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Background: MicroRNA (miRNA) directed gene repression is an important mechanism of posttranscriptional
regulation. Comprehensive analyses of how microRNA influence biological processes requires paired
miRNA-MRNA expression datasets. However, a review of both GEO and ArrayExpress repositories revealed few
such datasets, which was in stark contrast to the large number of messenger RNA (mRNA) only datasets. It is of
interest that numerous primary miRNAs (precursors of microRNA) are known to be co-expressed with coding

Results: We developed a miRNA-mRNA interaction analyses pipeline. The proposed solution is based on two
miRNA expression prediction methods — a scaling function and a linear model. Additionally, miRNA-mRNA anti-
correlation analyses are used to determine the most probable miRNA gene targets (ie. the differentially
expressed genes under the influence of up- or down-regulated microRNA). Both the consistency and accuracy
of the prediction method is ensured by the application of stringent statistical methods. Finally, the predicted
targets are subjected to functional enrichment analyses including GO, KEGG and DO, to better understand the

Conclusions: The MMpred pipeline requires only mRNA expression data as input and is independent of third
party miRNA target prediction methods. The method passed extensive numerical validation based on the
binding energy between the mature miRNA and 3" UTR region of the target gene. We report that MMpred is
capable of generating results similar to that obtained using paired datasets. For the reported test cases we
generated consistent output and predicted biological relationships that will help formulate further testable

Background

MicroRNAs are short non-coding RNAs that utilise the
cellular RNA-induced silencing complex (RISC) to influ-
ence gene expression [1]. The biogenesis of those regula-
tory organic polymers involves nuclear processing of the
primary microRNA (pri-miRNA) by Drosha RNase III to
precursor sequences (pre-miRNA). Pre-miRNA are in turn
processed by Dicer endoribonuclease before being
imported into the RISC, or redirected to the nucleus. The
primary function of miRNA is believed to be gene repres-
sion [2], although gene activation (RNAa) has also been
reported [3]. The majority of human coding genes are
believed to be regulated by a relatively small set of
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microRNAs [4,5]. However, for efficient targeting of
mRNA transcripts the co-regulation of many miRNAs is
required. This many-to-many relationship between micro-
RNA and coding transcripts creates an extensive, robust
regulatory network, which is highly influential during cell
differentiation and disease processes [6]. This complex
regulatory miRNA-mRNA network is further integrated
via co-expression of the coding transcripts. That is, the ma-
jority of pri-miRNAs are either located within introns or
are in close proximity of coding genes, the so called host
genes [7,8]. Consequently microRNAs are assumed to
share transcription regulatory sites and to be co-expressed
with coding mRNA transcripts. Recent surveys indicate
that as few as 26% of intergenic mammalian miRNAs are
transcribed from their own specific promoters [9]. Lutter
et al. report that at least 37% of miRNAs are co-located
within coding genes [10], while Rodriguez et al. state that
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approximately half of miRNAs are located within introns
of coding and non-coding RNA [11]. Furthermore, Kim
and Kim report that among microRNAs mapped to ESTs
the percentage of intronic and exonic ones are 87% and
13% respectively [12]. The authors also suggest that due to
exon pairing/tethering the independent processes of in-
tronic miRNA biogenesis and mRNA splicing may occur
in parallel, without affecting each other [12]. Moreover,
genomic mapping conducted in support of this report
(based on miRBase release 15) indicate that 578 of 940
(61%) human miRNAs share a primary RNA transcript
with known coding genes [10]. These findings are further
supported by a widely reported coherence of function be-
tween miRNA and host genes [8,10,13,14]. It is current
opinion that microRNA support host gene function
by repressing the expression and increasing decay rate
of antagonistically acting genes, or promoting the ex-
pression of synergistically acting genes. For example,
murine heart-specific gene Myh6 overlaps with miR-
208a, which has been reported to negatively regulate
the thyroid hormone associated protein and myostatin
both of which negatively regulate muscle growth and
hypertrophy [15]. Similar antagonistic effects have
been shown for miR-346, miR-338 and their corre-
sponding host genes GRID1 and AATK [13,14]. Fur-
thermore, genes that share expression profiles with
miRNA have been observed not to encode their re-
spective microRNA seed regions [16], leading to the
postulation that host genes have developed evolution-
ary resistance for miRNA mediated repression and de-
generation [10,13]. Moreover, host genes tend to be
co-expressed in clusters, which when combined with
miRNA expression data create large, significantly cor-
related expression patterns [8,10,13].
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The most significant changes of miRNA repression
activity are observed during differentiation process
[17,18]. It is believed that functional miRNA-mRNA
coherence acts as a stabilizing mechanism that pro-
motes the expression of tissue-specific genes while
suppressing the expression of genes specific to stem
cells and other tissues. Thus, a miRNA expression pro-
file is tissue specific [10,19].

Combined these observations imply that a miRNA ex-
pression profile is positively correlated with it’s host gene
mRNA expression profile and anti-correlated with it’s
target genes expression profiles. This simple functional
model can be further extended to identify functional
clusters of miRNA host genes. An intriguing application
of this model is that we can use mRNA expression data
to predict both miRNA expression and their putative
targets (Figure 1).

Performing functional analyses of miRNA-mRNA
interactions using standard methodology would require
measuring global expression of mRNA and miRNA
using two different arrays or RNA-sequencing experi-
ments. Such approach requires a large quantity of puri-
fied RNA, increased processing and handling overhead,
as well as the additional costs of supporting two differ-
ent array platforms. Such impediments are reflected in
the relatively small number of paired miRNA-mRNA
datasets available in public repositories - (i.e. there are
only nine Agilent Human miRNA Microarray (V2)
datasets in GEO [20,21]; see Additional file 1). In con-
trast, GEO contains an impressive collection of high
quality mRNA assays. Currently there are 2,170 datasets
(60,334 samples) derived from the Affymetrix Human
Genome U133 Plus 2.0 array and 117 datasets (4,642
samples) for Affymetrix Human Exon 1.0 ST, (as of 04/
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12/2010). Mining these data for host gene — miRNA
targets offers a tremendous and immediate source of
information regarding both miRNA target identification
and regulation networks. In this paper we describe a
method that is capable of both identifying putative
regulatory clusters and predicting approximate expres-
sion levels of miRNAs from mRNA microarray data.

In completing this investigation we have focused on
paired Affymetrix Human Exon ST 1.0 - Agilent
Human miRNA Microarray 2.0 datasets to build a pre-
diction model, and data derived from the Affymetrix
Human Genome U133 Plus 2.0 - Agilent Human
miRNA Microarray 2.0 as validation sets.

The initial step of this process involved mapping all
of the miRBase human miRNAs to Affymetrix probes.
Then, the paired datasets were used to construct two
independent, general predictors. A consensus method
was then developed to consolidate the predictors’ out-
put and to correlate this with experimental mRNA ex-
pression data. This was used to identify putative
miRNA interactions with coding genes (targets). Finally
overrepresentation of the predicted target genes in dif-
ferent ontologies was estimated using a hypergeometric
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test to determine functionally annotated clusters of
miRNA-genes interactions. The model has been imple-
mented in the R statistical environment and is access-
ible as a modular, user-friendly analysis pipeline for
the prediction of microRNA regulatory mechanisms
using HG-U133Plus2 microarray data as input.

