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Abstract

Background: Assessing the reliability of experimental replicates (or global alterations corresponding to different
experimental conditions) is a critical step in analyzing RNA-Seq data. Pearson’s correlation coefficient r has been
widely used in the RNA-Seq field even though its statistical characteristics may be poorly suited to the task.

Results: Here we present a single-parameter test procedure for count data, the Simple Error Ratio Estimate (SERE),
that can determine whether two RNA-Seq libraries are faithful replicates or globally different. Benchmarking shows
that the interpretation of SERE is unambiguous regardless of the total read count or the range of expression
differences among bins (exons or genes), a score of 1 indicating faithful replication (i.e., samples are affected only
by Poisson variation of individual counts), a score of 0 indicating data duplication, and scores >1 corresponding to
true global differences between RNA-Seq libraries. On the contrary the interpretation of Pearson’s r is generally
ambiguous and highly dependent on sequencing depth and the range of expression levels inherent to the sample
(difference between lowest and highest bin count). Cohen’s simple Kappa results are also ambiguous and are
highly dependent on the choice of bins. For quantifying global sample differences SERE performs similarly to a
measure based on the negative binomial distribution yet is simpler to compute.

Conclusions: SERE can therefore serve as a straightforward and reliable statistical procedure for the global
assessment of pairs or large groups of RNA-Seq datasets by a single statistical parameter.

Keywords: SERE, Simple Error Ratio Estimate, RNA-Seq, Pearson’s correlation coefficient, Replicates, Kappa, Poisson
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Background
Massively parallel shotgun RNA-Sequencing (RNA-Seq)
has become the technology of choice for transcriptome
analysis because of its potential to yield extensive bio-
logical information with digital precision. The develop-
ment of effective statistical data analysis methods has
been essential to the utility of RNA-Seq and has been a
focus since the original reports on the technology [1,2].
The statistical analysis of RNA-Seq variability has been
the focus of several comprehensive studies [3,4] and
remains a topic of active investigation [5]. A common
task in RNA-Seq statistical analysis is to determine
whether two RNA-Seq datasets are faithful replicates
and, if not, whether two datasets differ only slightly or
very markedly. Sophisticated statisitical tools for analysis
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of Next-Generation Sequencing data are beginning to
appear, e.g. the edgeR package [6] and DESeq package
[4]. Here we focus on a more targeted approach that is
useful in both quality control and early analysis. An ideal
measure for this task should be easy to compute and
have three features: (1) Sensitivity: The measure is sensi-
tive to actual differences; (2) Calibration: There is a
known baseline value that corresponds to success; (3)
Stability: The behavior is independent of the sequencing
depth, total number of exons, and other experimental
conditions not relevant to the question. Simple compu-
tation is a desirable but not essential attribute.
Pearson’s correlation coefficient r has been widely used

to affirm that pairs of RNA-Seq datasets are faithful
replicates [1,2,7-9] and continues to be in use [10-12].
However, as a quasi standard in the RNA-Seq literature
r may be problematic as it may suffer not only from the
general pitfalls that have long been recognized (e.g.
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Figure 1 Sensitivity and Calibration analysis of candidate
statistics on simulated contamination and duplicated replicates
RNA-Seq datasets. One in silico replicate out of a pair was
successively contaminated by reads from a biological replicate.
Pearson’s r and Kappa showed no obvious changes between
different degrees of contamination and perfect replication (0%
contamination). SERE on the contrary was sensitive as early as 25%
of the reads were originated from the biological replicate. Marked
differences appeared as soon as the contamination reached 50%
(SERE = 1.04). For duplicated datasets (“D”, identical data), which can
either result from a “copy and paste” error or data falsification,
Pearson’s r and Kappa are 1.0 suggesting perfect replication,
although duplicates are imperfect replicates. SERE clearly
discriminates between duplicated replicates (SERE = 0.0) and perfect
replicates (SERE = 1.0). All computations were performed on RNA-
Seq sample “control 1”, which was randomly split in a pair of in
silico replicates (5 million reads per sample). Then, one in silico
sample was contaminated to different degrees by reads originating
from “control 2”. The procedure was repeated 200 times. D:
duplicates.
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Chambers et al. [13]) but from additional shortcomings
specific to count data.
As an alternative, McIntyre et al. recently suggested a

