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Background: In a previous genome-wide analysis of FXR binding to hepatic chromatin, we noticed that an extra
nuclear receptor (NR) half-site was co-enriched close to the FXR binding IR-1 elements and we provided limited
support that the monomeric LRH-1 receptor that binds to NR half-sites might function together with FXR to

Results: To analyze the global pattern for LRH-1 binding and to determine whether it might associate with FXR on
a whole genome-wide scale, we analyzed LRH-1 binding to the entire hepatic genome using a non-biased
genome-wide ChIP-seq approach. We identified over 10,600 LRH-1 binding sites in hepatic chromatin and over
20% were located within 2 kb of the 5" end of a known mouse gene. Additionally, the results demonstrate that a
significant fraction of the genome sites occupied by LRH-1 are located close to FXR binding sites revealed in our
earlier study. A Gene ontology analysis revealed that genes preferentially enriched in the LRH-1/FXR overlapping
gene set are related to lipid metabolism. These results demonstrate that LRH-1 recruits FXR to lipid metabolic
genes. A significant fraction of FXR binding peaks also contain a nuclear receptor half-site that does not bind LRH-
1 suggesting that additional monomeric nuclear receptors such as RORs and NR4As family members may also
target FXR to other pathway selective genes related to other areas of metabolism such as glucose metabolism
where FXR has also been shown to play an important role.

Conclusion: These results document an important role for LRH-1 in hepatic metabolism through acting
predominantly at proximal promoter sites and working in concert with additional nuclear receptors that bind to

Background

Nuclear receptors are signal-regulated transcription fac-
tors that control a wide range of biological processes
and influence many human diseases [1]. Nuclear recep-
tor activity is controlled by the binding of natural small
molecules or ligands including hormones and metabo-
lites and many synthetic compounds have been designed
to mimic these natural regulators [2]. The ability of
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nuclear receptors to alternate between activation and
repression in response to specific ligands is mediated by
differential binding of non-DNA binding co-regulators,
including co-activators and co-repressors [3]. In general,
this switch is mediated through a conformational change
in the ligand binding pocket of the nuclear receptor
leading to dissociation of co-repressors and interaction
with co-activators.

In addition to the non-DNA binding ligand-gated co-
regulators, nuclear receptor activity can also be influ-
enced by the binding of other DNA binding partner
proteins that can interact with the nuclear receptors to
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form a cis-regulatory module to enhance or repress the
transcription of select target genes [3].

The liver receptor homolog-1 (LRH-1; NR5A2)) is
expressed mainly in the liver, intestine, exocrine pan-
creas, and ovary [4-6] and plays a role in the regulation
of bile acid, cholesterol, and steroid hormone homeosta-
sis. It belongs to a nuclear receptor subfamily that
includes steroidogenic factor 1 (SF-1; NR5A1). LRH-1
was cloned independently by several groups and it
received many names, including pancreas homolog
receptor 1 (PHR-1), fetoprotein transcription factor
(FTF), CYP7A1 promoter binding factor (CPF), human
B1 binding factor (hB1F) [7].

Unlike nuclear receptors that form heterodimers with
RXR to bind to their response element, LRH-1 regulates
target genes by binding as a monomer to DNA response
elements with consensus sequence 5 PyCAAGGPyCPu3’
[7], which is similar to a “half-site” recognized by
dimeric receptors. LRH-1 is involved in the regulation
of genes, which participate in steroid, bile acid and cho-
lesterol homeostasis [8]. Recent structural studies for
LRH-1 and SF-1 revealed a phospholipid located in the
binding pocket of the protein crystal suggesting phos-
pholipids might function as natural ligands [9,10].
Whereas the physiological relevance of the interaction
between LRH-1 and putative phospholipid ligands
remains to be fully appreciated, a recent study supports
the role for specific phospholipids as regulatory agonists
for LRH-1 in vivo [11].

LRH-1 also has a key role early in development where
it activates expression of Oct4, which is required to
maintain pluripotency at the earliest stages of both
embryonic development and in ES cell differentiation
[12]. In fact, a recent study showed that LRH-1 could
replace Oct4 in the re-programming of mouse somatic
cells into pluripotent cells by presumably activating
Oct4 [13].