Results

User input and pre-processing

Raw microarray intensity values are pre-processed using
the Robust Microarray Average (RMA) method [22].
Subsequent t-test or ANOVA statistical testing (this is
dependent on the user-defined experimental design
table) is performed. To determine a statistical signifi-
cance (p-value) cut-off an equivalent test is performed on
a randomised expression matrix. The randomization is
achieved by simple permutation of the experimentally
derived data. The lowest p-value statistic observed in the
randomly designed experiment is chosen as the p-value
cut-off for the experimental data. The pipeline output
includes the expression matrix of significantly up-/down-
regulated genes along with the estimated p-values and
fold change vectors (Figure 2). Furthermore, visualisation
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of principal components analysis (PCA) scores, hierarchal
cluster analysis (HCA) heatmaps and volcano plots are
used as quality control assessments of the predicted model.

The mapping of microRNAs to protein coding “host genes”
The mapping between microRNAs and its host genes
was completed using a simple method that utilizes gen-
omic coordinates retrieved from miRBase [23]. Retrieved
fields include the Ensembl transcript IDs, and informa-
tion detailing the nature of overlap (e.g. exonic, intronic,
3UTR, 5UTR etc.), the. This method proved more efficient
than other tested approaches — (e.g. direct string matching
and chromosome location methods; see Methods for fur-
ther details).

The resulting network comprised 690 mature miRNAs
and 544 coding genes connected by 3992 edges. The large
number of connections between the nodes supports
current opinion of a many-to-many relationship between
miRNAs and host genes. 92% of the overlaps (3653)
involve intronic sites, while 208 (5%) involve the exons of
coding genes. In addition, 97 and 34 (2% and >1%) involve
the 5UTR and 3'UTRs respectively. Sorting the overlaps
by DNA strand indicated that 3320 (83%) of the predicted
interactions involve the coding strand and 672 (17%) the
anti-sense strand.

The microarray platform specific mappings between
Affymetrix genes/exons IDs and mature mRNA identi-
fiers represented on the chosen platforms were retrieved
and directly incorporated into the pipeline. In the case
of Affymetrix Human Genome 133 Plus 2.0 mapping to
Agilent Human miRNA Microarray 2.0, 996 probesets
corresponding to 483 host genes (1,600 Ensembl tran-
scripts), were identified. A total of 4,857 edges connect
the transcripts to 544 pre-microRNAs. This can be fur-
ther processed to 646 mature miRNAs as represented
on the Human miRNA microarray. The second mapping
features the same miRNA array platform and Affymetrix
Human Exon 1.0 ST array. In this instance 996 probesets
representing 14,191 exons (encoding 544 genes), have
been identified as in close proximity of pri-miRNA
sequences. An estimated 16,851 edges associate these
transcripts to 578 pre-microRNAs, (representative of
646 mature miRNAs). Due to the increased genomic
coverage and robust expression measurements the
HuEx-1.0ST mapping were used to calculate the predic-
tors’ parameters and validate the model. However, be-
cause of much larger numbers of HG-U133Plus2
experiments in GEO, this array was selected as the pri-
mary input platform for the pipeline.

The mapping is utilised as a binary file when the pipeline
is executed. Obviously the mappings can be re-calculated,
with new releases of the source databases. A representative
section of the mapping table is illustrated in Table 1; the
full mapping table is included as Additional file 2.
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Predictor I: Scaling function

Paired microRNA-mRNA dataset “Array-based bioinfor-
matic analysis on pediatric primary central nervous sys-
tem germ cell tumors” [24] has been selected to test
linear model assumptions. After obtaining an expression
matrix using the RMA method [22], correlation coeffi-
cients were calculated for each gene — microRNA inter-
action (ie. how each row of the miRNA matrix
correlates with each row of the mRNA matrix). Correl-
ation values were determined using the Pearson prod-
uct—-moment coefficient, which is generally considered
suitable when estimating the linear relationships. Also
Spearman’s p and Kendall’s T rank coefficients were used.
These methods are sensitive to monotonic association
and resistant to outliers. No significant correlation was
detected with the unfiltered data using either method.
Furthermore, the distribution of correlation coefficients
was very close to a standard normal distribution (sup-
ported by the Shapiro-Wilk test [25]).

In contrast, when only those miRNAs that had been
mapped to the host genes transcripts were used, the cor-
relation coefficient values attained were 0.23 for Pear-
son’s, 0.22 for Spearman’s and 0.16 for Kendall’s method.
This is a significant improvement over non-mapped
interactions. The relatively higher value of the Pearson
product—moment correlation suggests that the observed
correlation in the dataset may be linear in nature. To
determine if the mapped genes represent a random sam-
pling of the population of all genes, the Shapiro-Wilk
test was performed. The null hypothesis that the sample
is derived from a normally distributed population, was
rejected with a 99% confidence interval p-value of
< 0.0001 (o level 0.05).

Consequently a scaling function was introduced to es-
timate the miRNA expression values from the corre-
sponding host genes’ expression (Figure 3). The main
assumption of the model is that the expression of 587
pre-miRNA can be predicted from mRNA expression.
However, many microRNA have been mapped to more
than one probeset, likewise some Affymetrix probeset
IDs correspond to more than one miRNA (i.e. a many-
to-many relationship). Consequently, miRNA mapping to
the sense strand of the intronic regions of coding genes,
and those miRNA with experimental evidence are much
more relevant to the model. Furthermore, significant differ-
ential expression of host gene mRNA transcripts (i.e. iden-
tified by high absolute fold change in association with a
low p-value) indicates a significant change in expression of
corresponding microRNA.

Validation of the model indicated that the mean correl-
ation of overlapping miRNA with their host genes is only
marginally improved by performing scaling. However,
values on the right tail of the probability distribution
plot, representing strongly correlated expressions (i.e. a



Table 1 The sample of the mapping table containing information from miRBase and Ensembl