measure of concordance based on the Kappa statistic to
compare RNA-Seq samples [5]. Applying the Kappa pro-
cedure to multiple RNA-Seq samples, the authors con-
cluded that replicates of the same RNA-Seq library from
different “lanes” (compartments in an Illumina genome
analyzer flow cell used to separate samples) were subject
to a systematic bias, a finding that appeared to contra-
dict previous observations by others [3,4,14]. Similarly to
Pearson’s r, Kappa may be subject to confounding factors
of the experimental design such as the total read count.
Furthermore, interpreting Kappa under the premise that
it should be 1 for perfect replicates may be naive.
Here we propose a new candidate statistic for RNA-

Seq sample comparison based on the ratio of observed
variation to what would be expected from an ideal Pois-
son experiment. We show that the Simple Error Ratio
Estimate (SERE), unlike r and Kappa can be expected to
be 1 for perfect replicates, only affected by the random
sampling effect. We evaluated the 3 statistics on the
above criteria (calibration, sensitivity, stability) using ori-
ginal RNA-Seq data from rat neural tissue that con-
tained multiple technical and biological replicates. From
this we created ideal in silico replicates by randomly
splitting an observed lane into 2 pseudo-lanes and also
simulated various degrees of contamination. This
allowed us to examine the behavior of the methods
under known outcomes and revealed serious deficiencies
in the correlation and concordance approach. Finally the
methods were compared on the actual datasets.

Results and discussion
Candidate statistical measures
Pearson’s correlation coefficient r was the main competi-
tor because of the ubiquity of its use in the current
RNA-Seq literature. The Kappa statistic was recently
proposed as an alternative [5]. This requires the counts
to be binned. Here, we used the same binnig as sug-
gested in that paper. The SERE statistic is a ratio of the
observed standard deviation between replicates divided
by the value that would be expected from an ideal
experiment.

Sensitivity experiment
Figure 1 shows results from constructed datasets repre-
senting two lanes from an ideal replication experiment
(“perfect” in silico replicates affected only by the random
sampling effect), and pairs of lanes where one of the two
has various amounts of contamination. The contaminat-
ing sample in this experiment was from a litter mate
under the same experimental condition (biological repli-
cate) in order to make detection purposefully difficult.
Each point of the figure represents the average of 200 in-
dependent realizations of the simulation experiment.
The last point for each method represents a duplication,
i.e., comparing a lane with itself (This could be the result
of a copy/paste error during analysis, for instance).
For the correlation and concordance measures the

value 1 is usually viewed as the “ideal”. This is only
achieved for the duplication, a situation where the ran-
domness inherent to the process of read sampling is not
allowed and instead a greater than expected congruence
between two sample pairs is forced, resulting in an ex-
treme case of “underdispersion”. Data from an actual
ideal experiment (0% contamination) had on average
correlation values of 0.89 and concordance values of
0.41. SERE on the contrary yielded the expected baseline
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value of 1 for perfect in silico replicates (0% contamin-
ation) and detected contamination as early as 25%.
Marked differences appeared when contamination
reached 50%. The SERE measure also clearly marks the
duplication comparison as unusual (SERE = 0). The sen-
sitivity of both the correlation and concordance mea-
sures is much lower, making it difficult to distinguish
contaminated samples from the ideal experiment.