In our analysis of FXR binding to hepatic chromatin,
we showed that LRH-1 could function as a partner tran-
scription factor for FXR on a small set of target genes
through binding to a nuclear receptor half-site that was
co-enriched with the FXR IR-1 element on a genome-
wide scale [14]. To determine how global the association
between FXR and LRH-1 might be and to analyze LRH-
1 more broadly, the binding of LRH-1 to the whole liver
genome was accomplished by a non-biased genome
wide ChIP-seq analysis in liver using an LRH-1 antibody
to enrich LRH-1 target regions that were subsequently
sequenced using Applied Biosystems’ SOLiD (Sequen-
cing by Oligonucleotide Ligation and Detection) System.
The studies demonstrate that LRH-1 binds to over
10,6000 sites in the genome with a significant fraction
located close to FXR binding sites identified in our ear-
lier study. Gene ontology grouping revealed that the
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genes preferentially bound by both FXR and LRH-1 are
involved in lipid metabolism suggesting that LRH-1 tar-
gets FXR for activation of genes of lipid metabolism.
These data also suggest that additional monomeric
nuclear receptors such as RORs and NR4As may also
bind to NR half-sites close to FXR elements that are not
occupied by LRH-1, which could target FXR to different
gene clusters involved in other key areas of metabolism.

Results and Discussion

Identification of the Hepatic Cistrome for LRH-1

In our previous studies of genome-wide binding for
FXR, our analysis revealed that an additional nuclear
receptor (NR) half-site was present in 71% of the FXR/
RXR binding IR-1 sites from our liver FXR ChIP-seq
dataset [14]. We also demonstrated that the IR-1 and
additional NR half-sites were located relatively close
together with most occurrences containing the two
motifs within 50 bases of each other [14]. This finding
suggested that FXR regulates gene expression in combi-
nation with a co-binding monomeric nuclear receptor.

LRH-1 is a prominent monomeric liver NR that binds
to half-site elements and we showed that a few of the
FXR target promoters also bound LRH-1 [14]. To both
analyze the genome-wide binding for LRH-1 and to
determine whether it might be associated with FXR
binding on a genome-wide scale, we performed a ChIP-
seq analysis with hepatic chromatin after enrichment
with an LRH-1 antibody. Chromatin prepared from
livers of six C57BL6 mice was pooled and processed for
ChIP with an antibody to LRH-1 or a control IgG as
described in Methods. The quality of the chromatin and
specificity of the LRH-1 antibody were confirmed by
comparative site-specific ChIP analysis using known
FXR binding sites in the promoters of SHP, Pemt, Pcx,
and Abca4 (Additional File 1). Chromatin enriched by
the LRH-1 antibody produced a significantly increased
qPCR signal for LRH-1 binding to these promoters rela-
tive to chromatin pulled down with a control IgG frac-
tion (Additional File 1).

Next, DNA from the LRH-1 antibody enriched chro-
matin was subjected to ChIP-seq using the Applied Bio-
systems’ SOLID platform. The sequencing libraries were
prepared according to the standard SOLiD System 2.0
Fragment Library Preparation protocol and the quality
of ChIPed DNA, including DNA fragmentation and
library amplification, was evaluated by using Agilent
BioAnalyzer before running the sequencing reactions.
Most DNA fragments were between 200-600 bp in size
for both samples (Additional File 2). The DNA frag-
ments between ~200-300 bp were selected for library
preparation and SOLID sequencing.

The data generated more than 40 million independent
sequencing reads (Table 1). The individual 39 bp reads
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Table 1 Summary of SOLiD ChIP-seq analysis

Uniquely Mapped Reads

Antibody  Total MAPQ > 1 % MAPQ > %
Raw Mapping 5 Mapping
Reads
IgG 37,611,815 8,343,715 5.550,631 14.8
LRH-1 40,285,362 10,635,029 8,002,341 19.9

The reads were generated from one quadrant of SOLID ChIP-seq system. All
reads were filtered for high quality reads, as well as for alignment and unique
placement in the mouse reference genome by using the SOLID BioScope
Software. Antibody and total raw reads (black). Analyzed uniquely mapped
reads used for analysis (Bold)

were filtered for high quality, as well as for alignment
and unique placement in the mouse reference genome
by using SOLiD™ BioScope™ Software (Life Technolo-
gies). This resulted in 8.3 million uniquely mapped
reads corresponding for the IgG and 10.6 million for the
LRH-1 enriched sample (Table 1). However, we applied
an even more stringent cutoff mapping quality scores
(MAPQ > 5) and obtained ~5.5 million for IgG and ~8
million reads for LRH-1 enriched samples which were
used for further analysis (Table 1 and Figure 1A).