Mirbase_id s. Overlap Evidence Ensembl_gene_id Ensembl_transcript_id Affy_hg_u133_plus_2 Affy hux_ Chromosome  Start_ End_ miR miR*
1_0_st_v2 position  position

hsa-let-7a-3 +  exon  HGNC_automatic_transcript  ENSG00000197182 ENST00000360737 232480_at 3948921 22 46449741 46509808 hsa-let-7a hsa-let-7a*
hsa-let-7a-3 +  exon Vega_transcript ENSG00000197182 ENST00000360737 232480_at 3948949 22 46449741 46509808 hsa-let-7a  hsa-let-7a*
hsa-let-7b + exon  HGNC_automatic_transcript  ENSG00000197182 ENST00000360737 232480_at 3948921 22 46449741 46509808 hsa-let-7b  hsa-let-7b*
hsa-let-7b  +  exon Vega_transcript ENSG00000197182 ENST00000360737 232480_at 3948949 22 46449741 46509808 hsa-let-7b  hsa-let-7b*
hsa-let-7c 4+ intron HGNC_curated_transcript ~ ENSG00000215386 ENST00000308787 1559901_s_at 3915214 21 17442842 17982094 hsa-let-7c  hsa-let-7c*
hsa-let-7c  + intron HGNC_curated_transcript ~ ENSG00000215386 ENST00000308787 1559901_s_at 3915194 21 17442842 17982094 hsa-let-7c  hsa-let-7¢*
hsa-let-7c 4+ intron HGNC_curated_transcript ~ ENSG00000215386 ENST00000308787 1559901_s_at 3915317 21 17442842 17982094 hsa-let-7c  hsa-let-7c*
hsa-let-7c  + intron HGNC_curated_transcript ~ ENSG00000215386 ENST00000308787 1559901_s_at 3915201 21 17442842 17982094 hsa-let-7c  hsa-let-7¢*
hsa-let-7c 4+ intron HGNC_curated_transcript ~ ENSG00000215386 ENST00000308787 1559901_s_at 3915291 21 17442842 17982094 hsa-let-7¢  hsa-let-7c*
hsa-let-7c  + intron HGNC_curated_transcript ~ ENSG00000215386 ENST00000308787 1559901_s_at 3915202 21 17442842 17982094 hsa-let-7c  hsa-let-7¢c*
hsa-let-7c 4+ intron HGNC_curated_transcript  ENSG00000215386 ENST00000308787 1559901_s_at 3915257 21 17442842 17982094 hsa-let-7¢  hsa-let-7c*
hsa-let-7c  + intron HGNC_curated_transcript ~ ENSG00000215386 ENST00000308787 1559901_s_at 3915275 21 17442842 17982094 hsa-let-7c  hsa-let-7¢c*
hsa-let-7c 4+ intron  HGNC_automatic_transcript  ENSG00000215386 ENST00000308787 1559901_s_at 3915192 21 17442842 17982094 hsa-let-7¢c  hsa-let-7¢c*
hsa-let-7c  + intron Vega_transcript ENSG00000215386 ENST00000308787 1559901_s_at 3915318 21 17442842 17982094 hsa-let-7c  hsa-let-7¢*
hsa-let-7c  + intron Vega_transcript ENSG00000215386 ENST00000308787 1559901_s_at 3915193 21 17442842 17982094 hsa-let-7c  hsa-let-7c*
hsa-let-7c  + intron Vega_transcript ENSG00000215386 ENST00000400178 1559901_s_at 3915214 21 17442842 17982094 hsa-let-7c  hsa-let-7¢*

This table is used by the mapping function, essential for both prediction methods.
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Pearson’s correlation coefficient of 0.6 and above), are
significantly enriched. This is readily apparent when we
compare the respective un-scaled and scaled histograms
(Figure 3). Furthermore, the scaling function introduces
even stronger deviation from Gaussian distribution. This
is reflected the lower p-value obtained from the Shapiro-
Wilk normality test. The mean Pearson’s, Spearman and
Kendall correlation coefficients achieved after scaling
were 0.24, 0.22 and 0.16 respectively.

Finally the predictor uses calculated expression values
to build a pseudo-expression matrix. This matrix has
exactly the same construction as expression sets obtained
from real microarray experiments, but the values are
generated in silico, using the linear predictor, rather than
experimentally determined expression data.

Predictor II: Linear model

Despite the satisfactory performance of scaling function
predictor several tests indicated that implementing a
general linear model might further enhance the predict-
ive power of the model. When applying this approach
the coefficients are fitted using least squares method
derived from the paired data rather than being arbitrarily
chosen. Furthermore, it is also feasible to introduce

individual coefficient values for each miRNA to more ac-
curately reflect biological dependencies.

To fit a linear model that correctly optimizes the lin-
ear function parameters for each microRNA, an appro-
priate training dataset was required. The “Array-based
bioinformatic analysis on pediatric primary central
nervous system germ cell tumors” dataset, previously
used for validation and evaluation was obviously too
small for building a robust model capable of gener-
alization. Consequently it was decided to train the model
on a larger dataset and use the smaller dataset for valid-
ation. Ideally the training set should comprise >100
paired arrays and provide the best coverage for both
coding transcripts and miRNAs. Assessing GEO and
ArrayExpress identified only one dataset [26] that met
these specifications: “Integrative genomic profiling of
human prostate cancer” (GSE21032). The raw array data
were RMA normalised [22]. Messenger RNA expression
indexes were used as independent variable to describe
the dependent variable — i.e. the miRNA expression. The
linear regression coefficients were fitted using the least
squares method.

To pair miRBase IDs with their corresponding Affy-
metrix Human Exon Array host transcripts IDs, the



Stempor et al. BMC Genomics 2012, 13:620
http://www.biomedcentral.com/1471-2164/13/620

previously used mapping array was extended using
HuEx-1.0ST transcript IDs. Since the Human Exon chip
is backward compatible with Affymetrix genome chips
this operation proved feasible [27-29].

In order to optimize the predictor power and avoid
over-fitting expression values were split into a train-
ing set (2/3 of the data) and a test set (1/3 of data).
To minimise any potential bias the composition of
both sets was randomized after pairing miRNA ex-
pression indexes with their respective mRNA expres-
sion values (Figure 4).

After maximizing the prediction power the utility of
generalizing predictions on different array experiments
and platforms were assessed. On this occasion, the linear
models were trained on all available data from the “Inte-
grative genomic profiling of human prostate cancer”
(GSE21032) dataset (i.e. previous training and test set
joined together) and validated using the “Array-based
bioinformatic analysis on pediatric primary central ner-
vous system germ cell tumors” (GSE19350) dataset. The
calculated cross-platform correlation was 0.884, which
support s the assumption of conservative cross-tissue
miRNA-mRNA regulatory mechanisms (i.e. the model
trained on the prostate cancer dataset was able to pre-
cisely predict miRNA expression in brain tissue).
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Correlation analyses

Correlation between messenger RNA and microRNA is
the corner stone of the pipeline. A positive correlation
indicates a host gene relationship while a negative value
suggests a target gene relationship. The pipeline utilizes
both dependences to extract genes predicted to be influ-
enced by miRNA (ie in the absence of experimentally
estimated miRNA expression data). Each significant pre-
dicted miRNA pseudo-expression value is correlated to
the significant experimental mRNA expression data cre-
ating a correlation matrix (Figure 5). Then a user-
determined cut-off filter is applied. The cut-off is a nega-
tive number representing strong reversed correlation.
The default value of —0.8 was chosen for robust general
performance. Typically, if a user is interested in the
broad spectrum of processes that may be influenced by
miRNA the cut-off should be higher. In contrast a nar-
row and highly reliable set of predicted interactions is
achieved using lower cut-off values.

