20 and 1 to 34
members, respectively.

Phenotypes

Sire EBVs were obtained from the genetic evaluation
centre LfL Grub, Germany from the August 2008
genetic evaluation for PY. EBVs for protein yield are in
kilogram units.

Genotypes

Genomic DNA was prepared from semen straws follow-
ing standard protocols using proteinase K digestion and
phenol-chloroform. Across all samples the concentration
was set to 50 ng/ul. Bulls were genotyped according to
the manufacturer instructions with the Illumina Bovi-
neSNP 50K Bead chip® comprising 54,001 SNPs at the
Institute of Human Genetics of Helmholz Zentrum
Miinchen, Germany. Genotypes of one individual were
omitted due to a call rate of < 90%. The average call rate
of the remaining 287 bulls was 98.6% corresponding to
approximately 53,230 genotypes obtained per individual.
The software PLINK, version 1.03 [36] was used to filter
raw genotype data. SNPs with known genomic location
on autosomes, with a minor allele frequencies of > 5%,
that were missing in less than 10% of bulls were consid-
ered. We then filtered for all SNPs for which the ances-
tral state of the allele was reported by [37]. The final
dataset contained 34,851 SNPs. Haplotypes were inferred
with fastPHASE, version 1.2 [38]. Parameters in fas-
tPHASE were set to 10 random starts for the EM algo-
rithm and 10 clusters. Haplotypes were inferred for
whole chromosomes ignoring pedigree information.

Detection of Selection Signatures

We wrote R and C++ scripts to calculate extended hap-
lotype homozygosity (EHH) test statistics from phased
haplotype data as proposed by [6,7]. Briefly, the EHH of
a core SNP is calculated as:

where c; is the number of samples of a particular core
SNP allele i, e;; is the number of samples of a particular
extended haplotype j, carrying the allele i at the core
position, and s is the number of unique extended
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haplotypes [7]. EHH captures, as a function of distance,
the decay of identity of haplotypes that carry a specific
core allele. EHH starts at one and decays to zero, with
increasing distance for both alleles at each core SNP.
The area under the EHH curve that results from plot-
ting EHH versus distance is expected to be greater for
the selected allele than for the neutral allele. As pro-
posed, we computed the integrated EHH (iHH) as the
integral of the observed EHH in both directions from
the core position until EHH reaches 0.05 [9]. The
unstandardized integrated haplotype score (uiHS) is
then calculated as

iHH ancestral )
7

uiHS = In ( .
iHH gerived

Voight et al. [9] estimated the expectation and stan-
dard deviation (SD) of In (iHHncestral/iHHderiveq) in bins
of derived allele frequencies from the empirical distribu-
tion at SNPs whose derived allele frequency p matches
the frequency at the core SNP. The resulting standar-
dized iHS (iHSV°'8™) follows approximately a standard
normal distribution.

uiHS — E,(uiHS)

‘HSVoight _
' SD, (iHS)

Since standardisation is based on the frequency of the
derived allele this sets an upper limit to the age of the
mutation. This test statistic answers the question of how
unusual the length of a haplotype is, assuming the same
age of allele across all observed selection coefficients
acting on any core SNP with a similar derived allele fre-
quency in the genome. It therefore does not provide a
formal test of significance. Furthermore if different out-
groups are used to define ancestral and derived states
this sets different age boundaries to the mutations
resulting in less precise standardisation.

A locus specific permutation-based iHS

When the rate of EHH decay is similar for the ancestral
and derived allele, as expected for a neutral locus, uiHS
is ~ 0[9].

Voight et al. [9] showed via simulation that extremely
positive and negative iHS scores are both potentially
interesting selection signals and polarisation with the
ancestral allele results in a change of sign, but does not
change the magnitude of the uiHS test statistic.

In the following we introduce a locus specific permu-
tation based approach that relies on minor and major
allele frequencies rather than ancestral and derived
states, respectively. Most importantly this test statistic
provides significance of deviations of uiHS from its neu-
tral expectation.
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The core site in iHS test statistics is used to define two
groups of haplotypes for comparison with regard to their
block structure. We shuffled core SNP alleles 1,000 times
at the core position while retaining the neighbouring
haplotype configuration and calculated uiHS for each
permuted sample (iHSp) within each core SNP. Random
shuffling SNP alleles at core sites randomizes allocation
of haplotypes to the two groups for comparison while
maintaining the LD structure in the surrounding geno-
mic region. This simulates the null hypothesis of neutral-
ity: the site was not subject to selection. We hereby
obtain an empirical distribution of iHS under the HO for
each SNP, from which we obtain the probability that we
see such an extreme iHS just by chance. The locus speci-
fic standard deviation of the 1,000 iHSp test statistics is
then used to scale the observed deviation of uiHS from
its expectation zero. Scaled, permutation based iHS
(siHSp) is therefore calculated as

uiHS — 0

HSp =
SOP = Sp(iHSp)

Since the empirical mean of permuted iHS statistics is
approximately O (see Additional file 1, Figure S1) our
test is a formal test of significance, given the allele fre-
quency of the core site and the LD structure in the sur-
rounding region. This is a property of crucial
importance of a test statistic, especially since we want to
combine our results with an association test from a
WGA study.

