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Abstract

Background: Advances in whole genome profiling have revolutionized the cancer research field, but at the same
time have raised new bioinformatics challenges. For next generation sequencing (NGS), these include data storage,
computational costs, sequence processing and alignment, delineating appropriate statistical measures, and data
visualization. Currently there is a lack of workflows for efficient analysis of large, MethylCap-seq datasets containing
multiple sample groups.

Methods: The NGS application MethylCap-seq involves the in vitro capture of methylated DNA and subsequent
analysis of enriched fragments by massively parallel sequencing. The workflow we describe performs MethylCap-
seq experimental Quality Control (QQC), sequence file processing and alignment, differential methylation analysis of
multiple biological groups, hierarchical clustering, assessment of genome-wide methylation patterns, and
preparation of files for data visualization.

Results: Here, we present a scalable, flexible workflow for MethylCap-seq QC, secondary data analysis, tertiary
analysis of multiple experimental groups, and data visualization. We demonstrate the experimental QC procedure
with results from a large ovarian cancer study dataset and propose parameters which can identify problematic
experiments. Promoter methylation profiling and hierarchical clustering analyses are demonstrated for four groups
of acute myeloid leukemia (AML) patients. We propose a Global Methylation Indicator (GMI) function to assess
genome-wide changes in methylation patterns between experimental groups. We also show how the workflow
facilitates data visualization in a web browser with the application Anno-J.

Conclusions: This workflow and its suite of features will assist biologists in conducting methylation profiling
projects and facilitate meaningful biological interpretation.

Background
Advances in whole genome profiling technologies have

understanding of the complex, underlying molecular
mechanisms that lead to cancer. Reduction in costs have

revolutionized the field of cancer research. These technol-
ogies have facilitated the discovery of potential biomarkers
for disease development and progression as well as our
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spurred the adoption of next generation sequencing
(NGS) platforms which offer greater resolution and sensi-
tivity compared to traditional microarray profiling [1]. At
the same time, NGS raises new bioinformatics challenges,
both practical (e.g. data storage, computational costs) and
theoretical (e.g. defining appropriate statistical measures).
A promising application of NGS is the whole-genome
profiling of epigenetic modifications, including DNA
methylation. The addition of methyl groups to the 5’
carbon position of cytosine bases is a major mechanism
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of epigenetic regulation which participates in reorganiz-
ing chromatin structure and silencing gene expression
[2], Epigenetic alterations, such as tumor suppressor
gene hypermethylation and oncogene hypomethylation,
are hallmarks of cancer and play a pivotal role in tumor-
genesis and disease progression [3,4].

The DNA methylation profiling approach used in our
lab, MethylCap-seq involves the in vitro capture of methy-
lated DNA with the high affinity methyl-CpG binding
domain of human MBD2 protein and subsequent analysis
of enriched fragments by massively parallel sequencing
[5-8]. Benchmarking has shown MethylCap-seq is more
effective at interrogating CpG islands than antibody-based
methylated DNA immunoprecipitation sequencing
(MeDIP-seq) [9]. While optimizing this experimental tech-
nique, we recognized two potential issues affecting subse-
quent data analysis. First, unsuccessful or incomplete
capture reactions can result in the sequencing of non-
methylated DNA fragments, leading to inconsistencies in
or the absence of methylation enrichment in a sample.
Second, poor sequencing library complexity and CpG cov-
erage limit the statistical power to call differential methyla-
tion, and ultimately the reproducibility of the dataset.
Conventional sequencing analysis pipelines often do not
include assay-dependent quality control assessments.
Spurious samples reduce analytical power and lead to
excess “noise” in downstream analyses.

The challenges to data analysis are real. The numerous
options for file processing and genome alignment mean
any particular strategy requires extensive troubleshooting
and optimization. Large file sizes make data visualization
exceedingly difficult without the use of expensive com-
mercial software packages or system resource-intensive
publicly available programs. In more practical terms,
MethylCap-seq projects, in particular, would greatly ben-
efit from the ability to receive rapid feedback of overall
experimental quality. There is also a lack of workflows
for efficient analysis of large, MethylCap-seq datasets
containing multiple sample groups. To address these per-
tinent issues, we have developed a scalable, flexible work-
flow for MethylCap-seq Quality Control and secondary
data analysis which facilitates tertiary analysis of multiple
experimental groups and data visualization.