Stability experiment
Another characteristic, stability, interrogates whether the
behavior of the underlying statistic is independent of an-
cillary aspects of the experiment; the obvious such factor
in RNA-Seq is the sequencing depth. Therefore, RNA-
Seq perfect replicate datasets of different sizes were gen-
erated by drawing random reads from the universal read
pool. We simulated two types of scenarios: In our first
experiment (Figure 2) we decreased the number of reads
in both lanes from 10 to 0.5 million. Pearson’s r fell
markedly from 0.93 to 0.71 when the read counts of
both datasets in a pair were reduced (Figure 2). Kappa
was equally sensitive to the total read count, decreasing
Figure 2 Total read count (sample size) dependence of
candidate statistics comparing perfect replicate RNA-Seq
datasets. The Simple Error Ratio Estimate (SERE) was 1 when two
replicate RNA-Seq datasets of different sizes were compared.
Variation of SERE for repeat computations from independent
replicate dataset pairs for each total read count demonstrated a
stable 99% confidence interval (CI) of approximately +/- 0.01. The
Pearson correlation coefficient fell as read counts decreased. Kappa
also strongly depended on the total read count. All computations
were performed on 200 model RNA-Seq datasets obtained by
drawing reads randomly from a universal read set (described in
Methods).
from 0.54 for perfect replicate pairs with 107 reads per
sample down to 0.09 for pairs with only 0.5x106 reads.
All datasets represented perfect replicates by definition
as they were generated in silico by sampling from a
common pool. Therefore, low values of Pearson’s r such
as <0.8 and Kappa <0.3 are not in all cases indicative of
poor RNA-Seq experimental replication. SERE was un-
affected by the total count of RNA-Seq reads, remaining
stable at 1.0.
In our 2nd experiment (Figure 3) we kept the total

read count of 200 in silico replicates constant, but varied
the relative size of both samples, simulating multiplexed
RNA-samples, where both samples will not always yield
the same number of reads. Pearson’s r and the Kappa
statistic performed continuously worse, as the relative
difference between the two perfect replicates became
bigger, reaching values of approximately 0.82 and 0.19
respectively at the extremes (1 million versus 9 million
uniquely mapped reads per sample). SERE on the con-
trary stayed at a stable value of 1.0 through all the sce-
narios. A minor increase of the confidence intervals
could be observed as the relative sample size tended to
the extremes, yet remaining between ± 0.01.
Figure 3 Impact of unequal sample sizes. Pairwise comparisons
of perfect in silico replicate RNA-Seq datasets were made similarly to
Figure 2, but keeping the total read count for each pair constant
while systematically varying the relative size of both datasets, e.g.,
1x106 plus 9x106, 3 x106 plus 7 x106, 5 x106 plus 5 x106. Pearson’s r
and Kappa fell for unequal sample sizes demonstrating a maximum
for equal sample sizes. SERE remained stable at 1.0 while the 99% CI
of repeat measures was optimal (smallest) for equal sample sizes.
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Performance of the statistics on empirical data
To put the above findings into perspective, we studied
the candidate statistics on an empirical dataset which
included technical and biological replicates, as well as
samples from different experimental conditions (“con-
trol” vs. “SNL”, see Methods). Figure 4 shows the result
for 14 lanes of data, consisting of 3 replicate lanes for
each of the 2 “control” rats and 4 replicate lanes for each
of the 2 “SNL” rats. First the replicate lanes of each rat
were compared (technical replicates), second the bio-
logical replicates (the 2 “controls” and the 2 “SNL” re-
spectively) and third the animals belonging to different
experimental groups (“SNL” vs. “control” rats). Note that
Figure 4 Benchmarking of the test statistics on empirical RNA-
Seq data. Three scenarios were investigated: technical replicates
(different lanes from the same RNA-Seq library); biological replicates
(different RNA-Seq libraries but same experimental condition);
experimental differences (RNA-Seq libraries from different
experimental conditions). Pearson’s r and Kappa diverged for the
three scenarios but differences were small compared to the impact
of varying total read numbers (see Figures 2 and 3). SERE allowed
for a straightforward categorization of the three scenarios: technical
replicates representing normal/near-normal dispersion were 1;
biological replicates representing moderate overdispersion and
different experimental conditions representing marked
overdispersion ranged from 1.14 to 1.16 and 1.7 to 2.0 respectively,
i.e. >>1. For r and Kappa lanes were compared pairwise, whereas for
SERE multiple lanes were compared simultaneously. For the
biological replicates comparisons and the different experimental
conditions, we selected the first lane of each sample as an example
to evaluate r and Kappa. For SERE all lanes were included.
SERE results in a single value for a set of lanes that are
being compared, while the correlation and concordance
measures apply only to pairs of lanes.
R and Kappa were slightly lower for the biological