To identify LRH-1 binding peaks, we used Model-based
Analysis of ChIP-seq (MACS), which was designed to
analyze data generated by short read sequencers such as
from the SOLID platform [15] to first estimate peak size
and location, using BED files as an input. The distance
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between the modes of the forward and reverse peaks in
the alignments, defined as ‘d’, was 152 bp for the LRH-1
ChIP-seq data (Figure 1B). Using stringent p-value and
false discovery rate (FDR) cutoffs of < 1 x 10%and < 1%
respectively, we identified 10,634 genomic sites occupied
by LRH-1 protein (Figure 1A).

The aligned sequence reads were displayed as a track
onto the mouse reference genome using the University of
California at Santa Cruz (UCSC) genome browser (http://
genome.ucsc.edu/index.html), and visual inspection of sev-
eral sites confirmed that the LRH-1 peaks identified by
MACS correspond to sites of over-represented sequence
tags. For the examples shown in Figure 2, sequence reads
corresponding to different DNA strands are colored in
blue and red respectively for the SHP, Adfp, Gsk3b and
Abcad gene associated binding peaks. The peaks for SHP,
Adfp or Gsk3b were distributed in the promoter regions,
whereas that for Abca4 was located in an intron. We also
inspected LRH-1 binding peaks by using the bedGraph
format that allows a display of continuous-valued ChIP-
seq data in track format using the UCSC genome browser.
This showed LRH-1 binding peaks and extended regions
from the entire locus of the respective genes (Figure 3).

Mapping of LRH-1 binding peaks
When we evaluated where the LRH-1 binding peaks
were located with respect to mRNA encoding genes, we

A

MACS analysis lgG LRH-1
Raw reads 37,611,815 40,285,362
Unique Reads 5,550,631 8,002,341
% Mapping 14.8 19.9
Peaks identified, p10-10, FDR < 1 10,634

4 —— forward tags
—— reverse tags
_| — shifted tags
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Figure 1 MACS analysis for LRH-1 ChIP-seq. (A) Summary of ChIP-seq analysis for LRH-1 binding to DNA in hepatic chromatin by MACS.
Given mfold 32 and sonication size (bw) 300 bp, MACS searched 2bw window area across the genome to find genomic peaks with tags more
than mfold enriched relative to a random tag genome distribution. The results were obtained using the parameters of p-value cutoff 1 x 107°
and false discovery rate (FDR) 1%. (B) Peak model built by MACS. MACS estimated the d for LRH-1 ChiIP-seq data.
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Figure 2 Representative view of a LRH-1 ChIP-seq peak. The novel LRH-1 binding sites, mapped onto University of California at Santa Cruz
(UCSC) genome browser, were identified in several genes presented here. Shown are chromosomal locations according to the July 2007 Mouse

Genome Assembly (mm9). Blue and red tags represent sequence reads from opposite DNA strands showing approximately equal distribution as

expected. (A) NrOb2 (SHP). (B) Adfp (adipose differentiation related protein). (C) Gsk3b (Glycogen Synthase Kinases-3b). (D) Abca4 (ABC
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were surprised to find that LRH-1 binding sites were
predominantly located in the promoter regions (2 kb 5,
24.1%), and 5’'UTR (22%) relative to the transcription
start site (TSS) for known genes (Figure 4A). Altogether,
this accounts for 46% of the total LRH-1 binding events,
suggesting a strong preference for TSS proximal binding
by LRH-1. In contrast, when the genomic location for
randomly generated peaks of similar size was estimated,
the random peaks were predominantly localized within
intergenic (56%) and intron (32%) regions, with only 2%
positioned within 2 kb of a TSS (Figure 4B). Thus, the
24.1% for LRH-1 binding sites to within 2 KB of a TSS
is a highly non-random occurrence. Next, we examined
the distance from the summit of each LRH-1 peak to
the TSS of the nearest identified gene. The distribution
shown in Figure 4C provides a visual demonstration

that LRH-1 binding peaks were enriched close to TSS
for known genes.