Final analyses - GO, KEGG, DOLight and user defined
terms overrepresentation testing

Filtering the most anti-correlated expression values gen-
erates a list of microRNA — target gene interactions. De-
pending on the parameters defined by the user and the
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Figure 5 The flow-chart presenting the idea of filtering putative miRNA target genes. The predictor output based correlation matrix is
filtered by a negative correlation cut-off in order to find putative miRNA-target interactions. These interactions are subsequently used for GO,
KEGG, DOlight over-representation testing and creating user-readable HTML output.

quality of the input data the length of this list may vary
significantly. The pipeline generates three summary lists:
(1) influenced genes, sorted by miRNA identified as in-
ducer of coding transcript quantity change, (2) miRNAs
sorted by genes they are influencing and (3) all interac-
tions with significance score (i.e. the number of anti-
correlation values supporting the interaction).

The Affymetrix probe IDs are transformed into user-
friendly Entrez IDs, HGNC symbols and gene names,
which are also easily integrated into third party tools.
Each of the lists is available to the user in either CSV
format, or displayed in an HTML report.

The final step of the pipeline performs analyses of
gene ontology terms, KEGG pathways, DOLite disease
ontology and user defined Entrez terms. In each case a
hypergeometric test is applied to those genes predicted
to be influenced by miRNA differential expression to
evaluate enrichment of each category. Subsequently, the
corresponding table of terms with test statistics, pie
chart, bar chart, and concept network of interaction and
heatmap of most overrepresented genes featured in each
of the ontology categories is generated. These tables and
plots are incorporated into a final HTML report. The
motivation for incorporating such analyses into the pipe-
line was to facilitate biological interpretation of the out-
put. The lists of miRNAs and differentially repressed
mRNAs may by very long; enrichment categories offers
the user a consistent, compact output and simplifies as-
sessment of the biological significance of the predicted
mRNA — miRNA interactions and direct further valid-
ation studies.

Examples of the pipeline results and sample HTML
reports (i.e. basic output of the pipeline, as well as reports
generated by performing case-studies) are provided as sup-
plementary material (Additional files 3 and 4).

The validation of expression based target prediction and
pipeline’s general performance

We experimentally validated the predictive models by
correlating the predicted miRNA expressions with the
ones obtained from microarrays. To validate if strongly
anti-correlated interactions between the predicted
miRNA and measured mRNA expressions can identify
putative target genes we implemented systematic, nu-
merical method based on the binding energy between
the mature miRNA and 3’ UTR region of the gene. The
general pipeline performance was assayed by comparing
the analyses presented in the GSE19350 validation data-
set author’s publication (Wang et al, BMC Genomics.
2010) with the output generated by MMpred. Finally, we
applied the analysis pipeline to a number of datasets
to further investigate the validity of predicted miRNA-
mRNA interaction networks. Two of the completed
case studies are provided in Supplementary materials
(Additional files 5, 6 and 7).

The miRNA-target binding energy base validation

The method we propose is modified “energy walk” pro-
cedure described in the paper by Ritchie et al. [30],
which utilizes the impact of binding energy in proper
miRNA-target pairing [31,32]. The experimentally
proven miRNA-mRNA interactions from miRecords
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were sampled in order to calibrate the method. To con-
firm the significance of results, two random sets of free
binding energies were calculated: by permutation of
genes name vector (using the same set of 3'UTR
sequences) and by substituting the original set of 3’'UTR
with random gene sequences. The results are shown on
Figure 6.

The study of lowest binding energy distributions revealed
that using fixed free energy cut-off (-20 Kcal, Ritchie et al.)
would discard most of validated targets. For this reason we
compared the distributions of minimal energy among the
miRNA-target pairs rather than the number of high energy
binding sites like in original procedure.

To further assay the significance between actual and
randomized energy calculation the Welch Two Sample
t-test has been performed. The null hypothesis (true dif-
ference in means between actual and randomized data is
equal to 0) has been rejected with p-value < 2.2e-16 for
both randomizations. It should be noted that the rando-
mized samples have the same mean with p-value = 0.9776.

Further, we validated experimentally measured miRNA-
mRNA expression anti-correlation as target identification
method using the paired microarray dataset “Comparative
genomics matches mutations and cells to generate faithful
ependymoma models” (GSE21687). At first, measured
miRNA expression matrix was correlated against mRNA
expression matrix. Then the correlations have been filtered
using GetHT function from MMpred pipeline with correl-
ation cut-off equal -0.6. The predicted interactions were
subjected to the same procedure as miRecords interactions.
Two randomized energy calculations have been prepared:
using permutated vector of predicted targets (Figure 6) and
the permutated target sequence (not shown on the figure).
The mean of predicted targets is significantly different
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from the randomized values (p-values of 2.925e-11 and
5.663e-07; Welch Two Sample t-test). Furthermore, the
distribution is similar to validated targets (p-value =
0.3748; Welch Two Sample t-test).

Finally, to assess both predictive power of miRNA ex-
pression predictor and targets predictive capabilities, the
full MMpred pipeline has been run on GSE21687
mRNA expression data only, repeating the same free
energy calculation procedure (distribution shown on
Figure 7 as blue curve). The distribution is similar to
both miRecords and experimental data driven distribu-
tions (p-values equals 0.03952 and 0.05833) and dissi-
milar to randomized ones (see Figure 8 for all p-value
comparisons). Comprehensive description of the method
can be found in Additional file 8.

General performance and usability

We compared the analyses presented in Wang et al
publication (BMC Genomics. 2010), which is citing the
GSE19350 dataset, with the output of MMpred. The ori-
ginal analyses have been performed on paired dataset
(miRNA expression assayed by microarray), while
MMpred used mRNA data only (miRNA expression was
predicted). Wang et al. picked signature miRNAs and
predicted their targets. Of the three intragenic miRNAs
listed there MMpred determined hsa-mir-218 to be
significantly deregulated. Of the 6 target genes identi-
fied for hsa-mir-218 by Wang et al. MMpred was
able to predict 5. Considering 5 MMpred predictions
overlapping and 1 not overlapping with published
data, 146 other MMpred predictions and 21835 other
possible predictions (based on 21976 protein coding ge-
nes represented on HGU-133plus2 microarray; source:
Ensembl67) the Fisher's exact test p-value equals 8.52e-11.
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Figure 6 The distribution of calculated free energies in validated targets set driven from miRecords. The calculation has been obtained
by sampling 3240 sequences of 3'UTR human target genes for optimal miRNA binding free energy. The randomized sampling contains the same
number of free energy calculations.
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Figure 7 The distribution of calculated free energies in expression anti-correlation based target predictions. The calculations have been

obtained by sampling sequences of 697 3'UTR human target genes candidates for experimental miRNA expression dataset and 26 for predictor
drive miRNA expression (full MMpred pipeline). The randomized sampling contains 697 free energy calculations.