replicates as compared to the technical replicates and
further decreased when comparing the two experimen-
tal conditions. However, differences were small com-
pared with those caused by total read counts (Figures 2
and 3) suggesting that both measures are poor candi-
dates for detection of global alterations in practice.
SERE was highly sensitive to global differences, with
scores of approximately 1.15 for biological replicates
and 1.7 to 2.0 for comparisons between different ex-
perimental conditions.
The SERE statistic can also be computed pairwise. For

the 3 technical replicates of “control 1” for instance, the
overall ratio for the three lanes is 1.005, with pairwise
values of 1.003, 1.002, and 1.008. When the overall SERE
statistic for a set of lanes is large we can use these indi-
vidual comparisons to further sort out which lane(s) is
the source of concern. A simple way to display this is to
use SERE to create a cluster map. Figure 5 shows the
resulting dendrogram for the 14 lanes of data used in
Figure 4. The dendrogram clearly reflects to the
Figure 5 SERE as a measure for clustering. RNA-Seq datasets
could be meaningfully clustered using SERE, indicating that it is a
practical and useful test statistic if the similarity or global differences
between many samples of RNA-Seq datasets need to be
characterized by a single global paramater.
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experimental design by first distinguishing between the
two conditions, then separating the biological replicates
within an experimental configuration and finally group-
ing the technical replicates. The vertical axis of dendro-
grams is often left unlabeled since the values are on an
arbitrary scale, but in this case they have a direct inter-
pretation as “excess dispersion”. A more interesting ex-
ample is shown in Additional file 1: Figure S1 where we
applied SERE on a drosophila melanogaster dataset
(SRA id GSE17107) that was employed by McIntyre
et al. Interestingly, it revealed 2 distinct groups (no sign
of overdispersion within the groups) although the 5 sam-
ples originated from the same RNA-Seq library suggest-
ing a possible batch effect.

The drawbacks of r and Kappa
This study was focused on a global approach that is use-
ful in both quality control and early analysis of RNA-Seq
experiments. Therefore, an ideal measure for this task
was defined to be easy to compute and have three fea-
tures of sensitivity, calibration and stability. The SERE
measure does well, but the correlation and concordance
have serious flaws. Why?
Deficiencies in the correlation coefficient have long

been known. Chambers et al. [13] for instance showed a
panel of 8 graphs with very different patterns all with
the same value of r. Of most relevance here is that r can
be dominated by values at the extremes of the data.
Count data for RNA-Seq is very skewed. For example, in
the first lane of “control 1”, 55.4% of the observed exons
had a count of 10 or less out of 5,512,030 million total
uniquely mapped reads, while the highest had a count of
95660. Even under a log-transformation, the largest few
counts have in inordinate influence. Further examination
of the results underlying Figures 2 and 3 shows that the
value of r for the ideal samples is essentially determined
by the range of the counts, which in turn is closely
related to the total sequencing depth (Additional file 1:
Figure S2). This causes r to have both a varying target
value (the expected result for a perfect replicate) and
high variability. Even a low value (e.g <0.8) might result
from an “ideal” experiment. At the same time, markedly
different samples can yield correlation coefficients of
>>0.8 if the total read count is high. Moreover, Pearson’s
r can be computed in several ways: on square root of the
raw counts, on count data after addition of a pseudo-
count and log-transformation or on RPKM data after
adding a pseudo-count and log-transformation. The lat-
ter is the most commonly used normalization and there-
fore employed here. These different approaches can
substantially change the outcome since they influence
the distance between the extremes (data not shown).
By categorizing the data into bins, as performed by the