The automated MethylCap-seq workflow has been
developed over the course of 200 sequencing runs. The
workflow is scalable in terms of handling studies of dispa-
rate sample sizes. It is flexible in that unique experimental
considerations (genome alignment, read bin sizes, test sta-
tistics) can be addressed by simple modification of several
operational parameters independent of the scripts respon-
sible for automating the workflow. Automation is impera-
tive because of the large number of intermediate steps and
temporary files required. The workflow incorporates pro-
ven, existing tools where applicable: e.g., raw read
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processing, the short read aligner, the R environment and
third party libraries. It further takes advantage of high per-
formance computing systems for parallel batch job sub-
missions. This feature is important for scalability and
computational feasibility. Data visualization is supported
by Anno-J, a genome annotation visualization program
and web service viewport.

Methods

Patient samples

A total of 71 ovarian cancer samples, 6 adjacent normal
tissues as well as 20 tissues collected from patients during
surgery for benign gynaecological disease were obtained
from Triservice General Hospital, Taipei, Taiwan. All
studies involving human ovarian cancer samples were
approved by the Institutional Review Boards of Triservice
General Hospital and National Defense Medical Center.

Methylated-DNA capture (MethylCap-seq)

Enrichment of methylated DNA was performed with the
Methylminer kit (Invitrogen) according to the manufac-
turer’s protocol. Briefly, one microgram of sonicated
DNA was incubated at room temperature on a rotator
mixer in a solution containing 3.5 micrograms of MBD-
Biotin Protein coupled to M-280 Streptavidin Dynabeads.
Non-captured DNA was removed by collecting beads on
a magnet and washing three times with Bind/Wash Buf-
fer. Enriched, methylated DNA was eluted from the bead
complex with 1 M NaCl and purified by ethanol precipi-
tation. Library generation and 36-bp single-ended
sequencing were performed on the Illumina Genome
Analyzer IIx according to the manufacturer’s standard
protocol. Each sample was sequenced on a single lane,
for a total of 97 lanes. Additional data sets are presented
for demonstration purposes only.

MethylCap-seq experimental QC

The quality control module identifies technical problems
in the sequencing data and flags potentially spurious
samples. The module is based on MEDIPs [10], an
enrichment-based DNA methylation analysis package,
and provides rapid feedback to investigators regarding
dataset quality, facilitating protocol optimization prior to
committing resources to a larger scale sequencing pro-
ject. Figure 1 illustrates the QC automated workflow. For
each aligned sequencing file (e.g., the default output of
Illumina’s CASAVA pipeline), duplicate reads are
removed (a correction for potential PCR artifacts), and a
stripped, uniquely aligned sequence BED file is loaded
into an R workspace for processing by the MEDIPS
library. Three functions are performed on the data:
Saturation analysis, CpG enrichment calculation, and
CpG coverage analysis. Saturation analysis performs a
Pearson correlation coefficient estimation of sequencing
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library complexity and potential reproducibility. CpG
enrichment calculation consists of the relative CpG dinu-
cleotide frequency interrogated by aligned sequence
reads divided by the relative frequency of CpG dinucleo-
tides in the reference genome. CpG coverage rate (5x) is
the fraction of CpG dinucleotides in the reference gen-
ome sequenced at least five times. The automated work-
flow produces a QC summary file containing the
MEDIPs results and sequencing output metrics from the
Illumina CASAVA pipeline. The QC module utilizes the
parallel processing capability of a supercomputing envir-
onment to greatly decrease the time required for analysis.