Generally SNP sites with low minor allele frequencies
show larger SD of iHSp. However, to avoid any additional
bias due to possibly remaining dependence of siHSp on
allele frequency, siHSp was fit in a linear model by regres-
sing the SNP minor allele frequency (MAF;) at the core
site on siHSp. For each site, the random residual &; was
obtained and subsequently standardized using the stan-
dard deviations SD(g;) of residuals across all SNPs. In
contrast to [9] (here termered as iHSV°®#"), our fre-
quency correction is not done based on the expectations
of SNPs within allele frequency bins but carried out on a
continuous scale.

SiHSp ij = MAF,’ + &jj

The resulting frequency corrected, and scaled test sta-
tistic is termed iHS.

8,‘]'

iHS =
SD(&‘,‘]')

This final test statistic is approximately standard nor-
mally distributed.

Since no high resolution genetic map was available for
the SNPs in this study, physical distances between SNPs
were used for calculating all integrated haplotype scores.
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Whole Genome Association Study

Standard statistical tests, e.g. regressing phenotype on
allele count in a linear model, are inappropriate for
population based WGA in structured populations
because they either result in an inflated proportion of
spurious marker - phenotype associations or mask true
associations (e.g.[39,40]), even with modest levels of
population stratification and/or admixture. In the case
of cattle populations, artificial insemination schemes
allow the use of a few superior bulls as sires of the next
elite sire generation. Thus, genotyped bulls are fre-
quently paternal half-sibs or share the same maternal
grandsire. The subsequent family structure can cause
substantial stratification. Quantile - quantile plots and
inflation factors (1) were used to characterize the extent
to which the observed distribution of P-values follows
the expected null distribution. Inflation factors were cal-
culated as

A = Median(T$,T3,...T%)/0.456

with T? = B2/Var(B;), where B; is the effect of the i-th
SNP (i from 1 to N),Var(B;) the variance of the estimate
and 0.456 the median of the def distribution [41].

Recently, linear mixed models were proposed to effec-
tively account for different levels of relatedness by incor-
porating pairwise genetic relatedness into the model
[31]. This approach relies on the fact that the pheno-
types of two genetically related animals are more similar
than those of genetically distant individuals. Estimation
of covariance between individuals is assisted by the
availability of a marker based kinship matrix, which can
be estimated more accurately using genotype data from
the WGA experiment than from pedigree information.

We therefore employed the following single locus
mixed model which we term “MIX” that explicitly mod-
els the polygenic relationships among inviduals, as

y=Xb+Za+e, 1)

where y is a vector of sire EBVs for protein yield, X is
the design matrix in which SNP genotypes were coded
0, 1 and 2, counting the number of minor alleles and b
the vector of regression coefficients on recoded SNP
genotypes. Z denotes the design matrix for random
effects with a ~ N (0, Go,2) being the vector of poly-
genic effects, 5,” the additive genetic variance and G the
genetic covariance matrix and e ~ N (0, Io.?), a vector
of residual effects. G was obtained from pairwise identi-
cal by descent (IBD) estimates using genome wide SNP
data as implemented in PLINK [36], in which the IBD
state is estimated by a hidden Markov model, given the
observed identity by state (IBS) sharing and genome
wide levels of relatedness between the pairs. Diagonal
elements of G were calculated as 1+F, with F being the
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inbreeding coefficient estimated from SNP data using
PLINK [36].

Mixed models were solved in R (http://www.cran.r-pro-
ject.org) via direct matrix inversion. Empirical P-values
were calculated by an adaptive permutation procedure,
shuffling the vector of genotype codes among pheno-
types. This does not destroy the relationship between
IBD status and phenotypes, but breaks up any association
between SNP genotypes and phenotypes. This leaves LD
patterns unperturbed and hence does not control for
stratification. The number of permutations was sequen-
tially increased up to 1 x 10° permutations if the SNP
indicated association. The empirical P-value was calcu-
lated as the number of test statistics obtained on per-
muted sets being greater than or equal to the observed
test statistic.

All 34,851 SNPs were tested one after the other for
association with the protein yield (PY) phenotype.

As model MIX did not overcome the stratification
present in our highly structured sample we applied a
two stage approach. Besides accounting for the relation-
ship via a mixed model, stratification was accounted for
by pre-correcting SNP genotype codes for sire and
maternal grandsire (MGS) differences using the follow-
ing regression model

8Lij = sire]- + MGS]‘ + Eij, (2)

where gt is the recoded genotype code (0, 1 and 2 for
1-1, 1-2 and 2-2 allele combinations, respectively with 1
representing the minor allele), sire is the fixed effect of
sire i and maternal grandsire the fixed effect of maternal
grandsire j and g;~ N (0, I6.2), the vector of random
residual effects. Sire- and maternal grandsire families
smaller than five were merged into one group.