-20 -15 -10 -5

Moreover, the downstream analyses performed by Wang
et al. and automated MMpred pipeline output shows sig-
nificant overlap; e.g. MMpred identified 4 out of 5 top
KEGG pathways (total of 7 KEGG pathways identified
by Wang et al.). The presented results were obtained
using default MMpred settings and input dataset have

never been used for training the predictive model. Re-
mapping the miRNAs both to their host genes and to
the transcripts represented on mRNA expression arrays
using the most recent releases of miRbase and Ensemble
databases enhances the prediction power even further.
The examples of such analyses are provided in Additional

Validated . . Measured Measured Measured mRNAonly
) Randomized| Randomized ) N ) .
miRecords miRecords 1| miRecords 2| &XPression|  expression expression | expression
targets predicted | randomized 1| randomized 2| predicted
Validated
miRecords 6.01E-31 9.96E-31 0.374818 1.33E-13 1.45E-08 0.039524
targets

Randomized | g o1 39 0.977604 | 7.58E-14 | 0.133514 | 0.168947 | 0.001974
miRecords 1
Randomized | g g5p 34 | 0.977604 8.77E-14 | 0.129887 0.174625 | 0.001990
miRecords 2

Measured

expression 0.374818 7.58E-14 8.77E-14 2.92E-11 5.66E-07 0.058329

predicted

Measured

expression 1.33E-13 0.133514 0.129887 | 2.92E-11 0.026457 0.000946
randomized 1

Measured

expression 1.45E-08 0.168947 0.174625 5.66E-07 0.026457 0.003859
randomized 2

mRNA only

expression 0.039524 | 0.001974 0.001990 | 058329 0.000946 0.003859

predicted

(p-value cut-off equals 0.01), otherwise marked in green.

Figure 8 P-values obtained from Welch Two Sample t-test. The cases where the null hypothesis has been rejected are marked in red
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file 8. Presented examples clearly illustrates that MMpred
is capable of generating similar results to that obtained
using paired datasets (considering the limitation to intra-
genic miRNA).

Discussion

The primary objective of the reported model is to facili-
tate miRNA focussed analyses of the large body of
mRNA expression data available in public repositories.
Extensive, long term usage of microarray gene expres-
sion assays in clinical studies has produced a vast reposi-
tory of extremely valuable, well-designed datasets. This
is in contrast to the very limited miRNA expression
datasets available in the public domain. Our model
enables inexpensive hypothesis generation regarding
miRNA regulatory events, from this vast repository of
mRNA expression datasets. The primary assumption
implemented in the pipeline is that analyses of correl-
ation between regulatory host genes and miRNAs can be
used to predict miRNA regulatory networks. Since the
majority of human microRNAs are co-expressed with
host genes we propose that expression of these miRNAs
is positively correlated to their host transcripts. That is,
over-expression of host genes indicates a positive fold
change of miRNA copy number and visa-versa. A further
assumption is that such microRNAs are expressed in the
same quantity and at the same time as their respective
host genes (i.e. we conveniently neglect the maturation
process and post-transcriptional regulation of miRNA,
of which little is currently known).

In contrast, miRNAs promote target gene degradation,
which is in turn detected as a lower expression signal on
mRNA microarrays. These two dependences were used
to create a general mathematical model of miRNA ex-
pression prediction and to predict regulatory miRNA
networks. The model was initially validated using nu-
merical coherence between predicted and experimental
data achieving a significant degree of correlation. Subse-
quent functional hypothesis generation using model pre-
dictions was evaluated by completing case studies with
three previously reported mRNA expression datasets
(GSE11327 [33], GSE11375 [34] and GSE19743 [35]). All
illustrated cases indicate that it is feasible to predict
what appears to be biologically coherent miRNA-mRNA
regulatory networks using only mRNA expression data.
Further systematic validation of target prediction was
successfully accomplished by analysing the distribution
of free binding energy between miRNAs and predicted
target’s 3° UTR region. We showed that the predicted
binding energy distribution is similar to energy distribu-
tion driven from miRecords [36] validated targets data-
base, and significantly different from randomized one
(see Additional file 9 for details).
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Possible applications of the pipeline include, miRNA
target prediction, constructing putative miRNA regula-
tory clusters and a cost efficient means of generating a
large number of predicted differential miRNA expression
profiles from the vast repository of human mRNA data
in the public domain.

Methodology similar to MMpred was previously
reported. For example, several tools utilises miRNA-
targets anti-correlation to rank the computational target
predictions (usually sequence matching or homology
based) and identify ones, which are most probable to be
a true biological hits. The validation is usually performed
by experimental assays or measuring the enrichment in
overlap between top ranked predictions and validated
miRNA targets. A noteworthy example is the HOCTAR
method [37,38], which uses large collection of mRNA
expression profiles (utilizing both host genes’ correlation
and anti-correlation with targets) to score predictions
from PicTar, TargetScan, and miRanda. Similar approach
is proposed in GenMiR++ method [39], though this
method does not utilize host genes interaction and
requires paired miRNA-mRNA microarray datasets. Fur-
thermore, a method developed by Ritchie et al. uses ex-
pression patterns conserved between human and mouse
to predict miRNA targets more accurately [30]. More-
over, several assays not focussed on target prediction use
similar methodology as a validation technique: e.g. the
“enrichment score” proposed by Biasiolo et al. [40]. Des-
pite several published methods focusing on the correl-
ation of expression patterns we strongly believe that
MMpred is a significant improvement and valuable
addition to the field. While other methods study large
collections of expression experiments and provide gen-
eral target predictions MMpred focuses on case specific
targets, which are under differential control of differen-
tially expressed miRNAs. Furthermore MMpred is inde-
pendent of both external target predictions and miRNA
expression data. The model predicts and functionally
annotates dataset specific miRNA regulatory networks
using abundant coding gene expression data.

However, before applying the model one must be
aware of it’s limitations. In particular, the predictor does
not determine if genes connected within the functional
category are suppressed by miRNA, or that the suppres-
sion normally existing in the control group has been
alleviated. The pipeline does identify if the expression of
differentially regulated genes is significantly anti-
correlated with the expression of one more predicted
miRNA. The direction of regulation (i.e. up-regulation
by lifting miRNA suppression or down-regulation by
introducing miRNA suppression and degradation) is
determined using fold change calculations.

The functional analyses (i.e. GO, KEGG, DO and user
determined Entrez terms) are performed using predicted



Stempor et al. BMC Genomics 2012, 13:620
http://www.biomedcentral.com/1471-2164/13/620

target gene annotation. MicroRNAs are poorly anno-
tated, with no consistent ontology. Many miRNAs are
reported to regulate a large numbers of genes so it is
very difficult to determine the primary miRNA function.
To determine the specific function of miRNA in a given
expression set both the combined predictions and over-
representation testing of significant miRNA targets is
required.

Although the gene ID method was chosen as the de-
fault pipeline’s mapping generator, other tested methods
(i.e. direct string matching and genomic location) are
also worthy of consideration. Apart from the associated
computational complexity a string matching approach
would be expected to generate the most accurate results.
Moreover, this method generates a number of pre-
miRNA sequence overlaps with each gene sequence,
which could be used to boost the predictor’s accuracy.
However this approach is likely to also produce false
negatives, as partial miRNA-mRNA matches may still be
co-expressed. Furthermore, the changes that would be
incurred with different human genome assembly ver-
sions may introduce unwanted variability of mappings.