Sequence file processing and alignment

The ability to use multiple custom sequence alignment
policies facilitates analysis of various genomic regions
and features. Bowtie, a short read aligner, provides
many alignment policies and options that allow a great
deal of customization of the alignment output[11].
While our focus and workflow centers on reporting
uniquely aligned reads, alternative alignment options are
used for more customized data analysis. The gseq files
are preprocessed for a uniquely aligned Bowtie output
by being converted to FASTA format. The converted
file is then aligned by Bowtie with options that optimize
for uniquely aligned reads and output in SAM format.
Post processing uses various SAMtools [12] commands
to convert the alignment to BAM format and remove all
duplicate reads from the alignment before converting
back to a final SAM alignment. The workflow, illu-
strated in Figure 2, is concisely handled by a single
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script which passes each intermediate stage of the align-
ment process to the subsequent stage and outputs a sin-
gle SAM alignment file and a report of the number of
reads that were aligned and those which were counted
as duplicates. Speed is increased by Bowtie’s multi-
threading options and by performing the alignment in a
supercomputing environment. To achieve alternative
alignments, Bowtie options can be changed, and differ-
ent genomic sequences or subsets of genomic sequences
may be used for alignment. With minor modification
our workflow can be run with other short read aligners
that generate SAM files as output.

Global methylation analysis workflow

The methylation analysis workflow is outlined in Figure
2. Chromosomal coordinates of sequence reads are
parsed from the final alignment output, then counted
using a specified bin size and read extension length
(reflecting average fragment size) in order to generate a
binary file containing bin counts and scaled count values
(reads per million - rpms). The bin size determines the
computational resolution of the analysis. We find that a
bin size of 500 bp provides sufficient analysis resolution
while smoothing the data statistically. The binary counts
file is next interrogated by genomic feature (e.g., CpG
islands, CpG shores, Refseq genes) to generate feature-
specific count files. The workflow is compatible with
custom feature files listing genomic loci of interest in
BED format. In addition, aggregate read count summa-
ries can be compiled for each type of genomic feature.
Our approach of binning aligned reads, scaling read
count values, and/or generating genomic feature-specific
count files could prove applicable to other enrichment-
based sequencing methods. For instance, the process
responsible for filtering counts by genomic features
might be modified to accept ChIP-seq peak calling
values.

Once the samples are binned and genomic features
are extracted, they are grouped based on biological fac-
tors, such as known genotype difference, and statistical
tests are performed to discern if there are significant dif-
ferences in methylation counts among predefined
groups of samples. One locus from a genomic feature in
one group is tested against the same locus in the other
group for all loci in that genomic feature. The statistical
test used is dependent on the number of groupings. For
two groups a Wilcoxon rank-sum test is employed to
test the distribution of methylation counts for each
locus across the two groups. We then select significant
differentially methylated loci by applying a multiple test
corrected p-value cutoff (False Discovery Rate, FDR).
Similarly for groupings of more than two biological fac-
tors, the Kruskal-Wallis test is employed. Statistical test-
ing of genomic features is a custom workflow
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implemented in R which utilizes the predefined Wil-
coxon and Kruskal-Wallis test functions. The output of
the workflow is a list of loci from each genomic feature
that passes significance testing. Boxplots are also created
for the list of significant features for visualization of
their differential methylation.

To assess genome-wide changes in methylation patterns
between experimental groups, we calculate a Global
Methylation Indicator (GMI) for each individual sample in
different groups. First, the sample’s methylation distribu-
tion, an average rpm for each CpG content classification,
is determined. The distribution is obtained as follows:
each 500 base bin is classified by the CpG content (# of
CG base sequences, counting any CG base sequences
straddling the end of the bin and the beginning of the
next) within the 500 bases it covers. Then within each
CpG content classification, the average rpm per bin is cal-
culated by summing the rpms and dividing by the number
of bins. The difference between two groups is calculated
by using a t test on the estimation of the area under the
curve for each individual sample.

