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Abstract

sample-to-batch allocations in genomics experiments.

Background: Batch effect is one type of variability that is not of primary interest but ubiquitous in sizable genomic
experiments. To minimize the impact of batch effects, an ideal experiment design should ensure the even
distribution of biological groups and confounding factors across batches. However, due to the practical
complications, the availability of the final collection of samples in genomics study might be unbalanced and
incomplete, which, without appropriate attention in sample-to-batch allocation, could lead to drastic batch effects.
Therefore, it is necessary to develop effective and handy tool to assign collected samples across batches in an
appropriate way in order to minimize the impact of batch effects.

Results: We describe OSAT (Optimal Sample Assignment Tool), a bioconductor package designed for automated

Conclusions: OSAT is developed to facilitate the allocation of collected samples to different batches in genomics
study. Through optimizing the even distribution of samples in groups of biological interest into different batches, it
can reduce the confounding or correlation between batches and the biological variables of interest. It can also
optimize the homogeneous distribution of confounding factors across batches. It can handle challenging instances
where incomplete and unbalanced sample collections are involved as well as ideally balanced designs.

Background
A sizable genomics study such as microarray often
involves the use of multiple batches (groups) of experi-
ment due to practical complication. The systematic, non-
biological differences between batches in genomics experi-
ment are referred as batch effects. Batch effects are wide-
spread occurrences in genomic studies, and it has been
shown that noticeable variation between different batch
runs can be a real concern, sometimes even larger than
the biological differences [1-5]. Without sound experiment
designs and statistical analysis methods to handle batch
effects, misleading or even erroneous conclusions could
be made. This especially important issue is unfortunately
often overlooked, partially due to the complexity and mul-
tiple steps involved in genomics studies.

To minimize the impact of batch effects, a careful
experiment design should ensure the even distribution
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of biological groups and confounding factors across
batches. It would be problematic if one batch run con-
tains most samples of a particular biological group. In
an ideal genomics design, the groups of the main inter-
est, as well as important confounding variables should
be balanced and replicated across the batches to form a
Randomized Complete Block Design (RCBD) [6-8]. It
makes the separation of the real biological effect of our
interests and effects by other confounding factors statis-
tically more powerful.

However, despite all best effort, it is often than not
that the collected samples are not complying with the
original ideal RCBD design. This is due to the fact that
these studies are mostly observational or quasi-
experimental since we usually do not have full control
over sample availability [1]. In clinical genomics study,
samples may be rare, difficult or expensive to collect,
irreplaceable or fail QC before profiling. The resulted
unbalance and incompleteness nature of sample avail-
ability in genomics study, without appropriate attention
in sample-to-batch allocation, could lead to drastic batch
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effects. Therefore, it is necessary to develop effective and
handy tool to assign collected samples across batches in
an appropriate way in order to minimize the impact of
batch effects.

We developed OSAT to facilitate the allocation of col-
lected samples into different batches in genomics stud-
ies. OSAT is not aimed to be a software for
experimental design carried out before sample collec-
tion, rather, it is developed to fulfill the needs arise from
some practical limitations occurring in the genomics
experiments. Specifically, OSTA is developed to address
one practical issue in genomics studies — when the avail-
able experimental samples ready to be profiled in the
genomics instruments are collected, how should one al-
locate these samples to different batches in a proper way
to achieve an optimal setup minimizing the impact of
batch effects at the genomic profiling stage? With a
block randomization step followed by an optimization
step, it produces setup that optimizes the even distri-
bution of samples in groups of biological interest into
different batches, reducing the confounding or correl-
ation between batches and the biological variables of
interest. It can also optimize the even distribution of
confounding factors across batches. OSAT can handle
challenging instances where incomplete and unba-
lanced sample collections are involved as well as ideal
balanced RCBD.

Results

Datasets

An exemplary data is used for demonstration. It repre-
sents samples from a study where the primary interest is
to investigate the expression differentiation in case ver-
sus control groups (variable SampleType). Two add-
itional variables, Race and AgeGrp, are clinically
important variables that may have impact on final out-
come. We consider them as confounding variables. A
total of 576 samples are included in the study, with one
sample per row in the example file. As shown in Add-
itional file 1: Table S1-S2, none of the three variables
are characterized by balanced distribution.

Comparison of different sample assignment algorithms

The default algorithm implemented in OSAT will first
block three variables considered (i.e., SampleType, Race
and AgeGrp) to generate a single initial assignment
setup, and then identify the optimal one with most
homogeneous cross-batch strata distribution through
shuffling the initial setup. Alternatively, if blocking the
primary variable (i.e., SampleType) is the most important
and the optimization of the other two variables is less
important (but desired), a different algorithm implemen-
ted in OSATcan be used. It works by first blocking Sam-
pleType only to generate a pool of assignment setups,
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and then select the optimal one with most homogeneous
cross-batch strata (i.e., SampleType, Race and AgeGrp)
distribution.

As shown in Figure la-c, the final setup produced by
the default algorithm is characterized by relatively uni-
form distribution of all three variables across the
batches. Pearson’s X test examining the association be-
tween batches and each of the variables considered indi-
cate that all there variables considered are highly
uncorrelated with batches (p-value > 0.99, Table 1). On
the other hand, as shown in Figure 2a-c, the final setup
produced by the alternative algorithm is characterized
by almost perfectly uniform distribution of SampleType
variable (with small variation only due to the inherent
limitation of the starting data such as unbalanced sample
collection), with the uniformity of the other two vari-
ables not included in block randomization step
decreased. Pearson's X2 test (Table 1) shows that the
resulting chi-square for SampleType decreases while
those for Race and AgeGrp increase, indicating the tra-
deoff in prioritizing variable of primary interest for block
randomization. Nevertheless, as shown in Figure 1d and
Figure 2d, both algorithms produce final setups which
show more homogeneous cross-batch strata distribution
than the corresponding starting ones.

Simply performing complete randomizations might
lead to undesired sample-to-batch assignment, especially
for unbalanced and/or incomplete sample sets. In fact,
there is substantial chance that variables will be statisti-
cally dependent on batches if a complete randomization
is carried out, especially for incomplete and/or unba-
lanced sample collections. As shown in Figure 3, an un-
desired setup can be produced through complete
randomization of sample-to-batch assignment. The Pear-
son's x> tests indicate all three variables are statistically
dependent on batches with p-values < 0.05 (Table 1).

Conclusions

Genomics experiments are often driven by the availabil-
ity of the final collection of samples which might be
unbalanced and incomplete. The unbalance and incom-
pleteness nature of sample availability thus calls for the
development of effective tools to assign collected sam-
ples across batches in an appropriate way in order to
minimize the impact of batch effects at the genomics ex-
periment stage. OSAT is developed to facilitate the allo-
cation of collected samples to different batches in
genomics study. With a block randomization step fol-
lowed by an optimization step, it produces setup that
optimizes the even distribution of samples in groups of
biological interest into different batches, reducing the
confounding or correlation between batches and the
biological variables of interest. It can also optimize
the homogeneous distribution of confounding factors
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Figure 1 Summary of final setup produced by the default algorithm. a) the distribution of SampleType characteristic across the plates; b) the distribution
of Race characteristic across the plates; c) the distribution of AgeGrp characteristic across the plates; d) the index of optimization steps versus value of
the objective function. The blue diamond indicates the starting point, and the red diamond marks the final optimized setup.
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across batches. While motivated to handle challenging
instances where incomplete and unbalanced sample col-
lections are involved, OSAT can also handle ideal
balanced RCBD.

Partly due to its simplicity in implementation, complete
randomization has been frequently used in the sample as-
signment step of experiment practice. When sample size
is large enough, randomized design will be close to a
balanced design. However, simple randomization could
lead to undesirable imbalanced design where efficiency
and confounding might be an issue after the data collec-
tion. As we demonstrated in the manuscript, simply per-
forming randomizations might lead to undesired sample-
to-batch setup showing batch dependence, especially for
unbalanced and/or incomplete sample sets which doesn’t
comply with the original ideal design. OSAT package is
designed to avoid such scenario, by providing a simple
pipeline to create sample assignment that minimizes the
association between sample characteristics and batches.

The software was implemented in a flexible way so that it
can be adopted by genomics practitioner who might not
be specialized in experiment design.

It should be emphasized that although the impact of
batch effect on genomics study might be minimized
through proper design and sample allocation, it may not
be completely eliminated. Even with perfect design and
best effort in all stages of experiment including sample-
to-batch assignment, it is impossible to define or control
all potential batch effects. Many statistical methods have
been developed to estimate and reduce the impact of
batch effect at the data analysis stage (i.e., after the ex-
periment part is done) [1,9-12]. It would be helpful that
analytic methods handling batch effects are employed in
all stages of a genomics study, from experiment design
to data analysis.

Experimental design has been applied in many areas,
with methods being tailored to the needs of various
fields. A collection of R packages for experimental

Table 1 Comparison of sample assignment by two algorithms implemented in OSAT and an undesired sample

assignment through complete randomization

Default algorithm

(optimal.shuffle)

Alternative algorithm An undesired setup through

complete randomization

(optimal.block)

Variable DF Chi-square P value Chi-square P value Chi-square P value

SampleType 5 02034518 0.9990763 0.03507789 0.9999879 1325243 0.021124664
Race 5 0.2380335 0.9986490 3.68541503 0.5955359 14.22455 0.014244218
Age_grp 20 0.8138166 1.0000000 5.08147313 0.9996856 39.75020 0.005371387
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Figure 2 Summary of final setup produced by the alternative algorithm. a) the distribution of SampleType characteristic across the plates; b)
the distribution of Race characteristic across the plates; ) the distribution of AgeGrp characteristic across the plates; d) the index of generated setups
versus value of the objective function. The blue diamond indicates the first setup generated, and the red diamond marks the final selected setup.
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design is available at http://cran.r-project.org/web/views/
ExperimentalDesign.html. Many of these existing experi-
ment design software work for ideal situation (i.e., before
sample collection) where the sample size is fixed and/or
model is specified. For example, the software in above

link includes optimal design (e.g. AlgDesign, requiring
model specification), orthogonal arrays for main effects
experiments (e.g., function oa.design, constrained by
sample size/number of factors), factorial 2-level designs
(e.g., Package FrF2, particularly important in industrial
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Figure 3 Summary of an undesired setup produced by complete randomization. a) the distribution of SampleType characteristic across the
plates; b) the distribution of Race characteristic across the plates; €) the distribution of AgeGrp characteristic across the plates.
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experimentation), and etc. We developed OSAT to facili-
tate the allocation of collected samples into different
batches in genomics studies. Our software implements
the general experiment design methodology to achieve
the optimal sample-to-batch assignment in order to
minimize the impact of batch effects. It is specifically
used in the profiling stage of a genomics study when the
available experimental samples ready to be profiled in
the genomics instruments are collected. It provides pre-
defined batch layout for some of the most commonly
used genomics platforms. Written in a modularized style
in the open source R environment, it provides the flexi-
bility for users to define the batch layout of their own
experiment platform, as well as optimization objective
function for their specific needs, in sample-to-batch as-
signment in order to minimize the impact of batch
effects. To our best knowledge, there is no other tool for
this important utility within the framework of
Bioconductor.

Methods

Methodology

The current version of OSAT provides two algorithms
for creation of sample assignment across the batches
based on the principle of block randomization, which is
an effective approach in controlling variability from
nuisance variables such as batches and its interaction
with variables of our primary interest [6-8,13]. Both
algorithms are composed of a block randomization step
and an optimization step. The default algorithm (imple-
mented in function optimal.shuffle) sought to first block
all variables considered to generate a single initial as-
signment setup, then identify the optimal one which
minimizes the objective functions (i.e, the one with
most homogeneous cross-batch strata distribution)
through shuffling the initial setup. The alternative algo-
rithm (implemented in function optimal.bicok) sought to
first block specified variables (e.g., list of variables of pri-
mary interests) to generate a pool of assignment setups,
then select the optimal one which minimize the object-
ive functions based on all variables considered (including
those variables which are not included in the block
randomization step). A detailed description is provided
as below.

By combining the variables of interest, we can create a
unified variable with its levels based on all possible com-
binations of the levels of the variables involved. Assum-
ing there are a total of s levels in the unified variable
(referred as optimization strata in this package) with §;
samples in each stratum, j = 1 ... s, and assuming we
have m batches with B;, i = 1... m wells available in each
batch. In an ideal balanced RCBD experiment, we have
equal sample size in each strata: S; = ...= §; = §, and
each batch includes the same number of available wells,
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B; = ... = B,, = B, with equal number of samples from
each sample strata.

The expected number of sample from each stratum to
each batch is denoted as E;. One can split it to its inte-
ger part and fractal part as

Bj
ziBi

where | E;] is the integer part of the expected number
and J;; is the fractal part. In the case of equalbatch size,
it reduces to {EilJ = % . When we have RCBD, all §;; are
Zero.

For an actual sample assignment

E=Z (5| v,

St ... S
B,
. ni1 e Mg
By,
Nyl -« My

where #; is the number of sample in each
optimization strata from an actual sample assignment.
Our goal is, through a block randomization step and
an optimization step, to minimize the difference be-
tween expected sample size Ej; and the actual sample
size 7.