The validation of predictors indicated that for many
intronic miRNAs the linear model predictor performed
better, though in a few cases the scaling functions per-
formed best. For that reason we decided to implement
both predictors in the pipeline. The number of miRNA
predicted to be significantly misregulated after perform-
ing auto-generated cut-off may differ considerably for
each of the predictors. In certain extreme cases there
may be no miRNA found significantly over- or under-
expressed by one or both predictors. If only one
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predictor returns significant miRNAs the pipeline will
continue to execute. If both predictors return no signifi-
cant result further analyses is impossible and the process
will terminate. In such scenarios the user would either
adjust the cut-off parameter or re-evaluate the experi-
ment design. A union of the predictions is used to report
a consensus result. When using the linear model ap-
proach fold change values are generally smaller and pos-
sibly more likely to reflect experimental fold change.
This is due to the specificity of this predictor — that is
the linear model uses coefficients fitted using the experi-
mental data, hence making its predictions more accur-
ate. In contrast, the coefficients of the scaling functions
are chosen manually and the final coefficient is a prod-
uct of the multiplication. This approach may overesti-
mate the fold change value of genes/miRNAs with high
expression index. Beside linear predictors some higher
order predicting methods (e.g. Generalized Linear Model
(GLM), Neural Networks and Genetic Algorithms) have
been tested without any significant improvement to the
pipeline’s performance.

The interactions derived from correlation analyses
support the biological rational of the predictors. Our
first investigation is an assessment of the top 500
mRNA intronic transcripts expression (“Integrative gen-
omic profiling of human prostate cancer”, GSE21032
dataset [26]) ranked by the absolute value of fold
change plotted against expression indexes of corre-
sponding miRNAs (Figure 9A). The visualized tran-
scripts can be divided into two subsets. The first one
presents a strong linear correlation. In the second,
increased mRNA expression have not been reflected in

(A)

(B)

Figure 9 Correlation box. (A) Top500 mRNA transcripts ranked by p-value (X-axis) plotted against corresponding miRNA expressions (Y-axis).
The group presenting good linear correlation is featured with green regression line, while the group with no expression indexes dependence is
featured with red one. (B) Messenger RNA transcripts expression index (X-axis) plotted against corresponding exotic miRNA transcripts’
expressions index (Y-axis). No expression indexes dependence is visible on this plot.
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a higher miRNA expression index. This perfectly illus-
trates the biological dependence between microRNA
and its host genes (i.e. the pri-miRNA transcript must
be transcribed along with the mRNA to be processed
and then detected on the microarray as mature
miRNA). Given this define relationship no miRNA with
high expression corresponds to a mRNA with low ex-
pression. In contrast there are many observed mRNA
with high expression values corresponding to miRNA
with very low expression indexes. This likely to occur
as posttranscriptional regulation is an important factor
both during miRNA transport and maturation, so sim-
ply expressing a pre-miRNA transcript does not guar-
antee it will be processed to the mature form. Such
relationships introduce a danger that the model may
produce a significant number of false positives, but the
risk of false negatives is minimal. Exonic transcripts
that overlap with pri-miRNA have been used as nega-
tive control. Our rational being that those transcripts
are primarily used to generate mRNA, and our model
assumes that they are not available for miRNA proces-
sing, so the probability of maturating into a functional
miRNA is minimal. This is confirmed when observing
the scatter plot of expressions (Figure 9B) - where nu-
merous highly expressed miRNAs map to mRNA with
very low expression index and also highly expressed
mRNA corresponding to miRNA with very low expres-
sion indexes. Furthermore, the distribution of inter-
mediate points seems random, as there is no significant
linear correlation present in the exonic transcripts.

Conclusions

We present details of MMpred, a novel and generally
applicable mathematical model of miRNA-mRNA inter-
actions predicted from mRNA expression data. The
method enables cost and time efficient hypotheses build-
ing of both miRNA differential expression and miRNA-
mRNA interactions using retrospective analyses of pub-
licly available mRNA microarray datasets. The notable
advantage of the model is the creation of case specific
predictions of miRNA-mRNA signalling networks from
mRNA datasets. Contrary to the approach applied by
other miRNA target prediction tools, that aim to find all
possible miRNA-target repression interactions, our
minimalistic, case specific approach reduces the burden
of numerous false discovery rates. Additionally, the
fewer number of significant targets returned by the pre-
diction pipeline simplifies associated functional analyses
of the predicted networks.

The MMpred pipeline reports the functional enrichment
categories of the most likely miRNA-mRNA relationships
given the experimentally determined differential gene
expression profile. The data are presented in a succinct
manner to facilitate testable hypothesis generation of the
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predicted miRNA-mRNA interaction networks. For ex-
ample, the comparative burn and blunt injuries case study
indicates that miRNAs repressing immune system cells’
metabolic genes are down-regulated in order to relief the
metabolic lock of inflammatory response, thus protecting
the organism against infections and promoting the regen-
eration process (see Additional file 5). The predicted sig-
nalling mechanism appears biologically meaningful and
facilitates the design of further experimental validation
studies.

The MMpred model is implemented as an R package
and is suitable for further community validation (details in
the Supplementary materials). Our validation showed sig-
nificant prediction power and ability to partially reproduce
results obtained by analysing paired expression datasets.
The reported case studies indicate that the method pre-
dicts biologically coherent miRNA-mRNA networks and
that the approach will add value to current miRNA regula-
tory network analysis efforts. Consequently, we believe
MMpred is a useful tool for mining the vast mRNA ex-
pression data resources and screening for potential miRNA
targets and miRNA-mRNA functional modules.

Methods

The mathematical bases of the predictors and correlation

analyses

The scaling function predictor can be summarized as set
of vector equations and implemented as required in the
model:

emirna  Estimated microRNA expression index

€afly Vector of mRNAs expression indexes

E 4 Expression matrix of mRNA obtained from
Affymetrix microarray

E,irna Expression matrix of miRNA obtained from
Agilent microarray

FC; Fold change of i-th mRNA present on Affyme-
trix array

Pval; p-value (from Student’s t-test or ANOVA) statis-
tic of i-th mRNA present on Affymetrix array

Kense Strain dependant coefficient (1.2 for sense 0.8
for antisense)

Kovertap  Overlap dependant coefficient (2 for intronic
0.8 for exonic, 3’UTR, 5UTR)

Keyigence Evidence dependant coefficient (1.2 for experi-

mentally determined 0.8 for predicted)

Equation 1 - General formula for the scaling function
predictor

ComiRNA = TEan (eam * 6)
Equation 2 - Mapping function

ey =S+ Eagy—Enmirna
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Equation 3 - Weight vector