Motif analysis for LRH-1 binding by MEME

The motif finding program MEME [16] was used to
search for enriched motifs in the peaks from our LRH-1
ChIP-seq data set. We found two motifs that were repre-
sented with a very high score. One corresponds to a NR
half site of 5’-CCAAGGTCA-3" (MOTIF 2; sites = 296/
1000; E-value = 2.5¢™°%") (Figure 5A). 30% (296/1000) of
all input peaks contained at least one of these half-site
elements. This indicates that our genome wide analysis of
in vivo binding sites is consistent with previous studies
on the half-site for binding of LRH-1 (5-CAGGGTCA-
3’) ‘[17]. Additionally, this result is consistent with the
genome-wide binding analyses fore an epitope-tagged and
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Figure 3 Representative view of putative LRH-1 peaks and the entire locus of respective genes using bedGraph format. The novel FXR
binding sites are mapped onto University of California at Santa Cruz (UCSC) genome browser. Shown are chromosomal locations of each peak
and its gene according to the July 2007 Mouse Genome Assembly (mm9). (A) NrOb2 (SHP). (B) Adfp (adipose differentiation related protein). (C)
Gsk3b (Glycogen Synthase Kinases-3b). (D) Abca4 (ABC transporter 4).
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A position weight matrix (PWM) for the LRH-1 motif
from the MEME analysis was calculated and used to
scan all of the LRH-1 peaks again using a more strin-
gent z-score cutoff of 4.29 (p < 10°°) for motif identifica-
tion. Using this stringent criterion, a half-site LRH-1
motif was present in 33% (3485/10634, z-score > 4.29)
of the LRH-1 peaks from the MACS analysis (Figure
6A). Among the peaks containing the LRH-1 motif,
most contain one motif element but there are some
peak regions that contain more than one (Figure 6B).

Next, we calculated the distance from the best LRH-1
site in each LRH-1 motif-containing peak to the corre-
sponding peak summit. Theoretically, this is the most
likely location of the actual site of LRH-1-DNA interac-
tion. By this analysis, the NR half-site elements were
preferentially located at the peak-summits relative to
randomly placed motifs of a similar size. This observa-
tion is consistent with the theoretical prediction that the
ChIP-seq peak mapping technique with small sequence
reads accurately identifies the actual site of protein-
DNA recognition and provides more confidence that the
motif containing the half-site is actually the site of
recognition for LRH-1 (Figure 6C).

Co-occupancy by peaks for LRH-1 and FXR

To investigate whether LRH-1 binding sites were
enriched close to the sites of FXR binding from our pre-
vious study, we compared the ChIP-seq dataset for
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LRH-1 binding sites with our previous dataset for FXR
binding peaks. This analysis showed that 23.8% of all
FXR binding peaks were located close to LRH-1 peaks
(Figure 7A). We also visually inspected the locations of
several of the LRH-1 binding sites with respect to neigh-
boring FXR binding peaks, using peak distribution
tracks in the UCSC genome browser. This comparison
for LRH-1 binding sites at the Pemt and Aifm?2 loci is
shown in Figure 7B and clearly shows the close apposi-
tion of the binding peaks for the two different ChIP-seq
data sets.

Genes located close to the LRH-1 binding sites in liver
There were 395 overlapping peaks between LRH-1 and
FXR binding (Figure 7A) that are located within 10 KB
of 367 RefSeq genes. We used the DAVID Gene Ontol-
ogy (GO) PANTHER ‘Biological Process’ term (http://
david.abcc.nciferf.gov/) [19] to provide information on
the genes that were co-occupied by LRH-1 and FXR.
This analysis showed that there was a strong enrichment
for genes in lipid metabolic processes, steroid and cho-
lesterol metabolism (Table 2). The most significantly
enriched genes were associated with ‘cellular lipid meta-
bolic process’ (FDR = 0.0002%) and many of the genes
in this category are predicted to regulate cholesterol
homeostasis (Sec1412, Scarbl, Srebp2, Lcat, Fdftl,
Prkag2 and Ldlrap1).
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Figure 6 Motif analysis for LRH-1 binding peaks. (A) Summary of LRH-1 motif analysis. (B) Number of LRH-1 motif in a peak identified by
SOLID ChIP-seq (z > 4.29). (O) Distribution of the distance from the best LRH-1 motif to the summit of each peak with a LRH-1 site. An arbitrarily
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Figure 7 Analysis of co-occupancy of LRH-1 ChIP-seq peak with FXR binding sites identified by MACS. (A) Comparison of ChIP-seq
analysis for LRH-1 binding in hepatic chromatin with FXR binding peaks. (B) The LRH-1 binding sites for Pemt and Aifm2, mapped onto UCSC
genome browser, were inspected for co-occupancy by FXR. Blue and red tags represent sequence reads from opposite DNA strands. Left panel,
Pemt (phosphatidylethanolamine N-methyltransferase); Right panel, Aifm2 (apoptosis-inducing factor 2, mitochondrion).