Residuals ¢; were used instead of raw recorded geno-
types (0, 1 and 2) in the design matrix X of equation
(1), henceforth termed method “MIXStrat”.

Evaluation of WGA via Monte Carlo Simulation
The proposed method to account for stratification is
specific to situations typically observed in intensively
selected livestock species and populations. We evaluated
the effectiveness of MIXStrat by Monte Carlo simula-
tions. Phenotypes, sire- and maternal grandsire family
structure were taken from the population under consid-
eration. Genotypes for 287 bulls and 10,000 diallelic
sites were sampled based on the following procedure:
First, the allele frequency p of the first allele at a SNP
was drawn from a uniform distribution, the allele fre-
quency for the second allele g at this SNP is then given
by g = I-p. Two alleles each were sampled for all sires
and maternal grandsire according to these frequencies.
Bulls inherited sire and maternal grandsire alleles
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following Mendelian rules. Alleles inherited via the dam
were sampled corresponding to the population allele fre-
quencies. This simulates the null model (e.g. no effect of
the locus on the phenotype) taking into consideration
the observed population structure. Association was
tested for, using the models MIX and MIXStrat.

Rate of False Positives
The average rate of false positive detections across m =
100 random repetitions was calculated as

. (P e{P<0.05}
a,,=2( 10,000 >/m

i=1

Power Analysis

For true associations the mean genotype values within
bulls of sire and maternal grandsire are correlated with
phenotypic family means. This information is not uti-
lized when genotypes are recoded and will thus reduce
power. We evaluated the power of MIXStrat relative to
the power of MIX under the alternative model. This was
achieved by simulating an additive QTL effect which
explained 1, 5 and 10% of the EBV variance:

o = 02y QT Lsizi
< 2p(1 - p)

where aqry, is the allele substitution effect [42], o2epy
the variance of EBV, QTLg;,; is the size of the effect as
proportion of 6°cgy and p the allele frequency of the
simulated diallelic locus. Power was calculated as

m
P € {P < aponf}
Power=2( 10 0000n /m
i=1 !

with apene being the 5% Bonferroni- corrected type I
error threshold of 2.5 x 10 and m being the number
of random Monte Carlo repetitions.

Composite Test Combined Significance Test and False
Discovery Rate
We used Stouffer’s method [43] to combine P- values
from the association study with those from the selection
signature analysis (Pcops)-

The test statistic was calculated as

k
Z=Y z(P)/Vk

i=1

where Z is the standard normal variable under Hy, z
(P) is the P - value from test i transformed to Z and k
is the number of tests that are combined in the test sta-
tistic. P - Values Pcomp were obtained using the
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quantile function of the standard normal distribution.
The tail area based false discovery rate (FDR) was calcu-
lated from Pcopmp values using the R package fdrtool,
v1.2.5 [44]. Significance was declared if the g value (FDR
corrected P - Value) was < 0.10.

Results

Evaluating the locus specific permutation of the iHS test
statistic to detect signatures of selection and comparison
to iHSVoight

We mapped selection signatures with iH and our
newly proposed iHS to detect sites under selection.

Table 1 shows the expectations and standard devia-
tions for each of the derived allele frequency bins used
for the frequency correction to calculate the approxi-
mately standard normally distributed iHS"°" test sta-
tistic. Differences in expectations among derived allele
frequency bins (Table 1) necessitate working with an
unfolded frequency spectrum for iHSY ",

Figure 1 shows that the standard deviation of 1,000
randomly permuted iHS statistics (iHSp) is nearly con-
stant at ~0.18 for SNPs with a MAF > 15% but increases
more than two fold for SNPs with lower MAFs. A simi-
lar trend can be seen for iHSY°€"* where SD in the <=
0.1 and > 0.9 is higher compared to the rest of the
derived allele frequency bins.

For SNPs with low minor allele frequencies we found
a relatively higher proportion of extreme unscaled iHS
statistics. We postulate that this is due to increased
rates of false positives, since power simulations by [9]
and [45] show that iHSY°"" is powerful for loci with
intermediate allele frequencies and that the power of the
test drops substantially when the selective sweep is close
to fixation, in other words for SNPs with low MAF.

Figure 2 shows that the proportions of permutation -
based iHS signals with a P - Value < 0.001, < 0.005 and
< 0.01 are relatively smaller for SNPs with low minor
allele frequency. This tendency cannot be seen as clearly

SVoight

Table 1 Means and standard deviations (SD) in defined
frequency bins for uncorrected integrated haplotype

score (uiHS) test statistics to calculate iHSV*'9",
Frequency of derived allele Mean SD
<= 0.1 -1.04 1.04
01-02 -0.93 0.94
02-03 -0.73 092
03-04 -048 092
04 -05 -0.26 093
05-06 -0.06 092
06-07 0.16 094
07-08 0.39 0.95
08-09 0.65 0.99
> 09 0.75 1.06

Page 6 of 19

for the iHSV°8"" test statistic. For SNPs with MAF >
0.20 we see that our iHS test yields a higher proportion
of significant loci when compared to traditional
iHSVOight.