© ={01,02,...,0,}; 1 = length (e )
Equation 4 - Scaling coefficients determining weight
vector elements

wW; = |FC1| * (]- - Pml,‘) * ksense * kaverlap * kevidence

Equation 1 represents the general form of the pre-
dictor, which calculates the estimated microRNA expres-
sion index by averaging elements of the experimentally
observed mRNA expression vector multiplied by a
weight vector. The expression vector is created by a
mapping function, which selects expression values corre-
sponding to host genes from the messenger RNA ex-
pression matrix (Equation 2). Simultaneously a weights
vector of the same length is created (Equation 3). Each
value in this vector is calculated by multiplying the abso-
lute fold change (FC) and reverse scaled p-value (1-Pval)
obtained for each gene during pre-processing in addition
to three coefficients (ksenses Koveriap aNd Keyigence) that
combined describe the nature of predicted edge between
miRNA and mRNA (Equation 4). Values for these coef-
ficients have been arbitrarily assigned, using biological
knowledge and computational tests performed prior to
building the function. For example the intronic regions
are extracted from coding sequences during splicing,
which theoretically makes them available to the Drosha
enzyme. However, both the 3'UTR, and 5’UTR are incor-
porated into mature mRNA, so they can only be pro-
cessed to miRNA if the maturation process and
transportation of mRNA out of the nucleus is inter-
rupted. These scenarios dictate that the model preferen-
tially promotes intronic sequences.

For linear model predictor the principal mathematical
problem encountered while constructing the optimal re-
gression formula was the variable number of the inde-
pendent values describing each dependent value. The
mapping function assigned every miRNA from 1 to 32
mRNA expression indexes. Parameters such as the p-
value, fold change and genomic context of transcripts
that were used successfully in the previous predictor were
again incorporated into the linear model. In addition, the
regression model includes additional ordinal (categorical)
and continuous descriptive parameters:

e; Messenger RNA expression values from the
microarray experiment

FC; Fold Change in expression between sample
and control
Pva;  P-value from t-test or ANOVA on mRNA

expression data
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overlay  Categorical parameter of levels: intron, exon,
3'UTR, SUTR
strand  Categorical parameter of levels: sense or

antisense

evidence Categorical parameter e.g. clone based,
curated transcript, automatic transcript

The following equations describe how starting with the
simplest scenario (i.e. one microRNA’s expression depen-
dent on only 1 mRNA transcript) we can implement a
general regression formula based on these assumptions:

Equation 5 - The regression formula when predicting
the miRNA expression of 1 microRNA when dependent
on 1 mRNA transcript

Epicro~ €1 % |[FC1| % (1 — pyu, ) * overlay;  strand;
x evidence;

Equation 6 - The regression formula when predicting
the expression of a miRNA when dependent on 2
mRNA transcripts

E icro~ €1 % |[FCy| % (1 — pya, ) * overlay, * strand;  evidence,
+ ey * |[FCy| % (1 — pyas,) * overlay,  strandy * evidence,

Equation 7 - A general regression formula for predict-
ing the expression of a miRNA expression value when
dependent on n transcripts

Eyicro~ €1 % |[FC1| % (1 — pya, ) * overlay,  strand; x evidence,
ey * |[FCy| * (1 — pya, ) * overlay, x strand,  evidence,
+E, * |Fcy| * (1 — pya,) * overlay; « strand;  evidence;

Implementing the iterative formula into the linear
model is mathematically impossible. Instead the model
predicts miRNA expression with each transcript separ-
ately and then calculates a median value as the final pre-
diction for each miRNA. However, using the model
described by Equation 5 with this method resulted in
poor prediction power — the Pearson’s correlation coeffi-
cient between the measured values and our predictions
was 0.324. As solution the factor containing the names
of miRNAs was introduced into the model. This allowed
the fitting function to select different linear equation
coefficients for unique miRNAs (Equation 8).

Equation 8 - The regression formula for predicting
the expression value of a microRNA after introducing
miRNAs’ name factor

Epicro~ E % |FC| % (1 — pya) * overlay * strand
x evidence * miR;;

This model achieved a high performance, with an esti-
mated correlation value of 0.945 between the experimental
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values and our predicted values. Additional analyses indi-
cated that miRNAs located on antisense strand, exonic,
3'UTR and 5'UTR are weakly correlated and may intro-
duce noise rather than add to the signal in the model. Pre-
filtering these transcripts marginally increased the cor-
relation to 0.949. The ambiguous nature of the evidence
(i.e. origin of the entry in miRBase) also introduced the
noise. Discarding this independent variable (Equation 9)
further increased prediction power to 0.956. This simplifi-
cation of the model (Equation 10), based only on mRNA
expression values and miRNA ID factor resulted in a cor-
relation coefficient of 0.955. Despite the larger computa-
tional complexity the best performing regression formula
described by Equation 9 was implemented in the pipeline
(Figure 4).

Equation 9 - Final regression formula characterised by
the highest prediction power and moderate resource
consumption.

Epicro~ E * |FC| * (1 _pml) * miRjy

Equation 10 - Simplified regression formula for the
linear model predictor.

Eyicro~ E * miR;g

Finally the miRNA-mRNA correlation analyses can be
simplified to the following formula:

Equation 11 - The mathematical bases of miRNA-
mRNA correlation analyses:

correlated

—_——— i 7
€hosts €miRNA anti—correlated

}jehosts = = Ctargets
Ctargets —=< — — CmiRNA ¢

anti—correlated

R/ Bioconductor implementation

Despite the complexity of the model, the R implementa-
tion (referred further as the pipeline) has been designed
to be simple and user friendly. The pipeline takes as in-
put raw Affimetrix CEL files and experiment design vec-
tor (or matrix in case of more complicated ANOVA
statistics), which distinguish the biological replicates,
time series etc. (e. g. sample versus control in the sim-
plest case). The output is HTML formatted report. This
includes output of predictors in tabular form, as well as
quality assessment plots on statistical pre-processing and
performance of the predictors. Functional analyses pre-
sented as hypergeometric test result tables are supported
by pie charts, bar plots, interaction concept networks
and annotated heatmaps (provided by R/Bioconductor
GeneAnswers library). The primary pipeline interface is
in the form of a command-line R console, however users
with different requirements may use a convenient graph-
ical user interface (GUI) build with GTK+. Most advanced
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users may benefit on the modular structure of the pipe-
line, which facilitate applying changes to the components
and utilising single modules in third party projects.

An explicit documentation explaining the interfaces,
system requirements and implementation structure is
available as Additional file 10. The MMpred software
implemented as R scripts and distributed under BSD li-
cence is attached as Additional file 11.

Pre-processing of raw array data in R

The expression matrices for both array types were ob-
tained by performing standard Robust Multi-chip Average
procedure [22] — the probes signal was obtained from per-
fect match (PM) probes; the quantiles method was incor-
porated for cross-array normalization and MedianPolish
for summarization of the results. The BioConductor Affy
library was used for processing HG-U133Plus2 chips, and
the same functions ported in AgiMicroRna library were
incorporated for Agilent miRNA 2.0 arrays.