Clustering

To identify novel classifications of samples indepen-
dently of predefined biological factors, unsupervised
clustering of the data can be implemented. Clustering of

the data is a workflow that takes a data matrix of the
samples and the rpm value of each locus for a given
genomic feature. The workflow is implemented in R and
utilizes various R libraries for matrix manipulation,
flashClust, and pvclust for unsupervised clustering.
Adjusted p-values are obtained via multiscale bootstrap
resampling of the data. Many combinations of correla-
tion calculations and clustering methods can be imple-
mented. Our clustering workflow uses the Pearson
correlation distance measure. It takes as input the “raw”
rpm data values or rescaled rpms, depending on the fea-
tures of interest in the dataset. Rescaling the rpms
involves dividing the rpms of each locus by the average
rpm for that locus. This allows Pearson correlation to
evenly weight both the low and high rpm values. Using
the raw rpms causes Pearson correlation to more heavily
weight the high rpms. The default clustering method of
the workflow is that of McQuitty, but R provides any
number of additional choices. Our workflow also imple-
ments data selection criteria that enforce a minimum
coefficient of variation (CV) threshold in combination
with minimum average rpm threshold for each locus. In
tandem with the dendrograms, heatmaps are also pro-
duced to help visualize the relationship between the
clustering sample members. This entire workflow,
including all combinations of selection criteria and all
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genomic features of interest, is completed in a single
script.

Because we produce a variety of dendrograms through
the use of various genomic features and loci selection cri-
teria, it is useful to see if the membership of a significant
group is conserved throughout the dendrograms that were
created using other genomic features and even within
genomic features analyzed with varying selection criteria.
To easily visualize the location of a certain sample group’s
membership in other dendrograms, we use different colors
to track the membership of that group through alternative
dendrograms that are produced for different genomic fea-
tures and selection criteria. Tracking the membership of a
group is accomplished by supplying the membership of
that group to a color function that can be applied to sub-
sequent dendrograms through the dendrapply function
in R.

Data visualization
In our workflow, we have incorporated Anno-J, a REST-
based Web 2.0 application for the visualization of deep
sequencing information and other genomic annotations
[13]. Anno-]J is capable of streaming all necessary applets
and scripts to the user, providing immediate and installa-
tion-less viewing within a user’s web browser. This facili-
tates the fast, real-time and interactive visualization of
multiple data sets by users with access to any server host-
ing Anno-J. Data visualization within Anno-]J uses tracks,
discrete rows of graphs, each of which corresponds to a
particular set of data. Our workflow incorporates a num-
ber of custom scripts which allow quick conversion of bin-
ary and raw text read counts and SAM files to various
Anno-] track formats, including standard mask and read
tracks. These scripts extract from read count files the loca-
tion and rpm, and from SAM files the location, sequence
count and strand identifier, and generate Anno-]J read
track format files. With minor modification, the scripts
could be used to generate data tracks compatible with the
UCSC Genome Browser. For the Anno-] experiment
tracks, a scheduled service loads any new files from a
shared folder into our database using a prescribed data
format. Each track is assigned a unique identifier and
properties for experiment type (e.g., methylation, small
RNA) and track type (e.g., read, mask). The Anno-J] web
application will configure the browser with specified tracks
based on these properties. The browser calls web services
which return formatted data for each track, filtered by the
currently viewable portion of the chromosome.
Additionally, we have incorporated a custom algorithm
which allows conversion of binary and raw text read
counts files to a custom discretized methylation heatmap
track format. The heatmap track format modifies con-
straints and features of the Anno-J mask track format to
allow generation of individual rows of heatmap data.
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Discretized methylation heatmap tracks are created by
percentile ranking binned rpm values from binary or raw
text read counts files, and then assigning color gradient
based upon rank. Generation of the final discretized heat-
map is a matter of stacking multiple heatmap tracks
together.

Results and discussion

Experimental quality control

The automated MethylCap-seq workflow has been devel-
oped over the course of 200 sequencing runs. It has been
applied to human solid tumors (e.g., breast, ovarian, endo-
metrial, and hepatocellular carcinoma) and blood cancers
(e.g., acute myeloid leukemia, chronic lymphocytic leuke-
mia) as well a number of mouse cancer models. Though
untested in that context, our analysis workflow should be
applicable to other enrichment-based methylation assays
such as MeDIP-seq studies.