Figures 3 and 4 show the histograms of iHS"*#" and
iHS, respectively. Figure 5 shows a QQ-plot of iHS and
iHSVOight.

Figures 3, 4 and 5 all suggest that iHS has increased
power compared to iHSY 8",

Our permutation based standardization allows a for-
mal test against the null hypothesis of neutrality at a
core SNP (expectation zero). Our standardization is
against 1000 permuted test statistics at the same locus
in the same LD background. We therefore do not need
to define the state of ancestral and derived allele.

Additional file 1, Figure S2 shows a histogram of
derived allele frequencies and Additional file 1, Figure
S3 a histogram of minor allele frequencies of the 34,851
SNPs used in this study. Additional file 1, Figures S4
and S5 show histograms of P - Values for iHSY*'®"* and
iHS, respectively.

Detection of Selection Signatures in the Brown Swiss
dairy cattle population

Manhattan plots for iHSY**" and iHS for each auto-
some except BTA 6 are shown in Additional file 2, Fig-
ure S6 - S33 plots A and B.

Among the 34,851 SNPs tested genome wide 1,710
and 1,621 SNPs had a test statistics > |1.96] with
method iHS"*€" and iHS, respectively.

Distribution among chromosomes is remarkably
uneven: BTA 5, 6, 12, 19 harbor 148, 124, 98, 89 sites,
respectively which corresponds to 8 - 11% of all investi-
gated SNP on the corresponding chromosomes that
show significance applying iHS. On other chromosomes,
namely BTA 28 and 17 ~ 1% of investigated SNPs exhi-
bit significant selection signatures.

The same is true for iHSY*'¢" BTA 5, 6, 12, 16 and 19
have 171, 131, 148, 136 and 112 SNPs that show an
iHSV"#"" test statistic > |1.96] which corresponds to 8 -
14% of all SNPs on these chromosomes. BTA 7, 25 and
27 have only around ~ 1% sites with extreme iHS" "t
test statistics.

One particularly illustrative example is given by SNP
Hapmap52798-5ss46526455 located in the proximal
region of BTA 14 at 0.565311 Mb (see Figures 6, 7 and 8
and Additional file 2, Figure S18). An iHS of 4.13 for this
SNP with a frequency of 0.2 for allele G exhibits a larger
area under the EHH curve as compared to allele A and
was possibly under selection. Interestingly, this SNP is in
close neighborhood to the well known DGATI K232A
polymorphism, located at 0.444-0.447 Mb, with strong
effects on milk production traits (e.g. [46-50]). In the
Brown Swiss (BS) breed the frequency of the K allele is
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Figure 1 Plot of standard deviations of permuted integrated haplotype scores (iHS) (1,000 permutations) versus minor allele
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very rare with about 2% in the German BS population
[48] and fixed for the A allele in the Italian BS population
[51]. Most likely allele A was selected for because of its
milk yield increasing effect while it reduces fat content.
Note that the DGATI K to A mutation itself is not part

of the Illumina BovineSNP 50K Bead chip®. Interestingly,
our iHS provided a strong and convincing signal of selec-
tion, while the iHSV°#" (0.81) provides considerably
weaker support. Hence, this might illustrate the increased
power of our modified iHS as compared to the iHSY*'#",
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Figure 2 Proportion of SNPs with significant selection signals, relative to all SNPs with a minor allele frequency (MAF) below the
value given along the x-axis. solid line: permutation based iHS, dashed line: iHS?'9": symbols: circles, squares and rhombs symbolize SNPs
with P- values for the corresponding test statistic below 0.001, 0.005 and 0.01, respectively.
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Figure 4 Histogram of iHS test statistics from selection signature analysis for 34,851 SNPs.
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Figure 5 Quantile - quantile plot of P - Values from selection signature analysis for 34,851 SNPs using our modified iHS (X) and the
iHSY°'9™ (o) test statistics, respectively.
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However, there is growing evidence for additional poly-  eg [52,53]. Of particular interest is a QTL mapping study
morphisms in the DGAT1I gene and its neighborhood in the German-Austrian-Italian BS population [54], that
that cause phenotypic variation for milk production traits  reported significant QTL for milk yield and protein
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Figure 6 iHS (X) and iHS"°!9" () on proximal end (0 to 2.5 Mb) of BTA 14. The vertical line marks the position of DGAT1 K232A locus. The
x-axis displays the physical position in megabases.
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Figure 7 Haplotype bifurcation plot of Hapmap52798-ss46526455. The top figure shows the sweeping allele “G” while the bottom figure
shows allele “A". This figure shows the breakdown of LD from the core SNP with increasing distance in both directions. The core SNP represents
the root of the diagram. Each SNP represents a node and is an opportunity for further branching. If both alleles of a SNP are present on a
haplotype the line branches. The thickness of the lines corresponds to the number of samples carrying the haplotype. The length of a branch
corresponds to the distance between SNPs.
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Figure 8 Plot of EHH statistics of minor allele “G” (solid line) and major allele “A” (dotted line) of Hapmap52798-ss46526455 on
proximal end of BTA 14. The x-axis displays the physical position in megabases.
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percent in the DGATI region although all bulls in this
study were shown to be homozyogous for the p.K232A
polymorphism [55]. This finding is supported by the
large SNP effects estimated for fat and protein percent in
the US - BS population (http://aipl.arsusda.gov/Report_-
Data/Marker_Effects/marker_effects.cfm?Breed=BS)
albeit the near fixation of allele A in this breed. So it is
likely that the selection signal that is picked up by iHS is
not purely for the DGATI1 p.K232A polymorphism but
for the proximal region of BTA14 as a whole including
the VNTR polymorphism in the promoter region of the
DGAT1 reported by [53].

