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Abstract

Background: Whole genome sequencing enables a high resolution view of the human genome and provides
unique insights into genome structure at an unprecedented scale. There have been a number of tools to infer
copy number variation in the genome. These tools, while validated, also include a number of parameters that are
configurable to genome data being analyzed. These algorithms allow for normalization to account for individual
and population-specific effects on individual genome CNV estimates but the impact of these changes on the
estimated CNVs is not well characterized. We evaluate in detail the effect of normalization methodologies in two
CNV algorithms FREEC and CNV-seq using whole genome sequencing data from 8 individuals spanning four
populations.

Methods: We apply FREEC and CNV-seq to a sequencing data set consisting of 8 genomes. We use multiple
configurations corresponding to different read-count normalization methodologies in FREEC, and statistically
characterize the concordance of the CNV calls between FREEC configurations and the analogous output from
CNV-seq. The normalization methodologies evaluated in FREEC are: GC content, mappability and control genome.
We further stratify the concordance analysis within genic, non-genic, and a collection of validated variant regions.

Results: The GC content normalization methodology generates the highest number of altered copy number
regions. Both mappability and control genome normalization reduce the total number and length of copy number
regions. Mappability normalization yields Jaccard indices in the 0.07 - 0.3 range, whereas using a control genome
normalization yields Jaccard index values around 0.4 with normalization based on GC content. The most critical
impact of using mappability as a normalization factor is substantial reduction of deletion CNV calls. The output of
another method based on control genome normalization, CNV-seq, resulted in comparable CNV call profiles, and
substantial agreement in variable gene and CNV region calls.

Conclusions: Choice of read-count normalization methodology has a substantial effect on CNV calls and the use
of genomic mappability or an appropriately chosen control genome can optimize the output of CNV analysis.

Background
Genetic variation in the human genome occurs in many
forms ranging from large chromosomal abnormalities to
single nucleotide variations, each with varying functional
significance. Copy number variation (CNV) is one such
genetic variation that can range from a few kilobases to
megabases, and involve deletions, duplications, insertions
or translocations. Multiple methodologies on a genome-

wide scale have been used, including RDA, CGH, and
more recently: CNV calling using next generation sequen-
cing [1]. The associations between CNVs and phenotypic
variation or disease-susceptibility are increasingly being
investigated [2], with the most obvious mechanism being
gene-dosage caused by variations in the number of copies
of a gene or its associated regulatory elements. However,
investigations into the biological implications of CNVs in
normal and cancer samples have largely been limited by
measurement technologies. Multiple studies have con-
firmed that the amplifications of oncogenes and loss of

* Correspondence: angel.janevski@philips.com; nevenka.dimitrova@philips.
com
Philips Research, 345 Scarborough Rd, Briarcliff Manor, NY 10510, USA

Janevski et al. BMC Genomics 2012, 13(Suppl 6):S16
http://www.biomedcentral.com/1471-2164/13/S6/S16

© 2012 Janevski et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:angel.janevski@philips.com
mailto:nevenka.dimitrova@philips.com
mailto:nevenka.dimitrova@philips.com
http://creativecommons.org/licenses/by/2.0


tumor suppressors are implicated in the development and
progression of cancer. Validation of CNV results has been
extremely challenging due to natural CNV variations
within and across populations [3-5]. This problem is even
more exacerbated in cancer, and it is now recognized that
cancers have CNV subtype profiles [6]. Establishing frame-
works for evaluation of CNV algorithms is very important
both for human diversity studies as well as cancer.
In contrast to microarray-based CNV detection meth-

ods, where probes are designed following a carefully devel-
oped protocol, whole genome sequencing reads represent
a random sampling from a library and could be susceptible
to biases, for example GC content and other biophysical
and chemical characteristics. In addition, the structure of
the human genome with repeat elements and paralogous
stretches of sequences make mapping of individual
sequencing reads to a reference genome a non-trivial
problem.
Several methods and tools have addressed various

aspects of determining CNV information based on
sequencing data, each accounting for different forms of
normalization: for example, CNVnator [7] uses a mean-
shift approach with additional refinements (multiple-
bandwidth partitioning and GC correction), CNV-seq
produces relative copy number profiles from paired gen-
omes with one serving as a reference [8], FREEC uses
mappability and a control genome [9], and an interesting
application of mrFAST and msFAST [3]. Each tool has a
unique approach and is successful in addressing some of
the CNV detection challenges. Of the available CNV esti-
mation tools, we selected FREEC and CNV-seq as both
tools apply a statistical approach to integrate background
information about the genome into making CNV calls.
Additionally, FREEC allows for various types of normali-
zations, which we deemed a key element in analyzing
genome sequences from multiple populations. The
FREEC tool was developed specifically to enable control-
free copy number alteration detection [9]. FREEC
requires the user to only provide the ploidy of the gen-
ome in order to assign absolute copy number to each
predicted CNV, but FREEC can also be run in other
modes which allow for the normalization of read counts
in the sample genome by inclusion of a control genome
or a mappability track. The algorithm first calculates a
raw copy number profile by counting the number of
reads that map to non-overlapping windows across the
entire genome. The second step involves normalizing
these raw read counts to account for sequence character-
istics of the genome that could influence the number of
reads within each window, followed by segmentation and
subsequent copy-number estimations.
We apply FREEC on a set of genomes spanning four

populations to assess concordance between the outputs
from different normalization methods. We also analyze

the same genomes with CNV-seq and we compare the
output from both tools.