Kappa statistic, one avoids the susceptibility to values on
the extreme of the scale. However the choice of the
bin sizes becomes the driving factor for this statistic.
Additional file 1: Figure S3 demonstrates how the bin-
ning influences the result of Kappa for one and the same
dataset. If the bins are chosen as reported previously by
McIntyre et al. (Additional file 1: Figure S3A) Kappa is
0.41. When the bins are chosen wider (Additional file 1:
Figure S3D), the value for Kappa raises to approximately
0.73. By choosing very small bin sizes (Additional file 1:
Figure S3C), the Kappa value decreases to approximately
0.3. We also computed a weighted Kappa [15] employing
the most common definition where disagreement is pro-
portional to the distance from the diagonal. The result
shown in Additional file 1: Figure S4 demonstrated the
same characteristics of Kappa shown for the unweighted
procedure.
For the simulation study, we chose the unweighted

Kappa. We took the same bin sizes as proposed by
McIntyre et al., which used 0 counts as the smallest bin.
Therefore, whenever the expression of an exon is so
sparse that only a single read is detected among two or
more samples (the exon is a singleton) the exon will be
scored as “off the diagonal” since it will fall into the bin
“0” for one sample and in “1-10” for the other sample.
The fraction of singletons in our in silico samples with 5
million UMRs is 11.56-11.96%, which alone limits the
Kappa to a maximum of about 0.89. The total fraction of
singletons tended to decrease by increasing the total
read count and the calculated Kappa value rises as seen
in Figure 2.
Computational simulation can be helpful in estimating

the expected values for Pearson’s r or Kappa but need to
take the specific experimental condition into account
and cannot be generalized easily. Therefore the use of r
and Kappa to investigate whether two RNA-Seq datasets
are faithful replicates or subject to systematic differences
or bias leads to ambiguity in most cases.

The Simple Error Ratio Estimate (SERE)
The third candidate statistic appears to be a useful
measurement to identify global differences between
RNA-Seq data by fulfilling the set criteria of a good
measure. A primary reason is that it compares the
observed variation to an expected value, and the latter
accounts for the impact of varying read depth. It is easy
to compute and satisfies our three primary criteria.

Calibration
A “perfect” SERE of 1 indicates that samples differ
exactly as would be expected due to Poisson variation. If
RNA-Seq samples are truly different, this is identified by
values > 1 (overdispersion). Values below 1 are well in-
terpretable and indicate “underdispersion,” e.g. through
artefactual duplication of data. A value of 0 would
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constitute perfect identity, such as might occur from ac-
cidentally duplicating a file name. Interestingly, detec-
tion of underdispersion has been important in detecting
data falsification [16]; faithful randomness is difficult to
fabricate.

Sensitivity
A constructed replicate with 25% contamination was
successfully indicated as overdispersed by SERE. As soon
as one dataset contains 50% of its reads from another
biological replicate, the indication of overdispersion
becomes even more obvious. Thus, SERE is a qualified
measure to detect processing errors and other sources of
variation.

Stability
In RNA-Seq experiments the read counts per exon in a
sample vary, either due to rareness of the exon within
the sample or due to total number of reads. The
expected variation between lanes for that exon also
changes. Because SERE explicitly accounts for this, com-
paring observed to expected counts, it is largely un-
affected by these changes, regardless of the sequencing
depth. This was confirmed by 200 in silico simulations
performed for various numbers of reads, where SERE
was 1 on average. However, each simulation is subject to
variation and therefore will slightly deviate from 1 either
in the direction of under- (<1) or overdispersion (>1).
To characterize the range of this variation we calculated
the confidence interval (CI) for all the simulations. As
seen in Figure 2, the 99% CI was narrow, ranging from
0.99 to 1.01 regardless of the total read count.