Association Study on PY
We used 34,851 SNPs that met our stringent quality cri-
teria and also had the ancestral allele reported in litera-
ture for association testing. Population stratification was
accounted for by including IBD estimates from the gen-
otype data (method MIX). A quantile - quantile plot
analysis indicated, that this procedure did not suffi-
ciently account for population stratification in our data-
set (inflation factor A = 1.34) (Figure 9).

We therefore developed a new strategy to reduce the
number of erroneous association signals in our data
(method MIXStrat). Both the quantile - quantile plot
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(Figure 9) as well as an inflation factor A of 1.02 con-
firmed that the MIXStrat model successfully controlled
for spurious results caused by stratification of our sam-
ple. Nevertheless, we also experienced a drop in power,
as expected. The SNP with the smallest g value in
method MIXStrat was 0.5639561 (tail-area based false
discovery rate (FDR)) calculated with R package fdrtool,
v1.2.5 [44], corresponding to a nominal P-value of
4.778973e-04. Note that the flattening out of the P -
Value curve for method MIX is a consequence of the
adaptive permutation procedure.

Evaluation of WGA via Monte Carlo Simulation

Computer simulations showed that using MIXStrat the
sample size in this study is sufficient to only detect strong
effects explaining at least 10% of the phenotypic varia-
tion. The Monte Carlo simulation did not account for
LD because conservative significance thresholds using
Bonferroni correction were used. Nevertheless, it assesses
the influence of population substructuring in single SNP
regression whole genome association studies. Our simu-
lations show clearly that the sire-, paternal grandsire-
and maternal grandsire structure in dairy cattle popula-
tions alone can create significant results without any
association between genotype and phenotype.

observed -log10(P)

expected -log10(P)

Figure 9 Quantile - quantile plot from association study on protein yield using model MIX (X) and MIXStrat (O), respectively.
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Additional file 3, Figure S34 shows a histogram of
allele substitution effects across all 34,851 SNPs tested.

Rate of False Positives

Empirical type I error rate o and the inflation factor 1
using MIXStrat were 0.05 and 0.99, respectively, while
an « of 0.13 and A 1.35 was observed when method
MIX was applied. Furthermore the quantile - quantile
plot in Figure 10 shows clearly that a standard mixed
model cannot fully account for the stratification present
in the data, whereas our MIXStrat approach succeeds in
controlling the type I error rate under the simulated
null distribution.

Power Analysis
As expected, MIXStrat reduced power under the model
of an existing QTL (Table 2). Power reduction was
0.069 and 0.10 for QTL that explain 10 and 5% of the
trait variance, respectively. The relative power loss com-
pared to MIX analysis of 8.6 (10% QTL size) and 30.6%
(5% QTL size) indicates, that for large and particularly
moderate QTL sizes our method leads to substantial
power reduction.

As further shown in Table 2 our dataset has sufficient
statistical power to detect QTL explaining > 10% of the
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variance in EBV. Effect sizes of that magnitude are
expected to be rare in livestock species [56]. MIXStrat
without integration of information on selection signa-
tures has insufficient power to detect loci explaining
only 1% of the variance.

Consensus of Selection Signature Signals and Association
Signals
A positive iHS value indicates that the minor SNP allele,
relative to the major allele, is associated with the larger
integrated EHH statistic and was possibly selected for.
Likewise the estimated regression coefficient in the associa-
tion analysis (Byrxsiar) Tepresents the estimated increase in
trait value per additional copy of the minor allele. Thus
alike signs of iHS test statistics and B yrxserae indicate that
the SNP is causative by itself or is in LD with a causative
site that is under positive selection. Opposite signs of iHS
and Bxswae May be observed when sites have pleiotropic
effects and were selected on a different, possibly unob-
served, trait. Generally one would expect to see a higher
proportion of like signs as compared to opposite signs and
a positive correlation coefficient for traits of major eco-
nomic importance in the selection history of a breed.

Table 3 shows the correlations between iHS test statis-
tics and allele substitution effects given by byixsear for

observed -log10(P)

expected -log10(P)

Figure 10 Quantile - quantile plot for protein yield under the null distribution from method MIX (X) and MIXStrat (O).
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Table 2 Results from power calculations of the Monte
Carlo simulation; the underlying models of MIX and
MiXStrat are described in the “algorithm section” of the
paper.