Correlation between LRH-1 binding and FXR dependent
gene regulation

We reasoned that if the co-occurrence of FXR and
LRH-1 binding sites was functionally important then the
genes associated with LRH-1 sites should be statistically
correlated with a functional data set for FXR dependent
gene expression. Thus, we analyzed the gene list from
the MACS analysis for LRH-1 binding peaks for overlap

with genes that were preferentially activated by an FXR
expressing adenovirus [14] using a gene set enrichment
analysis (GSEA) function and the modified Kolmogorov-
Smirnov (KS) test [20]. This KS plot distributes results
from a gene expression microarray rank ordered for fold
change on the X-axis and the occurrence of a gene from
the ChIP-seq data set is then scanned for going from
high to low fold change. The presence or absence of a

Table 2 Summary of DAVID Gene Ontology analysis of genes near LRH-1 binding regions

Category Term GO Term Count % P value Benjamini FDR
GOTERM_BP GO:0044255 Cellular lipid metabolic process 25 973 1.07E-06 0.00552 0.002
GOTERM_BP GO:0006629 Lipid metabolic process 26 10.12 3.88E-06 0.01003 0.0074
GOTERM_BP GO:0008152 metabolic process 141 54.86 1.82E-05 0.031 0.0348
GOTERM_BP GO:0008202 Steroid metabolic process 10 3.89 2.95E-04 031791 05618
GOTERM_BP GO:0044237 Cellular metabolic process 125 48.64 3.00E-04 0.26791 0.5722
GOTERM_BP GO:0008203 Cholesterol Metabolic Processes 7 272 3.97E-04 0.29075 0.7557
GOTERM_BP GO:0016125 Sterol metabolic process 7 272 6.63E-04 0.3885 1.259
GOTERM_BP GO:0044238 Primary metabolic process 123 47.86 8.15E-04 041083 1.5454
GOTERM_BP GO:0008610 Lipid biosynthetic process 12 467 848E-04 0.38705 1.608
GOTERM_BP G0:0009058 Biosynthetic process 33 12.84 0.001103 043623 2.0869
GOTERM_BP GO:0044248 Cellular catabolic process 16 6.23 0.002877 0.74332 5356
GOTERM_BP G0:0032787 Monocarboxylic acid metabolic process 10 3.89 0.004361 0.84904 80104
GOTERM_BP GO:0006066 Alcohol metabolic process 11 428 0.005747 0.89995 10428
GOTERM_BP GO:0006631 Fatty acid metabolic process 8 3.11 0.008909 0.86381 15.716
GOTERM_BP GO:0019752 Carboxylic acid metabolic process 15 584 0.010269 097193 17.899
GOTERM_BP GO:0006082 Organic acid metabolic process 15 584 0.010587 0.96837 184

367 genes close to LRH-1 peaks that overlap with FXR peaks were used to group into enriched functionally important categories using the PANTHER “Biological

Process” term
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ChIP-seq identified gene is scored on the Y-axis with a
running enrichment score. This analysis showed a highly
significant running enrichment score because the genes
identified by LRH-1 ChIP-seq that overlap with FXR
binding peaks were preferentially located toward the top
of the differentially expressed gene list ranked by fold
change in gene expression (Figure 8, p = 1.06e%’). Thus,
it is highly likely that LRH-1 is a global co-regulator for
FXR dependent gene expression.