As shown in Figure 5, we can also use the measure to
more finely dissect the variation found in an experiment.
This is a useful extension to the quality control assess-
ment. However, when comparing samples on a single
gene level, e.g. multiple treatment groups, both the
expected Poisson variation exploited by SERE and the
biological variation between and within treatment
groups play an important role, and methods that take
both into account would be preferred for deeper inquiry
(e.g. DESeq package of Anders et al. and edgeR by
Robinson et al.). Yet, SERE remains useful as an initial
diagnostic tool.
Li et al. recently introduced the “Irreproducible Dis-

covery Rate” (IDR) as a measure of reproducibility [17]
and demonstrated its utility for the analysis of a variety
of sequencing-based high-throughput data types [18].
We tested the IDR on two scenarios considered in this
study, namely a comparison of identical datasets and a
comparison of perfect replicates. In the case of identical
datasets, the change of correspondence curve generated
by IDR analysis indicated perfect correspondence
(Additional file 1: Figure S5) lacking an indicator that
this is a case of extreme underdispersion indicative of an
unexpected finding such as human error or mischief. In
the case of perfect replicates (generated in silico and dif-
fering only due to Poisson variation) the change of cor-
respondence curve became noticeably noisy when the
total number of read counts in the simulation was small
(Additional file 1: Figure S6). The IDR was developed for
comparison of datasets with unknown or differing distri-
bution types. It is therefore unsurprising that it appears
to be less useful than SERE for the detection of under-
and overdispersion in the comparison of replicate data-
sets affected by Poisson variation. IDR was developed for
situations where two experimental replicates or methods
could reasonably expected to agree without anticipating
perfection. The statistical concept underlying SERE is
unrelated to IDR and was developed for situations where
two experimental replicates could reasonably be
expected to differ only due to stochasticity.

Conclusions
SERE provides an efficient single-parameter statistical
measure of reproducibility for RNA-Seq datasets. Unlike
two other measure currently in use, Pearson’s correlation
coefficient r and the concordance measure based on
Kappa statistic, SERE is independent of typically varying
experimental circumstances (such as the total count of
reads). The interpretation of SERE is straightforward
staying clear of the ambiguities resulting from misinter-
pretation of r and Kappa. A SERE of 1.0 corresponds to
the normal degree of dispersion resulting from the Pois-
son variation of raw read counts. Because SERE is a
measure of dispersion, its interpretation extends to two
situations of practical importance: Underdispersion indi-
cative of for example data duplication and overdisper-
sion usable as a global measure of the degree of
alterations, which is agnostic to the relative importance
of difference genomic regions because SERE weights
each observed read identically. SERE may in principle be
applicable to a broad range of read count datasets such
as from CHIP-seq or for comparison of alternately pro-
cessed read data such as the counts of a k-mer analysis.
The present study suggests that SERE has superior char-
acteristics to previously used measures in the case of
RNA-Seq.

Methods
Empirical RNA-Seq data
RNA-Seq read data used in the present analysis was
taken from a previous study [8] and is available through
the sequence read archive (SRA id GSE20895). 14 RNA-
Seq datasets were used, each corresponding to the se-
quencing reads from one “lane,” which is a physical
compartment in the flow cell of the Illumina GA-II
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instrument. The 14 lanes corresponded to 4 RNA-Seq li-
braries, whereby 3 lanes of sequence data were available
for each of two of the libraries and 4 lanes for each of
the other two. Each library was synthesized from a dif-
ferent source of RNA. RNA sources corresponded to
two experimental conditions, “SNL” (spinal nerve
ligation) or “control.” Two independent RNA-Seq librar-
ies, “biological replicates,” were available for each condi-
tion. The published analysis [8] found that biological
replicates were similar and that the 2 experimental con-
ditions were meaningfully different. Technical replicates
were not compared in the previous report (instead reads
originating from different lanes corresponding to the
same RNA-Seq library were pooled) but are included in
the comparisons made in the present study.
Additional file 1: Table S1 lists the condition and repli-

cate identification corresponding to each of the 14 lanes.
The table illustrates how the available data allowed for
three types of comparisons between RNA-Seq datasets:
pairs of technical replicates (same library sequenced on
different lanes); pairs of biological replicates (same ex-
perimental condition); and the two experimental condi-
tions “SNL” versus “control”.