QTL size in EBV variance MIX power of MIXStrat
1% 0.026 0.005
5% 0.347 0.234
10% 0.772 0.727

PY based on all 34,851 sites, as a quantitative evaluation
of accordance. As expected the overall correlations
among all sites was low. The correlations between allele
substitution effects and iHS among sites identified to be
under selection however was substantial with 0.466
among the top 1% of sites and even higher among the
top 0.1% of sites. IHSY*¢"" however was uncorrelated
with top 1% sites and showed a lower correlation of
0.228 among the top 0.1% sites as compared to iHS.
This further supports our notion that iHS is an
improved haplotype based test statistic for identifying
important loci.

Combining Signatures of Selection with Association Tests
Selection signature - and association test statistics were
moderately correlated (Pearson correlation coefficient was
0.091 for iHS and -0.005 for iHS"°'#") across all 34,851
SNPs as the majority of SNPs are not in LD with a causa-
tive locus and therefore not under selection. This justifies
treating the two sets of results as independent and using
Stouffer’s method to obtain P- Values (Pcopg) from a
combined significance test. Figure 11 indicates that combi-
nation of tests increases power of detection substantially.
We applied a FDR threshold of 0.10, which corresponds to
a nominal P-value cut-off of 2.149935e-06.

Additional file 2, Figures S6 - S33 show Manhattan
plots for each of the bovine autosomes, combining
model MIXstrat with iHSY°®"* (plot C) and MIXstrat
with iHS (plot D). All Manhattan plots are annotated
with selection signature signals among the top 5% found
by [21] applying iHSY*'®" in windows of 500 kB in BS
cattle (symbol o) and in any of the other breeds investi-
gated, symbol (x). All plots are further annotated with
QTL results reported from whole genome association
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studies in the cattle QTL database “Cattle QTLdb” [57].
We downloaded the gff3 file for btau4 at [57,58]http://
www.animalgenome.org/cgi-bin/QTLdb/BT/download?
file=gbpBTAU. QTL positions are annotated at the mid-
points between start and end position of the reported
QTL. QTL annotated outside the assembled bovine
autosomes and in reverse direction (end position further
distal than start of QTL) were filtered. Capital letters
summarize QTL trait ontology classes: B for meat (beef)
traits, E for exterior traits, H for health traits, M for
milk traits, P for production traits, R for reproduction
traits as classified at animalgenome.org

Only QTL annotated from WGA studies were consid-
ered, because of the large confidence intervals of QTL
positions from linkage studies.

Additional file 3, Figure S35 shows a histogram of
Stouffer’s P - Values combining whole genome associa-
tion results with model MIXstrat and iHS"°8"* while
Additional file 3, Figure S36 a histogram of Stouffer’s
P - Values combining whole genome association results
with model MIXstrat and iHS.

Plots A and B in Figure 12 report selection signature
mapping results applying method iHS"°*#" and iHS,
respectively. We see a nice agreement for both test statis-
tics with the selection signatures reported by [21], in the
same breed around 60 and 70 Mb. Both plots show an
additional strong signal for selection in the region
between 80 - 100 Mb which harbours the well studied
casein gene family. This becomes evident by the large
number of annotated WGA results in this region.
Recently [59] reported a long range haplotype affecting
protein yield and mastitis susceptibility in Norwegian
Red cattle that was introgressed from a Swedish Holstein
bull into Norwegian Red. SNPs in this region almost
reach significance in the combined approach (plot D),
which clearly demonstrates the increased power of the
combined approach, as results from stand alone WGA
applying model MIXstrat was far from signifance for any
of the tested SNPs.

Hayes et al. [11] do not provide a supplemental table
of iHS test statistics, we could therefore not annotate
our Manhattan plots with their results. Nevertheless the
topology of their Manhattan plot for BTA 6 is strikingly
similar to our results and results reported by [21].

Table 3 Pearson correlation coefficients (95% confidence intervals) of different iHS statistics with regression

coefficients from association study for protein yield.

Method SNPs with MAF < 10% all SNPs
all (N= 4,387) top 1% |iHS| (N = 42) all (N = 34,851) top 1% |iHS| (N = 349) top 0.1% [iHS| (N = 35)
iHS 0.045 0.197 0.091 0466 0559
(0.016-0.074) (-0.105-0.467) (0.080-0.101) (0.380-0.544) (0.277-0.751)
JHSYeI9Mt [g] 0.005 021 -0.005 0.002 0.228
(-0.025-0.034) (-0.092-0.31) (-0.0158-0005) (-0.107-0.102) (-0.114-0.521)
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observed -log10(P)

expected -log10(P)

Figure 11 Quantile - quantile plot from association study on protein yield using model MiIXstrat (O) and combined test of selection
signature iHS test statistics and whole genome associations with model MiXstrat (X).

When comparing plot C and D in more detail it
becomes evident that combining iHSV°'8"" and WGA
results does not give as good agreement between the
combined iHS and WGA test. This is supported by the
lower correlation among the top 1% iHSY*'®"" test statis-
tics and regression coefficients from WGA (Table 3).