In a previous report, we identified a nuclear receptor
half-site that was co-enriched with FXR binding IR-1
sites in liver chromatin [14]. LRH-1 is a liver enriched
monomeric nuclear receptor that binds to half-site ele-
ments, so we hypothesized that LRH-1 would be a good
candidate for binding the adjacent half-site to function
as a FXR co-regulatory protein in liver chromatin. In
fact, we presented a limited amount of evidence for this
on a handful of FXR target genes [14], but it was impor-
tant to extend this association to a genome-wide scale.
To accomplish this goal, a genome-wide SOLiD ChIP-
seq analysis was performed using chromatin enriched
with an LRH-1 antibody. The SOLiD ChIP-seq data for
LRH-1 binding generated more than 40 millions reads
of 39 bp sequence tags. The ultra-high throughput
SOLiD DNA sequencing platform is able to produce
more than 400 million tags of 35-50 bp per run, and the
high read numbers contribute to high sensitivity and
signal-to-noise ratios, and to relative comprehensiveness
for the genome. 10,634 genomic LRH-1 binding sites

KS Plot: FXR-LRH overlapping peaks

o b B AT
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Rank of Genes in Microarray by Fold Chg

Figure 8 Peak validation using Kolmogorov-Smirnov (KS) plot.
The gene list for the LRH-1 ChIP-seq peaks that overlap with FXR
ChiP-seq peaks was compared for their correlation to a set of genes
that were activated by infection of primary mouse hepatocytes with
a recombinant adenovirus expressing the constitutive FXRa2-VP16
hybrid protein as described in the text. Genes in the expression
microarray were ranked by absolute fold change (A) or fold change
(B) (x-axis) and the graph plots the running enrichment score.

Page 8 of 11

were identified with a high degree of confidence (p-
value < 1 x 107'°, FDR < 1%) (Table 1 and Figure 1).

When we used the motif finding program MEME [16]
to search for enriched motifs in the peaks from our
LRH-1 ChIP-seq dataset, we found a motif (5'-
CCAAGGTCA-3’) containing a nuclear receptor half-
site (MOTIF 2) (Figure 5) and 33% of all input peaks
contained at least one LRH-1 motif (Figure 6). Our gen-
ome wide analysis of in vivo binding sites is also consis-
tent with our previous studies for the half-site
preference for binding of LRH-1 on the Fasn promoter
(5-CAGGGTCA-3’) ‘[17].

On a genome-wide scale, the LRH-1 binding sites
were localized mainly in proximal promoters (24%) and
5'UTR (22%) regions, whereas similar to other nuclear
receptors analyzed to date, FXR binding occurs primar-
ily in distal intergenic regions (44%) and introns (32%),
with only 10% localizing to proximal promoter [14].

The ChIP-seq analysis demonstrated that LRH-1 bind-
ing sites are located close to ~24% of the FXR-binding
sites (Figure 7). This represents a highly significant
degree of co-localization with a p < 10 ® that was calcu-
lated by sampling a control set of peaks with the same
size distribution. The FXR/LRH-1 co-association was
highly significant for both promoter proximal and non-
proximal binding sites. This provides strong support for
our hypothesis that LRH-1 is a key hepatic co-regulatory
transcription factor for FXR.

We also analyzed the association of genes located
close to FXR and LRH-1 binding sites relative to genes
activated by FXR using a gene set enrichment analysis.
The LRH-1 associated genes were localized within a set
of FXR activated genes that were rank-ordered for dif-
ferential expression after infection of primary hepato-
cytes with a control or a constitutively active FXR-VP16
fusion protein ([14], Figure 8). The corresponding Kol-
mogorov-Smirnov (KS) plot showed there was a high
degree of correlation of the two data sets providing
additional evidence that LRH-1 regulates genes in con-
junction with FXR.

Because 76% of the LRH-1 binding sites were not
located close to FXR elements, these results also predict
that LRH-1 regulates gene expression without FXR as
well. Consistent with this hypothesis LRH-1 has been
shown to play a key role in regulating gene expression
along with LXR as well [17,21,22].

The gene ontology analysis in Table 2 indicated that
the genes co-regulated by FXR and LRH-1 are asso-
ciated with lipid metabolic processes. It is likely that
other nuclear receptors, such as RORs, NR4a’s, ERR’s
and Reverb, that also bind as monomers to an isolated
NR half-site, may target FXR to genes involved in other
physiological responses. In fact, the NR4a nuclear recep-
tors are involved in physiological processes including
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glucose metabolism and DNA repair [23] and these two
GO categories were ranked just behind lipid metabolism
as the most significantly associated pathways for FXR
binding in our previous study [14]. When we analyzed a
list of NR4a responsive genes from microarray studies
summarized in a previous report [23], we noticed that
14/48 of these target genes were found in our FXR tar-
get gene list. This is a highly significant correlation (p =
8.8 ¢®), which provides strong support for this model of
FXR pathway targeting.