The QC workflow runs immediately after the sequencing
experiment has been transferred from the Illumina Real
Time Analysis (RTA) pipeline. It calls several functions of
the R package MEDIPS [10] and reads the Illumina RTA
run summary output. From our QC workflow, we have
found the following parameters considered collectively can
flag problematic samples: CpG enrichment, saturation,
CpG coverage, and alignment rate. Even valid samples
occasionally fail a single parameter; thus, we typically
exclude those which fail two or more parameters. QC
results from a large ovarian cancer study dataset (97
patient samples) are shown in Figure 3A-D. 2 of 97 lanes
of data were excluded from further analysis. In a second
large cancer dataset (105 patients) where the majority of
samples were sequenced on multiple lanes (207 in total),
43 (20.8%) qualified for exclusion. Sequencing of new
libraries generated for 12 samples with prior insufficient
aligned reads all failed the QC again, demonstrating how
sample intrinsic factors (such as DNA quality or integrity)
dramatically impact the quality of MethylCap sequencing
data. CpG enrichment, the frequency of CpG dinucleotides
observed in the sequenced sample compared to the
expected frequency in the reference genome, is likely the
most significant QC parameter because it can indicate fail-
ure of the initial methylation-capture step. As MethylCap-
seq is an enrichment-based approach, identifying failures
in enrichment is imperative. We observed an average CpG
enrichment value of 2.70 + 0.35 in the ovarian cancer data-
set. In general, enrichment values range from 2 - 3.5 and
show similar distributions in samples from normal and
malignant tissues as shown for the ovarian cancer dataset
(Figure 3C). Enrichment values from input samples (non-
captured DNA) are less than or near 1. We routinely
exclude samples with CpG enrichment values less than
1.4. Such samples usually have low saturation values
as well (less than 0.5), a measure of the statistical
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Figure 3 QC analysis of a large sample cohort. The QC values associated with a large ovarian cancer study dataset are presented in box plots
according to sample type (normal = 6, benign = 20, malignant = 71). In each plot, threshold cutoff values for sample exclusion are indicated by
hatched horizontal reference lines. A, Box plot of MethylCap-seq unique read alignment rate. The fraction of pass-filter reads which align
uniquely to the human reference genome. B, Box plot of Saturation analysis, a Pearson correlation coefficient estimation of sequencing library
complexity and potential reproducibility. C, Box plot of CpG enrichment, the relative CpG dinucleotide frequency interrogated by aligned
sequence reads divided by the relative frequency of CpG dinucleotides in the reference genome. D, Box plot of CpG coverage rate (5x), the
fraction of CpG dinucleotides in the reference genome sequenced at least five times.
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reproducibility of the dataset, suggesting that the methyla-
tion calls would be difficult to reproduce if the library was
resequenced.

Differential methylation analysis of multiple sample
groups

Current strategies for enrichment-based sequencing dif-
ferential methylation analysis have been limited to indi-
vidual pair-wise sample comparisons such as tumor
versus normal [9] or comparisons of multiple samples
(in pair-wise fashion) to a common normal reference
sample [14]. Thus a salient feature of our workflow is
the ability to compare methylation profiles of multiple
samples in two or more biological groups. Significance
testing is performed in R with the non-parametric Wil-
coxon (two groups) or Kruskal-Wallis (> two groups)
tests. An example of promoter methylation profiling