Discussion

Mixed model and method to control for stratification

The pairwise IBD matrix obtained by PLINK [60] based
on genome wide SNP data most likely underestimated
the relatedness among bulls because the underlying algo-
rithm estimates population allele frequencies from a pre-
sumably unrelated sample. This is supported by the
observation that the average IBD estimate was exactly
0.254 between 795 paternal half-sib pairs and not, as
expected, elevated due to underlying distant relatedness.
Stich et al. [61] used SPAGEDI software [62] to estimate
the IBD matrix and noted a similar problem. SPAGEDI
also assumes that random pairs of individuals are unre-
lated and assigns them a kinship coefficient of zero.

The ,,Q+K” method, proposed by [40], is a mixed model
with Q, a matrix containing population substructure to
estimate v, the vector of population effects and the kinship
matrix K, which allows estimation of polygenic

background effects based on information on familial relat-
edness from recent coancestry. The authors claimed
improved control of the type I and type II error rates over
other methods.

Applying method MIX instead of a least squares allelic
regression substantially reduced the inflation factor A
from 2.02 to 1.34 for PY. When we extended method
MIX by Q, the matrix on population substructure based
on clusters, estimated using the ,pairwise population
concordance” criteria [40], A was further reduced to
1.16 (data not shown) but still did not control for all of
the stratification. The here proposed method MIXStrat
was able to remove stratification (A = 1.02) and proved
an advantage over method ,Q+K”.

The Monte Carlo simulation confirms that the proposed
MIXStrat approach deals correctly with all stratification in
the data, as under the simulated HO the observed -log P -
Value distribution follows their expectation for the dataset
as highly substructured as dairy cattle. If our two-step
approach had resulted in an overcorrection we would
expect to see deflation in the quantile - quantile plot.

Detection of Selective Sweeps
Alleles under positive selection increase in frequency in
a population and leave distinct signatures in the DNA
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Figure 12 Manhattan plots of chromosome 6. Legend Figure 12: Capital letters denote QTLs reported from whole genome association
studies (WGA) at [58], summarized as QTL trait ontology classes: B.. meat traits, E... exterior traits, H.. health traits, M.. milk traits, P.. production
traits, R.. reproduction traits; o annotates a top 5% iHSYe19Nt tast statistic as reported in by [21] in windows of 500 kb in Brown Swiss, X in any of
the other breeds investigated; Plot A: iIHSY?'9" test statistics, blue line: threshold identifying the top 5%; B: iHS test statistics, blue line: threshold
identifying the top 5%; C: combined IHSVOI9N and WGA results with model MiXstrat, D: combined iHS and WGA result with model MiXstrat; blue
line is a at 10% false discovery rate threshold.




Schwarzenbacher et al. BMC Genomics 2012, 13:48
http://www.biomedcentral.com/1471-2164/13/48

sequence. One of these population-genetics based signa-
tures is the increased length of the haplotype carrying
the advantageous allele [6] which is caused by a rapid
rise in frequency of the mutated allele. This creates tem-
porary LD with nearby loci. Extended haplotype homo-
zygosity statistics [6] contrast this signature between the
ancestral and the derived allele at each locus.

The challenge is to determine whether a signature is
due to selection or to confounding effects of population
demographic history, such as bottlenecks, population
expansions and population subdivision or simply due to
drift in a finite population. Two striking bottlenecks
were estimated by [63] in data from 14 European and
African Bos taurus and Bos indicus cattle populations.
The first and most prominent bottleneck occurred
roughly 1,500 generations ago, which corresponds well
with the time of domestication in cattle. The second
less pronounced bottleneck, which occurred approxi-
mately 50 - 100 generations ago, is most likely caused
by breed formation. We therefore expect substantial
demographic noise in our set of selection signature test
statistics. Furthermore consequent assortative mating is
expected to leave signatures in the genome that can
easily be mistaken as a signature of selection.

We mapped selection signatures with iHSY°'8™, Large
negative values indicate regions in which newly derived
alleles are increasing in frequency in the population.
Large positive test statistics advocate so called soft
sweeps, sweep from standing natural variation where the
ancestral allele is increasing in frequency for iHSY ',
As changes in the selection regime of dairy cattle are
well documented and make sweeps from standing
genetic variation likely we believe that it is important to
consider both extreme positive and negative iHS test
statistics as potentially interesting regions in the cattle
genome. We developed a permutation - based extension
to the iHS statistic proposed by [9] for which there is
no need to determine the ancestral and derived state of
the alleles but contrasts minor and major allele. Our
method obtains locus specific standard deviations of iHS
in simulating the null hypothesis and contrasting against
an expectation of zero. Compared to (iHSY°#"%) [9] our
method is more conservative for loci with low minor
allele frequencies. A higher correlation coefficient
between our iHS and Pyixsear indicates that this is a
consequence of a decreased rate of false positive detec-
tions rather than reduced power. Despite successful
selection signature scans in cattle we note that protein
yield is a typical quantitative trait for which selection is
essentially multigenic and therefore likely to undergo
simultaneous selective sweeps. Chevin and Hospital [64]
showed that for quantitative traits selection at specific
quantitative trait loci may strongly vary in time and
depend on the genetic background of the trait. This can

Page 16 of 19

blur the signature of selection and the corresponding
region will go undetected in a genome scan [64]. Given
the long generation intervals in cattle the number of
generations of intense artificial selection is still small
which could result in weak selection signals for alleles
with small effects. Selection signature mapping applied
to livestock with similarly strong selection but shorter
generation intervals could be even more powerful.