Another relevant monomeric nuclear receptor where
data from mouse liver is available is for the Reverb-o
transcriptional regulator [24]. In fact, recent studies sug-
gest it is a repressor of lipogenic gene expression during
the light phase of the diurnal cycle [24]. When the over-
lap for genome-wide binding of Reverb-o. at ZT 10 (the
light phase) and LRH-1 in our study was evaluated, we
found that there was a highly significant overlap (18% of
LRH-1 peaks at p < 10°) which is consistent with
Reverb-a inhibiting lipogenesis during the light phase of
the diurnal cycle at least partly through inhibiting genes
that are activated by LRH-1 [24].

Conclusions

Our studies contribute to understanding the mechanism
by which FXR and LRH-1 cooperatively regulate lipid
metabolic process and suggest a generalized model for
how FXR may be targeted to additional metabolic pro-
cesses such as glucose and bile acid metabolism through
association with distinct half-site binding monomeric
nuclear receptors. The details and molecular mechanism
of this cooperation remain to be elucidated. However, it
is possible that the ability of FXR to function along with
LRH-1 and other co-factors such as chromatin remodel-
ing complexes at the adjacent sites results in synergistic
effects on transcription activation. Future studies are
necessary to characterize the chromatin context in
which FXR and LRH-1 binding occurs, including histone
modification profiles such as methylation or acetylation,
binding site accessibility, as well as recruitment of other
cofactors, by using rapidly advancing genome-wide bind-
ing approaches.

Methods

Chromatin immunoprecipitation sequencing (ChlIP-seq)
using the SOLID platform

Six-week-old C57BL6 male mice were fed a standard
chow diet [25]. All animals were sacrificed at the end of
the dark cycle and ChIP assays from liver were per-
formed as previously described [14,25]. The liver chro-
matin from all six animals were pooled for analysis.
Chromatin was extracted and subjected to an immuno-
selection process, which required the use of antibodies
against LRH-1 (PP-H2325-00; R&D Systems) or mouse
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IgG (Sigma) as a control. To prepare samples for the
SOLiD ChlIP-seq, after isolating the ChIP-enriched
DNA, gene-specific enrichment for some known FXR
target genes including SHP, Pemt, Pcx, and Abca4 in
the LRH-1 chromatin relative to IgG control chromatin
was verified. Approximately 20 ng of ChIP enriched
DNA or control DNA was processed by the Sanford-
Burnham Medical Research Institute Genomics Core
Facility (Orlando, FL) for high throughput DNA sequen-
cing using SOLID system. The libraries for the samples
were prepared according to the standard SOLiD System
2.0 Fragment Library Preparation protocol. Then tem-
plated bead generation for each library was performed
according to SOLiD System 2.0 Users Guide standard
protocols. Each sample was deposited on a quadrant of
the slide at a target bead density of 60-70 k beads/panel.

Quantitative PCR, microarray analysis

Manual ChIP confirmation on the randomly selected
putative FXR target genes from lipid metabolism cate-
gory was achieved by quantitative PCR (qPCR) method
[26]. Final ChIPed and control DNA samples were ana-
lyzed in triplicate with L32 as internal control. For this
assay, we used pre-designed and validated qPCR primer
specific to the peak regions containing LRH-DNA inter-
action and an additional co-regulatory site, and mea-
sured genomic DNA promoter region sequence
enrichment within ChIPed samples.

ChIP-seq data analysis

Preprocessing sequence data

The ultra high read tag numbers of the SOLiD system
contributes to high sensitivity, relative comprehensive-
ness for the mouse genome, and enables very robust sta-
tistical power required to map and accurately
characterized the protein-DNA interactions of an entire
genome. Like other sequencing technologies, it measures
fluorescence intensities from dye-labeled molecules to
determine the sequence of DNA fragments. The location
of the sequence reads from SOLiD System and their fre-
quency, which measures the degree of enrichment over
the control, was revealed using currently available
SOLID sequencing analytical tools including SAMtools
(http://samtools.sourceforge.net/).