Correlation matrix

The idea of creating correlation matrices has been
inspired by mathematical procedures present in regres-
sion analyses. The independent variables are being cor-
related against each other to assess their independence.
The important differences are that regression analyses
method operates on vectors, creates square matrices and
aims to minimize the absolute value of correlation: cor-
relation close to 0 indicates that independent variables
are not biased to describe each other. The method that
we have developed operates on arrays — though can be
treated as reducing the dimensionality of the data. The
basic assumption is that the expression matrices calcu-
lated using every paired dataset have the same number
of columns — the same quantity of arrays must be used
to assay miRNA and mRNA, and different number of
rows — there is much more coding genes than miRNAs.
Every row of the miRNA array is correlated against each
row of the mRNA array and the correlation coefficient is
captured — this way two matrices are collapsed into one,
which shares the number of rows with miRNA’s expres-
sion matrix. The number of columns is equal to the
number of rows present in mRNA array.

The most correlation comprehensive investigation has
been made on the ‘Integrative genomic profiling of
human prostate cancer” (GSE21032) dataset. 1,411,189
exons are represented on the Affymetrix Human Exon
1.0 ST array. Agilent Human miRNA Microarray 2.0
captures the expression of 821 different miRNAs and
control quality sets. In constructing the correlation ma-
trix quality control probesets and viral miRNA have also
been correlated to mRNA for negative control. The output
matrix, size of 821 x 1,411,189, has captured 1,158,586,
169 correlation coefficients.
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The design of microarrays used in our studies

Affymetrix HG-U133 Plus 2.0 and Human Exon 1.0
ST measures messenger RNA expression by in situ
oligonucleotide hybridization. The important difference
between those platforms is that HuEx-1.0ST measures
gene expression at the exon level — each probeset cor-
responds to a single exon rather than gene. The older
platforms, including U133 arrays used probes comple-
mentary to the 3'UTR regions only. The new ap-
proach requires using the most current, high-density
arrays, but should ensure higher precision of expres-
sion measurements and allows performing alternative
splicing analyses. The manufacturer guarantees that
on the genomic level HuEx-1.0ST arrays are fully
backward compatible with the U133 family. Since
gene mapping between those platforms is possible nu-
merous comparative studies have been performed.
The high concordance between HuEx-1.0ST and HG-
U133Plus2 platforms is confirmed by many independ-
ent research groups [27-29,41]. However, the same
groups report no or very low difference in precision
of measurement between those platforms [27-29,41],
so the only certain advantage of the less cost efficient
HuEx-1.0ST arrays for the project is better genomic
coverage. The detailed differences in array design are
covered in Table 2.

Agilent Human miRNA microarrays utilize similar
technology to Affymetrix GeneChips, but measure the
abundance of mature microRNA transcripts (both do-
minant and minor transcripts). This platform contains
probes complementary to 723 human microRNAs and
76 human viral microRNAs. The probesets design is
based on the miRBase version 10.1. The raw data are
extracted as a text (.TXT) file, which can be further
processed by Agilent's feature extraction software to
a GeneView file or directly analysed by the BioCon-
ductor AgiMicroRna library [21]. This platform has
been evaluated as one of the most robust and accu-
rate tools for global miRNA expression measurement.
It is also characterised by the best human genome co-
verage [20,42].
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Paired datasets

The paired datasets required for building and testing the
model are publically available and have been obtained
from Gene Expression Omnibus repository.

“Array-based bioinformatic analysis on pediatric primary
central nervous system germ cell tumors” (GSE19350) con-
tains 12 Agilent Human miRNA Microarray 2.0 paired
with 12 Affymetrix Human Genome U133 Plus 2.0, as
well as unused in the model genotyping and analysis of
chromosome copy number experiments (Illumina
Human 610-Quad v1.0 BeadChip) [20,24,42].

“Integrative genomic profiling of human prostate can-
cer” (GSE21032) dataset includes 743 mRNA (HuEx-
1.0ST), miRNA (Agilent Human miRNA Microarray 2.0)
and genotyping arrays, of which 280 have been identified
as paired miRNA-mRNA (genetic material for both
experiments have been isolated from the same sample)
[26]. The samples were extracted from both healthy
individuals and affected patients from various ethnic ori-
gins, as well as from prostate tissue cultures [26].

The miRNA-target binding energy base validation

The procedure utilizes the Vienna RNA Package version
1.8.5 to calculate minimum free energy of miRNA bind-
ing. The 3'UTR sequences are scanned using sliding
window of 25bp and 5bp step. Since RNAfold algorithm
allows only the calculation of free energy for single
stranded RNA molecule, the scanned 25bp fragments of
3’'UTR mRNA have been joined with mature miRNA se-
quence using 8bp artificial inter-linker sequence con-
taining 'X' bases that cannot be paired (as described by
Enright et al. [43]). The region of lowest free energy is
considered to be the optimum binding site.

The validation has been implemented in R language. Ma-
ture miRNA sequences have been obtained from miRBase
version 17.0 using miRbase.db R library. 3'UTR sequences
have been downloaded from Ensembl via biomaRt R inter-
face. For genes with multiple 5’UTR transcripts the longest
isoform was selected to ensure the sampling of all possible
binding locations. Genes with 3'UTRs shorter that 100bp
were discarded from analysis. The free energy calculations

Table 2 The differences between microarray platforms used in the project (source: Affymetrix and Agilent data sheets)

Affymetrix human genome

Affymetrix human Agilent human miRNA

U133 Plus 2.0 Exon1.0 ST Microarray 2.0
Total features per array ~ 1 million > 5.5 million ~ 15,000
Probe sets >54,000 1.4 million 821
Exon clusters / Transcripts / miRNAs ~47 400 >1 million 723 human + 76 viral
Oligonucleotide probe length 25-mer 25-mer ~ 40-60 nucleotides

Resolution

Feature size 11 um

11 pairs/transcript, 16.1 /gene

5.8 /exon, 44.8 /gene 20-40 /sequence

5um 65 um




Stempor et al. BMC Genomics 2012, 13:620
http://www.biomedcentral.com/1471-2164/13/620

have been executed using GeneRfold R interface for Vienna
RNA library. The miRecords (version 3, mirecords.biolead.
org/download.php) have been used as comprehensive col-
lection of validated targets.
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Additional file 1: Summary of all miRNA datasets performed on
popular platforms in GEO (represented by at least 25 arrays, data
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output for both case studies).

Additional file 5: The short description of analysed case studies.

Additional file 6: Detailed report on case study I: Toll-like 4
receptor activated by Lipopolysaccharide (LPS).

Additional file 7: Detailed report on case study Il: Comparison of

miRNA regulation in human severe blunt trauma and severe burn

injury.

Additional file 8: Systematic validation of target prediction by the
similarity of binding free energy distribution with miRecords.

Additional file 9: Examples of MMpred predictions supported by
experimental data and mapping against current databases.

Additional file 10: The detailed description of software
implementation in R language.

Additional file 11: The R implementation of the presented method:

MMpred.
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