Methods
Whole genome sequencing data
To characterize the landscape of structure variations, we
use whole genome sequencing data from three publicly
available genomes of Caucasian (CEU, NA12891; CEf,
NA12892 [4]), African (YRI1, NA19239 [6]; YRI2 NA
18507 [10]), and Asian (Yh1 [11]; KOR [12]) individuals,
as well as two currently unpublished genomes of two
individuals (UG1, and UG2) from a population distinct
from the six public genomes. All were sequenced using
the Illumina GAII sequencer using paired-end and
single-end reads differing primarily in the read length -
the first three sets genomes are based mostly on 36-base
reads, whereas the 2 additional genomes are using 115
base reads. All genomes were processed and aligned for
this analysis using the Burrows Wheelers Aligner [13]
and Samtools [14] to 25x coverage or higher using a total
number of aligned bases ranging from 100 to 275 million
bases. Identical assembly pipeline was applied to align
the genomes to the Hg19 human genome reference. For
validation, we use genic regions as defined in RefGene
[15], as well as a 8,599 validated CNV segments from
Conrad et al. [5] comparing genotyping information from
several populations.

Estimating copy number variation with FREEC
We run FREEC with 3 Kb window size and other default
parameters except those under study (detailed below).
We compared the CNV estimates from the output of
FREEC, which applies a sliding window strategy with GC
content normalization to make absolute copy number
predictions. FREEC first maps reads from a given sequen-
cing run to non-overlapping windows spanning the entire
reference genome. The raw copy number of a given
genomic region is assumed to be proportional to the
number of reads that align to the windows spanning that
region. The algorithm then normalizes these raw read
counts to account for sequence characteristics of the
genomic region which influence the number of reads
within each window. A segmentation algorithm is applied
to the normalized read counts to identify contiguous
windows that make up a genomic region with a unique
copy-number value. The final step in the algorithm esti-
mates the copy-number value of the segmented genomic
regions, thus resulting in a genome-wide copy number
profile.
FREEC can be run in three configurations correspond-

ing to different normalizations of read counts within a
window [see Additional File 1]. We compare FREEC
results from the different configurations with CNV esti-
mation based on normalization from: (i) GC content,
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(ii) mappability [16] (76-base segment length for UG1
and UG2, and 36-base segment length for the remaining
genomes), and (iii) control genome.
Mappability characterizes the degree to which a region

of certain length is distinct and hence uniquely mappable
to the reference genome. We use FREEC’s default para-
meter which, given mappability information, considers
regions for which 85% of the bases are mappable. We use
three different criteria to select a control genome: (i) in-
population where all genomes use as control the other
genome from the same population, (ii) single control gen-
ome YRI1 (African, similar coverage profile as most gen-
ome), and (iii) single control genome YRI2 (African, high
coverage genome, >50X). For in-population controls, the
genomes are paired as follows: UG1 and UG2, YRI1 and
YRI2, CEU and CEf; and Yh1 and KOR.

Estimating copy number variation with CNV-seq
CNV-seq [8] uses a fixed length sliding window and nor-
malization of the analyzed (test) genome using a control
genome. Differences in read counts mapped between the
control and test genomes for a given segment determine
the relative copy number change. We use CNV-seq with
two modifications of the default parameters for increased
stringency: lower p-value for the CNV calls (10-4 instead
of the default 10-3), and higher number of consecutive
windows required to call a variation (6 instead of the
default 4). We present results using a 3 kilobase window
and the trends remain the same with smaller or larger
window sizes (data not shown).
We use two sets of seven CNV-seq comparisons,

where CNV analysis was done using YRI1 in the first
and YRI2 in the second set. These sets are analogous
to the FREEC configurations using the African gen-
omes as control, namely (ii) and (iii) in the previous
subsection.

Merging CNV calls into comparative CNV calls
To enable comparative analysis of CNV segments output
by multiple tool configurations, we consolidate the outputs
of each of the three FREEC configurations and one CNV-
seq configuration into a set of CNV segments that charac-
terize variations collectively. The steps in the method for
merging the CNV segment are given in Figure 1A, and are
also illustrated with an example in Figure 1B. Briefly, a
merged list of CNV segments is generated by aligning all
detected CNV segments in a set of genomes and extract-
ing all unique segment start and end positions to generate
a new, more granular set of CNV regions. CNV values are
assigned each to these regions for each genome, based on
the overlap of the new segments with the original CNV
calls. The merging of segments generates an aggregated
view of a set of CNVs, and effectively adds a “second

dimension” to the genome resulting from a combined set
of genomes, represented with a vector containing the ori-
ginal CNV values.
In the example in Figure 1B, the CNV calls from three

configurations are broken into five merged segments
MSn - MSr each of which is characterized with a vector
of three values. We call these segments comparative
CNV (cCNV) regions. In the example in Figure 1, two
cCNV are formed (MSn-r and MSp-q) as a result of this
step.
The creation of cCNV segments tends to “pad” the

segments in one or more CNV estimates as the seg-
ments are merged to meet the outer boundaries of over-
lapping CNV segments. In our current approach, we
focus on encompassing all bases in a shared CNV
region. In a more conservative approach, one may con-
sider a more restrictive method to prune the ends of
cCNV segments and narrow the overlapping segment.
In our approach, due to the tendency of FREEC to
merge very large adjacent segments into very long seg-
ments (several million bases), we introduce a pre-pro-
cessing step to fragment segments into 10,000-base
segments and avoid superficial extension of cCNV seg-
ments into configurations where a small region was ori-
ginally detected. In our example, this would remedy a
case where the length of Sc is relatively small, and Sd
very large. With the fragmentation step, Sd is split into
k segments: Sd1, Sd2,... Sdk and only a subset of these
overlapping with Sc are returned as an overlapping
cCNV region for CNV2 and CNV3. The remaining Sdi
are separately considered as a variation only in CNV3.
In a subsequent step, all cCNV segments are anno-

tated for their overlap with the gene regions in refSeq
and the CNV regions in the [5], referred to as ