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Abstract

Background: Amino acid point mutations (nsSNPs) may change protein structure and function. However, no
method directly predicts the impact of mutations on structure. Here, we compare pairs of pentamers (five
consecutive residues) that locally change protein three-dimensional structure (3D, RMSD>0.4A) to those that do
not alter structure (RMSD<0.2A). Mutations that alter structure locally can be distinguished from those that do not
through a machine-learning (logistic regression) method.

Results: The method achieved a rather high overall performance (AUC>0.79, two-state accuracy >72%). This
discriminative power was particularly unexpected given the enormous structural variability of pentamers. Mutants
for which our method predicted a change of structure were also enriched in terms of disrupting stability and
function. Although distinguishing change and no change in structure, the new method overall failed to distinguish
between mutants with and without effect on stability or function.

Conclusions: Local structural change can be predicted. Future work will have to establish how useful this new
perspective on predicting the effect of nsSNPs will be in combination with other methods.

Background

Protein structures very robust under sequence change
Evolution creates the specific protein landscape that we
observe today. Mutations are random but selection is the
driving force that shapes the observable protein variety by
favoring those deviations that maintain or improve pheno-
type. This constrained sampling process explains the
sequence diversity compatible with a given protein three-
dimensional (3D) structure: over 50-80% of all residues can
be changed without altering structure significantly [1-3].

Local structure change can impact phenotype

Although many different sequences map to similar struc-
tures, point mutants can change structure dramatically
[4-6]. Some of the intricate details of 3D structures are
crucial for function. Therefore, such local conformational
changes may impact protein function and may cause

* Correspondence: schaefer@rostlab.org

"TUM, Bioinformatics - 112, Informatik, Boltzmannstr. 3, 85748 Garching,
Germany

Full list of author information is available at the end of the article

( BioMVed Central

disease. Usually, this is more likely for structure changes
connected to binding sites. For instance, the disruption
of hydrophobic interactions, or the introduction of
charged residues into buried sites, or mutations that
break beta-sheets often impact phenotype severely and
raise the susceptibility for disease [7-9]. Using 83 X-ray
mutant structures from 13 classes of proteins, an early
work pioneered the prediction of local structural changes
by expert rules operating on position-dependent rota-
mers [10]. It is unclear, how well such an approach
would cope with the protein variety found in the current
PDB [11]. Thus, we followed a different approach. We
compiled a set of structurally superimposed pairs of pro-
tein fragments with identical sequence except for one
central residue mismatch, and applied machine-learning
to predict structural change from sequence.

Methods

Central pentamer data

We extracted 146,296 protein chains from X-Ray struc-
tures in the Protein Data Bank (PDB, July 2010) [11].
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Then we applied two techniques for redundancy reduc-
tion. The first set (dubbed “cdhit98”) contained 24,890
chains; it resulted from clustering with CD-HIT [12] to a
level at which no pair had over 98% percentage sequence
identity. The second set (dubbed “hval0”) contained
3,767 chains; it resulted from filtering at HVAL>0
[2,3,13] (corresponding to ~20% maximal pairwise
sequence identity for alignments over 250 residues). We
chopped each chain in each set into all overlapping frag-
ments of five consecutive residues (pentamers), remov-
ing: (i) pentamers with chain breaks (peptide bond length
>2.5A, as defined in DSSP [14]), (ii) pentamers with non-
standard amino acids, and (iii) all but the first set of
atomic coordinates for residues with alternative locations.
Each pentamer from the first set (cdhit98) was paired
with each pentamer from the second set (hval0).

We selected pairs of pentamers that differed only in the
central amino acid, and that originated from proteins with
over 30% overall percentage pairwise sequence identity.
We also filtered out pairs for which either fragment was
already in a much larger fragment that fulfilled the above
criteria. This procedure yielded 35,533 pentamer pairs. For
each pair, we calculated the root mean square displace-
ment (RMSD) over all C-alpha atoms after optimal super-
position of the two pentamer backbones (McLachlan
algorithm [15] as implemented in ProFit [16]). To turn the
continuous RMSD differences into a binary problem
(mutant changes structure or not), we had to decide what
constitutes a structural effect and what is neutral in that
sense. In lack of a scientifically meaningful definition for
structural change of pentamers, we chose thresholds that
appeared reasonable given the observed distributions and
that separated all pentamer pairs into an even amount of
structurally neutrals and non-neutrals. We defined RMSD
values <0.2A as structurally neutral and values >0.4A as
structurally non-neutral, i.e. as structural change; we
ignored all pairs in between these two. These particular
thresholds assigned 12,046 pentamer pairs to the class of
“structural change” and 13,675 to the class “neutral”. For
each such pair we randomly designated one fragment as
wild type fragment and the central mismatch residue of
the other fragment as the mutant amino acid.

Additional functional data

For comparison, we also used two data sets that had been
used previously (Additional file 1). The first set com-
prised 12,461 functionally neutral and 35,585 functional
effect mutants from 3,444 proteins [17,18]. The second
consisted of 657 mutants having an effect on protein sta-
bility and 652 mutants with no effect on stability covered
by 47 proteins [19,20]. Mutations leading to a change in
the Gibbs free energy (AAG) < -1 kcal/mol or >1 kcal/
mol were considered as non-neutral (i.e. both stabilizing
and destabilizing mutations were taken as assays of
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change); all other mutations were treated as neutral (i.e.
no effect).

Additional prediction methods

Various methods predict other aspects of the impact for
amino acid changes, e.g. effects on protein function or
stability. In particular, we applied SNAP [17] and I-
Mutant3 [21] to test their discriminative power on our
data sets. Both methods return raw numerical scores
reflecting direction and reliability of the prediction.
SNAP values range from -100 (neutral for function) to
100 (change of function). The distance of the actual pre-
diction to the decision boundary (0) reflects the reliability
of the prediction and the severity of the predicted effect
(large distance = high reliability and severity [17]). I-
Mutant3 predicts the AAG value upon mutation. We
adhered to the same decision cutoffs as mentioned above
to define neutral and non-neutral.

Prediction method: basics

We applied logistic regression to learn the structural
change upon amino acid change. Logistic regression is a
parameter-free machine-learning algorithm; we adhered to
an implementation offered by the LIBLINEAR package
(L2-regularized logistic regression, dual) [22].

Many protein features may be relevant for the given pre-
diction task. Our feature construction procedure adhered
to a protocol established during the development of SNAP
[17]. All features were derived from protein sequence
alone and were extracted from PredictProtein [23], a
wrapper that combines a large number of independent
prediction methods. We used three conceptually different
types of features: (1) global features describing the global
characteristics of a protein, (2) local features describing
one particular pentamer and its immediate sequence
neighborhood, and (3) difference features that explicitly
describe sequence-derived aspects by which wild type and
mutant amino acid differ.

(1) Global features: We represented sequence length as
four different values each representing a length interval (1-
60, 61-120, 121-180, 181-240 consecutive residues). The
bin that represented the sequence length was set to 0.5,
bins below were assigned to 1, bins above to 0. Amino
acid composition was encoded by 20 values representing
relative frequencies of standard amino acids. We predicted
secondary structure and solvent accessibility using
PROFphd [24,25]. Three values represented the relative
content of residues in predicted helix, strand and loop
conformation and, similarly, three values were used to
encode the relative content of predicted buried, intermedi-
ate and exposed residues.

(2) Local features: We used features that described the
local sequence neighborhood of the amino acid change.
We considered window lengths of 1 (position of change
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only), 5,9, 13, 17 and 21 consecutive residues centered
on the position of change. Values were normalized to the
interval [0, 1]. The biochemical characteristics of an
amino acid influence the local structural conformation.
We considered six different structural and biochemical
propensities: mass, volume [26], hydrophobicity [27],
C-beta branching [28], helix breaker (only proline) and
electric charge of side chain. Evolutionary information
contained in sequence profiles is a valuable source to
obtain knowledge about which amino acids are compati-
ble with a specific region in the protein. While some resi-
dues are tolerated others could disrupt structure. We
used position specific scoring matrices (PSSMs), relative
amino acid frequencies and the information content per
alignment position taken from PSI-BLAST [29] runs
(options: -j 3 —b 3000 —e 1 —h le-3) against a sequence
database consisting of UniProt [30] and PDB [11].
Sequences were redundancy-reduced to a level where no
protein pair had more than 80% sequence identity [12].
Furthermore, we took position-specific independent
counts (PSIC [31]) and adhered to a protocol necessary
for sequence extraction and generation of multiple align-
ment as described elsewhere [17]. In addition, we used
the following predicted structural and functional features:
secondary structure [32,33] and solvent accessibility
[24,25,32], protein flexibility [34], protein disorder
[35-38], protein-protein interaction hotspots [39-41] and
DNA-binding residues [42]. Most prediction methods
used to generate features returned both a discrete predic-
tion and a score reflecting the strength and reliability of
the prediction. We incorporated both outputs in our fea-
ture set. Two-state predictions (disorder, protein and
DNA interaction) were encoded as two mutually exclu-
sive combinations of 1 and 0, each representing the pre-
sence (1) and absence (0) of a state (e.g. disorder vs. no
disorder). Three-state predictions (secondary structure
elements helix, strand, other and solvent accessibility
states buried, intermediate, exposed) were handled simi-
larly. Flexibility was predicted as a numerical value only.
We considered information about the location of the site
of change in the sequence relative to a protein domain as
an important feature. For example, a hydrophobic-to-
polar exchange within the core of a domain may have a
more severe impact on local structure than a change that
happens in a surface loop. We extracted relevant per-
residue information out of the protein family database
Pfam-A [43] using the output from HMMER3 [44]. Of
specific interest was the information about whether the
residue resided in a domain, the conservation of that
position within the domain alignment, how well the resi-
due fitted into the alignment position and the posterior
probability of that match.

(3) Difference features: Of particular interest were fea-
tures that captured the difference in characteristics
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between the two differing central amino acids in a pair of
pentamers. We represented the difference of a particular
property separately by its absolute and its sign, encoded
as 0 (negative) or 1 (positive). The following properties
were encoded in that respect: Change in any of the six
amino acid propensities, difference in conservation scores
(PSSM, relative frequency, PSIC), change in IUPred pre-
dictions for both short and long disorder, change in pre-
dicted secondary structure and solvent accessibility. For
the latter two we ran PROFphd on raw sequence rather
than sequence profile. Although this mode resulted in
reduced prediction performance, it allowed us to observe
an actual difference in the prediction outcome, which
would have been disguised by the use of sequence align-
ments otherwise.

Prediction method: feature selection

We concentrated the training of our model only on the
most predictive sequence features. Toward this end, we
considered one fifth of the pentamer pairs (2,243 structu-
rally non-neutral, 2,882 neutral) and ensured that those
pairs were derived from proteins without significant
sequence similarity (EVAL>10-3) to any protein in the
remaining four fifth of the data. Those 5,125 instances
were further partitioned into ten subsets. Nine such sets
participated in training a logistic regression model, while
its performance was tested on the remainder. We rotated
ten times over all sets such that each instance served once
during testing and training and guaranteed that no signifi-
cant sequence similarity existed between train and test
folds (EVAL>10-3). Before each new rotation, a set of fea-
tures for training and testing the model was determined
by the following iterative protocol. We started with one
feature and established its predictive performance during
one complete rotation as explained above. We did that for
all global and difference features as well as every combina-
tion between local features and window lengths. We mea-
sured feature performance by means of average AUC (area
under the receiver-operator curve) derived from rotating
ten times over the testing folds. The best performing fea-
ture was automatically included for the subsequent evalua-
tion of the remaining features. We stopped this forward
selection after no further increase in average AUC>0.001
was observed.

Performance estimates

We assessed performance only on the test sets (as
described above). In lack of a biological intuition for how
to measure the success of our prediction method, we fell
back to standard measures. Following the typical acro-
nyms, we used TP (true positives) to denote pairs correctly
predicted to change structure (positive) and FP (false posi-
tives) are neutral pairs predicted as change. In analogy,
TN (true negatives) describes correctly predicted neutral
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pairs (no change) and FN (false negatives) are structure-
changing pairs incorrectly predicted as being neutral.
With these, we compiled ROC (Receiver Operating Char-
acteristic) plots, as well as the True Positive Rate (TPR),
and the corresponding False Positive Rate (FPR) defined
by:

TPR = TP / (TP + FN) FPR=FP /(FN+TN) (1)

The area under the ROC-curve (AUC) averaged over ten
rounds of training and testing served as a single perfor-
mance estimator. We also employed the overall two-state
accuracy, often referred to as the Q, measure. Finally, we
monitored class-specific values for AccuracyC, i.e. the
accuracy for the class “structural change”, AccuracyN
(accuracy for the class “neutral”), CoverageC (coverage for
class “change”) and CoverageN (coverage neutral) defined
by:

Q, = (TP + TN) / (TP + FP + TN + FN) 2)

AccuracyC = TP / (TP + FP)
AccuracyN = TN / (TN + EN)

CoverageC = TP / (TP + FN)
CoverageN = TN / (TN + FP)

Our logistic regression model yielded a probability for
an instance to be structurally non-neutral rather than a
discrete class label. By iterating over different probability
thresholds, we sampled a ROC-like space of Accuracy-
Coverage pairs for each of the two classes.

Box plots

We presented distributions through box plots. The lower
and upper box edges depict the first and third quartile,
respectively. The length of a box is the interquartile range
of the distribution. The bold bar inside the box represents
the median, while dashed lines reach to the most extreme
data point that is no more than 1.5 times the interquartile
range away from the upper or lower box edge. It is worth
noticing that per definition the box covers half of the
distribution.

Results and discussion

Fitting parameters to observations easily ends in the trap
of over-optimization [45]. We have addressed this issue in
two ways (Methods). Firstly, we carefully applied standard
cross-validation techniques. This included setting penta-
mer pairs aside that were used only for feature selection,
ascertaining minimal sequence similarity between cross-
validation sets, and avoiding to over-sample the data set.
Secondly, we compared the final method on completely
different data sets.

Evolutionary and structural features most predictive
Our forward selection scheme (Methods) yielded the fol-
lowing features as most informative (Fig. 1): difference
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in PSIC between “native” and “mutant”, predicted sec-
ondary structure (w=17), BLAST information for each
residue (w=21), residue flexibility (w=21), difference in
PSSM and predicted secondary structure between
“native” and “mutant”, HMMER scores for fitting amino
acids into a PFam domain alignment (w=13), predicted
protein-protein interaction hotspots (w=13), and finally
the amino acid volume (w=5). Due to the specific
encoding of those properties (Methods), the overall fea-
ture space covered 147 numerical feature values.

Three features dominate, most features unstable

For the final assessment of our method, we applied full
cross-validation. However, in this paragraph, focus is on
assessing the relative contribution of input features.
Toward this end, we only used one fifth of the data as
one attempt to avoid over-fitting. The numbers are,
therefore, only relevant in a relative way.

The success of the method was dominated by the first
three features, as indicated by the steepest ascent in aver-
age AUC (Fig. 1, first three box plots and solid line).
Already the very first property alone (difference in PSIC
values between wild type and mutant residue) gave an
AUC of almost 0.72 (compared to the random value of
0.5). With the third feature (BLAST information per posi-
tion, w=21), the discrimination reached an AUC of
almost 0.82, close to the performance maximum. The
inclusion of the last feature (residue volume) gave an
AUC of ~0.84 (Fig. 1, last box plot). Thus, the most infor-
mative feature increased the AUC by 0.2, the last six
together by only one tenth of this.

The per-feature performance varied strongly in their
AUC distributions (Fig. 1, long box plots). While this var-
iance was most pronounced for the first feature (PSIC
difference), the trend continued throughout the feature
selection (decrease in variability easily explained by the
decreasing performance). In the performance plateau
regime, features were no longer distinguishable by the
distributions of their ten AUC values (Fig. 1, nearly com-
plete box plot overlap after the third feature). Neverthe-
less, we stopped the feature selection when the
performance did not improve more than AUC>10-3.
This early stop was implemented as another safeguard
against over-fitting.

Sequence-based prediction of structural impact successful
All performance measures reported in following were
compiled from a 10-fold cross validation (Methods). The
logistic regression model estimates the probability for
structural change. Through a simple threshold, this prob-
ability gives a binary prediction (e.g. change>0.5, neu-
tral<0.5) with an overall two-state per-residue accuracy
Q,>72%. However, we also established ROC-curves and
accuracy-coverage plots by dialing through the whole
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Figure 1 Structural and evolutionary features most predictive. Input features according to their cumulative contribution to performance
measured by AUC, i.e. the area under the ROC curve (AUC* indicates that these values refer to results for a subset of the full cross-validation
set). Our forward feature selection scheme suggested that three features raised performance above 0.8: evolutionary information (PSIC [31] diff),
predicted secondary structure (from PROFsec [32,33]) around mutant (mutant position + 8, i.e. 17 input units), and the PSI-BLAST information per
residue for 21 consecutive residues. Additional six features only marginally increase performance up to mean AUC* ~0.84: predicted flexibility
(PROFbval, w=21), difference in both PSI-BLAST PSSM (PSSM diff) and predicted secondary structure scores (PFOFsec diff), the fit of change
position into a PFam domain (PFam fit, w=13), scores for predicted protein-protein interaction hotspots (ISIS, w=13) and residue volumes
(VOLUME, w=5). High variability in AUC* distributions (long box plots, strong overlap between box plots) indicates instability in selected features.
J

spectrum of probability values (Fig. 2A). The final model
reached an overall AUC of ~0.8.

Both above measures assess overall performance with-
out explicitly revealing per-class (change/neutral) levels.
We investigated pairs of coverage/accuracy values
sampled at different probability thresholds. More than
half of neutral and non-neutral predictions (52%)
reached around 80% accuracy (Fig. 2B); for higher accu-
racy, the correct predictions were dominated by predic-
tions of effect.

These results suggested that sequence suffices to pre-
dict the impact of point mutations upon structure
through machine learning. This is particularly remark-
able in light of the fact that pentamer conformations
depend crucially on their structural environment outside

the windows that we have considered as input features
in our prediction method [46-48].

Structural effect predictions enriched in functional impact
Our explicit objective was to predict the impact of single
point mutations upon local structure. The implicit
objective was to also develop a new perspective that aids
in the prediction of how mutations affect function.
While it is clear that the subset of all mutations that
locally change structure will be enriched in mutations
that also affect function, the inverse is not true: muta-
tions that do not change structure may or may not
change function, i.e. will not be enriched in “functionally
neutral”. If our prediction method captured important
aspects of structural change, at best its prediction of
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structural impact will be enriched in those with func-
tional impact.

We tested this alternative perspective on performance
in two ways. On the one hand, we used a data set distin-
guishing amino acid mutations (nsSNPs) that impact
function from those that do not. On the other hand, we
used a data set of mutants that do and do not impact
protein stability. Two results stood out from this analysis.
First, mutations predicted to affect structure were
enriched in those that also affect function (Fig. 3, ascend-
ing dashed curve). Second, the enrichment was propor-
tional to the severity of predicted structural change:
starting at over 76% to values over 81% at a probability
>0.9 (Fig. 3). We observed a similar trend for the stability
data: enrichment in predicted structural effect mutations
was 8-13 percentage points above random (random: 50%,
enrichment: 58%-63%, Fig. 3). Due to little sample size,
the stability enrichment was less significant than that for
functional impact.

The above results strongly suggested that our method
captured important information beyond its explicit train-
ing task. The enrichment over the background might not
seem particularly strong (for function: background about
74% vs. 81% predicted, for stability: background 50% vs.
63% predicted). However, it remains unclear what to
compare this enrichment with: some mutations affect
structure but not function. So what would the enrich-
ment become if we had the complete experimental infor-
mation correlating all possible assays for structure and
function change? Does our method pick up a significant
fraction of the possible signal? We have no means of
answering this question. However, our prediction method
undoubtedly captured a signal pointing into the expected

direction: The increasing severity of structural effect
upon amino acid change is linked with an accumulation
of mutants having an effect on protein function or stabi-
lity, and this achievement was truly “novel” and it pro-
vides information that seems orthogonal to what any
other method could have provided.

Signal for the reverse: predicted functional impact more
pronounced in structural change
In the previous paragraph, we established that our struc-
ture impact predictions capture some signal of functional
change. What about the opposite, i.e. to which extent do
methods that aim at predicting impact on function (e.g.
SNAP [17]) and on stability (e.g. [-Mutant3 [21]) correctly
capture the impact of mutations upon structure? First, we
provided the “background” by the application of our struc-
tural effect method (Fig. 4A+D; data for cross-validation).
Both SNAP (Fig. 4B+E) and I-Mutant3 (Fig. 4C+F) failed
to separate mutations with and without impact on struc-
ture. SNAP at least was able to observe some signal: very
few mutations with impact on structure were predicted at
scores corresponding to predictions of strong effect upon
function. At the default probability threshold of 0.5 our
method correctly predicted 69% of all effect (Fig. 4D left
dark blue bar), and 76% of all the neutral pentamers
(Fig. 4D, right light blue). The corresponding numbers
were 39% functional effect in structural effect / 88% func-
tional neutral in neutral for SNAP (Fig. 4E), and 33% effect
on stability in structural effect / 72% no effect on stability
in neutral for I-Mutant3 (Fig. 4F).

One conclusion from applying SNAP and I-Mutant3 to
our data is that only our method succeeded in managing
the task that we had set. One possible explanation is that
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our task is incorrectly formulated, i.e. our data set of pen-
tamers with and without local structural change is wrong.
Imagine, we assigned labels to pentamers randomly. Then
SNAP and I-Mutant3 would fail. If the labels had truly
been random, our own method would fail, too. Assume
they are not random but biophysically meaningless (e.g.
mutations to aromatic amino acids cause change, all
others are neutral). If this assumption were fully true, our
method would not have picked up a signal in the other
data sets that we tested (Fig. 3). Furthermore, if our data
set were fully non-sense, SNAP could not have picked up
a weak signal. The fact that I-Mutant3 does not pick up a
signal may point to the difference between local changes —
as targeted here — and global changes — as targeted by
I-Mutant3.

All the above considerations support the view that our
definition of local structural change captures an impor-
tant feature of the response of proteins to amino acid

changes, and that the method introduced here succeeds
at solving the task that we posed.

Conclusions

How do point mutations change the life of a protein?
Here, we introduced three new views toward tackling this
question. Firstly, we introduced a different perspective of
change. Structural effect by our definition is perceived as
two protein fragments having a significant dissimilarity in
backbone conformation. Secondly, we created a new data-
set that allowed us to successfully train a machine-learning
model with the incentive to separate structural neutral
from non-neutral fragments. Thirdly, we established that
both our method and definition of structural change also
capture to some extent the impact of change on protein
function. It remains to be investigated in more detail how
exactly the new method can help in annotating the impact
of amino acid changes and nsSNPs.
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Figure 4 Correlation between structure and function not picked up by other methods. We applied three prediction methods to our
dataset of structural effect: (A, D) the new method introduced here, (B, E) SNAP [17] predicting impact on function, and (C, F) -Mutant3 [21]
predicting the impact on stability. In lack of a better alternative, we chose the default threshold for each method (horizontal dashed lines) to
distinguish neutral from effect. The method introduced here that is specialized to separate structural effect from neutral performs best at this
task (A: little overlap between boxes; note: data in cross-validation mode of our method). The distributions from SNAP (functional effect
prediction) and I-Mutant3 (stability prediction) both do not capture the structure signal.

Additional material

Additional file 1: Datasets of mutants with observed effects on
function and stability. Archive of the two different mutant sets with
observed effects along with predictions of their effect on local structure.
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