Mapping and annotation
RNA-Seq reads (50bp) were aligned to the rat reference
genome (RGSC 3.4) by Bowtie [19]. We allowed for a
maximum of two mismatches and considered only the
uniquely mapped reads for the downstream analysis.
This filtration step resulted in 108,636,496 million
UMRs to the genome. Genome annotation ENSEMBL
65 was used including 22,921 protein coding genes.
Overlapping exons of genes having multiple isoforms
were combined resulting in a total of 222,097 exons
(Additional file 2). For the subsequent analysis exons
served as bins, i.e., reads aligning to each exon were
counted and the sum noted in the master read count file
(Additional file 3). The file has 222,097 rows (bins corre-
sponding to exons) and 14 columns (corresponding to
each of the lanes described above).

A universal pool of RNA-Seq reads for the simulation
experiments
All uniquely mapped reads (from lane 1 to 3) from the
first “control” RNA-Seq sample were combined resulting
in 22.9 × 106 reads in order to create a universal pool.
The datasets for the in silico duplicates and replicates
described below were generated from this pool. The in
silico replicates created from the universal pool of RNA-
Seq reads by random drawing are by definition only dif-
ferent due to stochastic (Poisson) variation of the
sampling process (see Results). Similarly all 3 lanes from
“control 2” were combined to create a second pool used
as “contaminant” in the contamination experiments.
In silico replicates: “Perfect” replicates
A set of RNA-Seq datasets faithfully representing Pois-
son variation only (perfect non-identical replicates)
was generated by randomly choosing sets of 5 x106

reads from the universal pool by using the “sample”
function in R (Additional file 4) and a Java script
(Additional file 5). This process was repeated 200
times and used as reference of perfect replicates in
the subsequent benchmarking of the different test sta-
tistics. The same procedure was further repeated with
different set sizes (0.5 to 10 million reads per sample)
in order to test for the influence of total read counts
on the statistics.

In silico contamination
To test whether the statistical measures were sensitive
to actual differences, we contaminated one in silico rep-
licate out of a pair with 0;5;10;25;50;75;100% of a bio-
logical replicate (“control 2”) via computer simulation.
In detail, the first sample was created by randomly draw-
ing 5 million reads of the universal pool of “control 1”
and the second by drawing x% of reads from “control 1”
and y% of reads from file “control 2”, whereby x+y=100,
corresponding to 5 million reads. The procedure was
repeated 200x.

Processing of the empirical data
For Pearson’s correlation coefficient and Kappa, the 3
lanes of each of the two “control” and the 4 lanes for
each of the two “SNL” condition were compared in a
pairwise fashion, resulting in a total of 18 technical repli-
cate comparisons (see Figure 4). To compare the per-
formance of the statistics on biological replicates we
compared the first lane of “control 1” to the first lane of
“control 2”, and lane 1 from “SNL 1” to lane 1 from
“SNL 2”. To test whether Pearson’s r and Kappa were
sensitive to different experimental conditions, we
selected the first lane of each “control” and compared it
to the first lane of each “SNL” sample. SERE is not
restricted to pairwise comparisons, but allows to com-
pare multiple samples or lanes simultaneously. There-
fore, SERE yielded 4 values for the technical replicate
comparisons, 2 for biological and 4 for different experi-
mental conditions.

Simple Error Ratio Estimate (SERE)
Given a set of N exons and M lanes, let yij denote the
number of reads covering the ith exon in the jth lane.
Let Lj be the total read count for lane j, Ei the total for
exon i, and T the grand total count across all lanes
and exons. Under the hypothesis that the lanes are
simple technical replicates of each other, they will have
a Poisson distribution with one parameter. This para-
meter can be thought of as the expected number of
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reads for the lane j and the exon i. Its estimate can be
calculated using eq. 1.