Method to combine Selection Signatures with Association
signals

We propose a novel approach to increase the power to
detect association signals. In this study the statistical
power to detect an association signal was quite limited,
but by combining two independent sources of informa-
tion for QTL detection in genome wide studies: associa-
tion and signatures of selection, we were able to
increase power and to reduce the false positive rate.
Loci that explain variation in economically important
traits are likely under selection and will often show
incomplete selective sweeps. Thus there is a good
chance to observe extreme iHS values among loci that
show association. This is supported by the positive cor-
relation of 0.446 between Byixsaar and iHS for loci
among the top 1% iHS test statistics. Although many of
the associations identified by our method are not yet
confirmed, the concordance with prior results from
WGA studies indicates that we were successful in
detecting interesting loci. Fine mapping of QTL involves
genotying of many more SNPs in the associated region
possibly supported by resequencing a subset of extreme
individuals [65] and is often tedious and costly. Thus it
is highly desirable to eliminate false positive associations
prior to further investigations.

Our combined approach has highest power at inter-
mediate allele frequencies, as both independent sources
of information (selection signature mapping and WGA)
have highest power at intermediate allele frequencies.
Alleles that are not allowed to go to fixation are either
likely to be under balancing selection (heterozygote
advantage) or have pleiotropic effects with positive and
negative effects for the traits under selection. Such loci
are not expected to show a signature of recent positive
selection. WGA, given the same size of effect, will have
equal power to identify such loci and loci under positive
selection.

Conclusion

The combination of WGA with hitchhiking mapping to
identify a bona fide set of SNPs for candidate gene stu-
dies is very promising. We argue that our method
improves power of QTL detection and reduces type I
error rate by combining two independent sources of
information. Our approach can of course be extended to
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all routinely recorded phenotypes, but for a proof of
principle we restricted our analyses to PY as this trait
was under most stringent selection over the last couple
of decades and the bulls were selectively genotyped for
PY to increase power for the whole genome association
study.

Stratification is a substantial problem in WGA studies,
particularly when carried out in livestock populations.
Our MIXStrat approach controls the type I error rate,
however at the cost of reduced power.

We accomplished a whole genome hitchhiking map-
ping study and identified roughly 1,600 SNPs displaying
selection signatures that show generally good accor-
dance with effects estimated in the WGA study. Our
extension to the iHS test statistic proposed by [9]
resulted in a reduced false positive rate in the MAF
class < 10%, however, it provides reliable P - Values
only after extensive Monte Carlo simulations.

Given the substantial increase in power and the reduc-
tion in false positive signals we recommend using our
combined strategy rather than stand alone WGA. This
is especially important in small populations where it is
not possible to genotype additional animals.

Additional material

Additional file 1: Supplementary Figures S1-S5. The PDF contains
Figure S1: Histogram of means of 1000 permuted ulHS test statistics per
locus; Figure S2: Histogram of derived allele frequencies for 34,851 SNPs
in the study; Figure S3: Histogram of minor allele frequencies for 34,851
SNPs in the study; Figure S4: Histogram of P - Values of iHS 9" test
statistics; Figure S5: Histogram of P - Values of iHS test statistics.

Additional file 2: Supplementary Figures S6-S33. The PDF shows
Manhattan plots of bovine autosomes 1-5, 7-29; Capital letters denote
QTLs reported from whole genome association studies (WGA) in cattle
QTLdb at animalgenome.org, summarized as QTL trait ontology classes:
B.. meat traits, E... exterior traits, H.. health traits, M.. milk traits, P..
production traits, R.. reproduction traits; o annotates a top 5% iHSVoight
test statistic as reported in by [Quanbari et al. (2011)] in windows of 500
kb in Brown Swiss, x in any of the other breeds investigated; Plot A:
iHSVoight test statistics, blue line: threshold identifying the top 5%; B: iHS
test statistics, blue line: threshold identifying the top 5%; C: combined
IHSY°19M and WGA results with model MiXstrat, D: combined iHS and
WGA results with model MiXstrat; blue line is a at 10% false discovery
rate threshold.

Additional file 3: Supplementary Figures S34-S36. The PDF shows
Figure S34: Histogram of allele substitution effects from whole genome
association study employing model MiXstrat in kilogram protein yield;
Figure S35: Histogram of Stouffer's P - Values of combined model
MIXstrat and iHS"*9" test statistics; Figure $36: Histogram of Stouffer's P -
Values of combined model MiXstrat and iHS test statistics.
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