analysis for four AML patient groups is shown in Figure
4A-B. Results of individual features can be visualized by
whisker plots as in Figure 4A which shows differential
methylation of the NR_033205 transcript promoter. The
workflow performs unsupervised clustering in order to
identify novel classifications of samples (Figure 4B,
Additional file 1). In methylation profile clustering ana-
lysis, data selection criteria are enforced in order to pare
down the number of loci being used for clustering
within each genomic feature. The rationale for this
approach is that it allows the clustering to be performed
on only the loci with the largest differences among sam-
ples; the minimum rpm value for each locus removes
loci that were not pulled down well during sequencing
and thus are expected to be rather noisy. Hierarchical
clustering of promoter regions passing threshold criteria
(avg rpm > 10 and CV > 5) reveals four distinct patient
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Figure 4 Methylation analysis of multiple sample groups. A, Boxplot of noncoding RNA NR_033202 promoter methylation in four groups of
AML patients. Multiple-testing corrected non-parametric Kruskal-Wallis analysis of variance p-value is shown. B, Hierarchical clustering
dendrogramand heatmap of methylation in gene promoters among four groups of AML patients. The feature threshold criteria were avg rpm >
10 and CV > 5. The full dendrogram generated in R with the pvclust package is included in Additional file 1.
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groupings (Figure 4B, Additional file 1). Combinations
of the selection criteria produce many different dendro-
grams of the data for evaluation and serve as a method
for exploration of novel differentially methylated loci
that may contribute to biological factors. To determine
if membership of a significant group is conserved
among dendrograms created using other genomic
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features or within genomic features analyzed with vary-
ing selection criteria, we implement a group tracking
function as shown in Figure 5. If the membership of a
group is conserved as we track it through alternative
dendrograms, it is more likely to be biologically signifi-
cant rather than an artifact of the specific clustering
procedure.
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Assessing genome-wide methylation patterns of two or more Methylation Distributions provides infor-
To assess genome-wide changes in methylation patterns  mation regarding the differences in average methylation at
between experimental groups independent of genomic fea-  various CpG classifications. A representative Methylation
tures, we calculate a Global Methylation Indicator (GMI)  Distribution plot presented in Figure 6A shows the distri-
for each individual sample in different groups. Comparison  butions of a normal ovarian tissue, an ovarian carcinoma,
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Figure 6 Assessment of global DNA methylation patterns. A, Methylation Distribution plot of a normal ovarian tissue (blue circles), an ovarian
carcinoma (red circles), and an in vitro methylated (Sssi) positive control sample. B, Global Methylation Indicator (GMI) values of the three samples.
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and an in vitro methylated positive control. Likewise, com-
paring two or more GMIs may provide information
regarding gross differences in global methylation. A GMI
plot corresponding to the three samples in Figure 6A is
provided in Figure 6B.

MethylCap-seq data visualization

Effective data visualization can bridge the divide
between computational and experimental biologists
engaged in integrated analysis projects. Visual interpre-
tation of patterns may permit the researcher to observe
phenomena which computational analysis do not detect.
The data workflow prepares samples for visualization in
a web browser with the application Anno-J (Figure 7).
In Anno-J, samples are represented as individual data
tracks which can traversed, scaled and rearranged inter-
actively by the user in real-time. Individual sequence
reads can be visualized at single-base resolution as
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demonstrated in the top panel of Figure 7 which depicts
methylation read data at the EPPKI gene locus in eight
AML patient samples. To interact with data at a much
broader resolution, we developed a custom methylation
heatmap data track. The bottom panel of Figure 7
shows a methylation heatmap of the HOXA gene cluster
in breast cancer cells (n = 35) and normal breast epithe-
lial cell lines (n = 5).

Conclusions

In this paper, we presented a scalable, flexible workflow
for performing MethylCap-seq Quality Control, secondary
data analysis, tertiary analysis of multiple experimental
groups, and data visualization in the web service viewport,
Anno-J. As the cancer epigenetics field further expands
into next generation sequencing, our workflow should
assist biologists in conducting methylation profiling pro-
jects and facilitate meaningful biological interpretation.
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Figure 7 Data visualization with Anno-J. Top, Methylation read data at single base resolution. Data depicted are the 5'

o

|

—

end of the EPPK1 gene

(track 1) and associated CpG island (track 2) in eight AML patient samples (tracks 3 - 10). Bottom, methylation heatmap of the HOXA gene cluster

in 35 breast cancer cell and five normal breast epithelial cell lines (last five rows).
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Additional file 1: Promoter methylation hierarchical clustering
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