The block randomization step is to create initial
setup(s) of randomized sample assignment based on
strata combining the blocking variables considered.
The blocking variables include all variables of interests
in the default algorithm, but only a specified subset of
variables in the alternative algorithm.

In this step, we sample i sets of samples from each
strata S; with size |E;], as well as j sets of wells
from each B; batches with size of |Ej;j. The two
selections are linked together by the ij subgroup,
randomized in each of them. The rest of samples r;=
S;— > i Ey) can be assigned to the available wells in
each Block w;=B;-> ;| E;|. The probability of a
sample in r; from strata S; being assigned to a well
from block B; is proportional to the fractal part of
the expected sample size §;. For a RCBD, each batch
will have equal number of samples with same charac-
teristic and there is no need for further optimization.
However, for other instances where the collection of sam-
ples is unbalanced and/or incomplete, an optimization
step is needed to create a more optimal setup of sample
assignment.

The optimization step aims to identify an optimal
setup of sample assignments from multiple candi-
dates. To select optimal sample assignment, we need
to measure the variation of sample characteristics be-
tween batches. In this package, we define the optimal
design as a sample assignment setup that minimizes
our objective function based on principle of least
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square method [13]. The objective function can be
defined as

Ve (B
i

where Ej; and #; were defined previously.

In the default algorithm implemented in OSAT,
optimization is conducted through shuffling the initial
setup obtained in the block randomization step. Specific-
ally, after initial setup is created, we randomly select k
samples from different batches and shuffle them be-
tween batches to create a new sample assignment. Value
of the objective function is calculated for the new setup
and compared to that of the original one. If the new
value is smaller, the new assignment will replace the pre-
vious one. This procedure will continue until we reach a
pre-set number of attempts (5000 by default).

In the alternative algorithm, multiple (typically thou-
sands of or more) sample assignment setups are first
generated by procedure described in the block
randomization step above, based only on the list of spe-
cified blocking variable(s). The optimal one will be
chosen by selecting the setup (from the pool generated
in the block randomization step) which minimizes the
value of the objective function based on all variables
considered. This algorithm will guarantee the identifica-
tion of a setup that is conformed to the blocking re-
quirement for the list of specified blocking variables,
while attempting to minimize the between-batches varia-
tions of the other variables considered.

Implementation

We provide a brief overview of the OSAT usage as
below. A more detailed description of package function-
ality can be found in the package vignette and manual.

Data format

To begin, sample variables to be considered in the
sample-to-batch assignment will be encapsulated in an
object using function

sample<— setup.sample (x, optimal, .. .)

where in data frame x each sample is represented by a
row and category variables including our primary inter-
est and other variables are listed as columns. The par-
ameter optimal indicates the vector of variables to be
considered.

Batch layout

Next, the number of plates to be used in the genomic
experiment, the layout design of these plates, and the
level of batch effect to be considered are captured in a
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container object using constructor function

Container <— setup.container(plate, n, batch, ...)

where parameter plate is an object representing the lay-
out (number and type of chip used, rows and columns
of wells, the ordering of them, and etc.) of the plate used
in the experiment. Layouts of some commonly used
plates and chips are predefined in our package (e.g., the
[luminaBeadChip Plate). The user can define their own
layout using the classes and methods provided in OSAT.
Optional parameter batch has default value “plates”, in-
dicate batch effect will be considered at the plate level.
User can use batch="chips" to consider batch effect at
chip level.

Block randomization and optimization
Third, sample-to-batch assignment can be created
through function

create.optimized.setup(fun="optimal.shuffle",sample,
container, . ..)

The default algorithm is implemented in function opti-
mal.shuffle, while the alternative algorithm is implemen-
ted in function optimal.blcok. Users can also define
objective function following the instruction in the pack-
age vignette.

Output

Last, bar plot of sample counts by batches for all vari-
ables considered is provided for visual inspection of the
sample assignment. Chi-square tests are also to examine
the dependence of sample variables on batches. The final
sample-to-batch assignment can be output to CSV.

Availability and requirements
Project name: OSAT
Project home page: http://bioconductor.org/packages/
2.11/bioc/html/OSAT html
Operating system(s): Windows, Unix-like (Linux, Mac
0SX)
Programming language: R >= 2.15
License: Artistic-2.0
Any restrictions to use by non-academics: None

Additional file

Additional file 1: Table S1. Example data. Table S2. Data distribution.
Figure S1. Number of samples per plate. Paired specimens are placed on
the same chip. Sample assignment use optimal.block method.
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