ŷij ¼
EiLj
T

The expected variation for each observation yij is

yij � ŷij
� �2

, and the expected variation under the Pois-

son assumption is ŷij . This gives a per exon overdisper-

sion estimate of:

s2i ¼
1

M � 1

X
j

yij � ŷij
� �2

ŷij

The denominator is (M− 1)

due to the constraint that
X

j
yij � ŷij

� �
¼ 0 for each

exon i.
Averaging over all N exons we have:

s2 ¼ 1
N

X
i
s2i

The SERE estimate is s ¼ ffiffiffiffiffiffiffiffi
s2ð Þp

.
Simple algebra shows that for a singleton count, i.e.,

an exon that appears only once in only one of the lanes,
SERE equals exactly 1. That is, singletons shrink the
overall SERE estimate towards 1, whether or not the
samples are actually replicates. Therefore, we modify
the average in equation 2 to sum over only the non-
singleton counts. The R code to calculate SERE is pro-
vided in Additional file 6.
The unmodified measure of equation 2 is the measure

of Poisson over-dispersion most often used in general-
ized linear models, see for instance the classic textbook
of McCullagh and Nelder [20]. An alternative measure
of overdispersion is based on the deviance statistic.
Brown and Zhao [21] consider this measure along with
two others in the context of random arrival data, e.g.
calls to a support center, and show that it is inferior to
si
2 (equation 2) whenever there are small values for ŷij .

Their work corresponds to the case where all lanes have
the same total count Lj; extending their method shows
that (M− 1)si

2 will be distributed as a chi-square random
variable with (M− 1) degrees of freedom and non-

centrality parameter
X

L2j pij � �pi
� �2

. The parameter pij
is the true fraction of exon i within sample j and �pi the
fraction of exons in the (hypothetical) pooled sample.
Under the null hypothesis of sample equality pij ¼ �pi the
non-centrality parameter is zero. N(M− 1)s2 will follow a
chi-squared distribution with N(M− 1) degrees of free-
dom. This can be used to set 99 % confidence intervals
on the non-centrality parameter, and through that on
the SERE estimate. We provide the corresponding R
code in Additional file 7. Bins containing a read count of
0 in both samples of a pair contain no information and
were therefore excluded from the comparative analyses
of SERE and the two alternative parameters described
below.
Pearson’s correlation coefficient
For a pair of lanes, we calculated the RPKM [1] for each
lane. In the RPKM calculation we added a pseudo count
of one read to each of the exons. The RPKM values were
then log transformed and the Pearson’s correlation was
calculated. The process was repeated using the raw
counts to verify any influence of the RPKM transform it-
self, and using both the log and the square root of the
raw counts. The latter is the variance stabilizing trans-
form for Poisson data. None of these had any substan-
tive impact on the results (data not shown).
Cohen’s simple Kappa statistic
The read counts were normalized to RPKM and divided
into 9 bins of size: 0, 1-10, 11-20, 21-40, 41-80, 80-160,
161-320, 321-1000 and greater than 1000 RPKM as it
was suggested by McIntyre et al. In order to compare a
pair of replicates, a 9 × 9 table of counts was constructed,
whereby each exon pair added to a cell of the table (see
Additional file 8). In this way, exons that were in agree-
ment added to the diagonal of the table, whereas the
total fraction of off-diagonal entries contributed to a
measure of non-agreement.
Additional files

Additional file 1: Contains the supplementary table and figures.

Additional file 2: Is a table listing the exon boundaries for the rat
annotation.

Additional file 3: Is a master read count table listing the number of
reads for each exon in each of the 14 lanes.

Additional file 4: Is an R script to create a hash index file by the
‘sample’ function in R that serves as input for Additional file 5.

Additional file 5: Is the JAVA script to create the in silico replicates.

Additional file 6: Is the R code to calculate SERE.

Additional file 7: Is an R script to calculate the confidence intervals
for SERE.

Additional file 8: Is the R code for the Kappa statistic on RPKM
scale.
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