The SOLiD ChIP-seq dataset was analyzed to deter-
mine peaks which contain binding sites of LRH-1 to its
target genes. Short reads of 39-bp were produced from
Applied Biosystem’s (ABI) SOLiD (Sequencing by Oligo-
nucleotide Ligation and Detection) System, and mapped
to a reference genome by Life Technologies using
SOLiD™ BioScope™ Software, allowing two mismatch.
Short sequence reads that mapped to simple and com-
plex repeats or that were not unique by chance were
removed from the analysis. The resulting mapped file
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was in SAM ("Sequence Alignment/Map”) format, and
we converted the SAM files to BED files using SAM-
Tools (http://samtools.sourceforge.net/), which can pro-
vide various utilities for manipulating alignments in the
SAM format, including sorting, indexing, merging and
generating alignments in a per-position format. The
BED files which contain chromosomal start and stop
positions were used as input to downstream processing,
as well as visualization in the UCSC Genome Browser
(http://genome.ucsc.edu/index.html).

Finding peaks using MACS

To determine where the LRH-1 bound to the genome,
we looked for areas where there were significantly more
enriched reads mapped in the ChIP sample than in the
IgG. This was accomplished using MACS [15] with the
parameters of mfold 32, bandwidth 300 bp, p-value 1 x
107'°, and FDR 1%.

Distance to LRH-1 sites from the summit of each peak
MACS provides a summit for every peak, which can be
regarded as the center of the peak. It is where there is
the maximum number of overlapping reads, and is the
most likely location of the binding site. For each peak
with an LRH-1 site, we determined the distance from
the best LRH-1 site to this summit. If they overlapped,
we score the distance as zero. To give a sense of the
enrichment, we evaluated an arbitrarily located site of
the same length in each peak, determined the distance
to the summit, and plotted the results on the same
histogram.

Distance from peak to TSSs

For each LRH-1 peak, the distance from the peak to the
nearest transcription start site was determined, and
plotted. The transcription start sites (TSSs) were taken
from a RefSeq file obtained from NCBI. The background
was determined by placing peaks at random locations on
the genome and by determining distances to TSSs.

Motif analysis

DNA sequences for LRH-1 binding regions were
retrieved using Galaxy (http://main.g2.bx.psu.edu) and
used for motif search using MEME [16]. MEME repre-
sents motifs as position-dependent letter-probability
matrices (PWM). The PWM was used to find a score
for the top-scoring LRH-1 sequence; each letter in the
sequence has a likelihood given in the PWM, these were
summed to find a score for the sequence, with a higher
score meaning it is more likely to be the motif in ques-
tion. We used the PWM to find scores for every posi-
tion along an entire chromosome (excepting coding and
repeat regions), and found the average score and stan-
dard deviation. Then when a new sequence was tested,
we obtained its score from the PWM, subtracted the
average, and divided by the standard deviation. This
provided us a z-score for any sequence, which was con-
verted into a p-value via a standard normal curve.
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The position weight matrix (PWM) for the LRH-1
motif from the MEME analysis was used to scan all our
LRH-1 peaks again using a more stringent z-score cutoff
of 4.29 (p < 10°°).

Annotation of genes and gene ontology (GO) analysis

All LRH-1 binding sites were assigned to nearest genes
based on the Mus musculus NCBI m37 genome assem-
bly (mm9; July 2007). GO analysis of LRH-1 target
genes was conducted by using the NIH Database for
Annotation, Visualization, and Integrated Discovery
(DAVID; http://david.abcc.nciferf.gov/) [19]. This analy-
sis was used to classify the nearest gene list into func-
tionally related gene groups by using ‘PANTHER
Biological Process’ term.

Kolmogorov-Smirnov analysis

The obtained LRH-1 ChIP-seq data was compared with
an expression microarray data set for FXR dependence
[14] by using a Kolmogorov-Smirnov (KS) plot, a modi-
fied method of gene set enrichment analysis (GSEA)
[20]. The KS plot tests the null hypothesis that the
ranks of the genes identified by ChIP-seq is uniformly
distributed throughout the FXR expression microarray.
A KS plot was obtained by calculating the running sum
statistics for our ChIP-seq gene set to observe enrich-
ment in the ranked gene list from expression microarray
data.
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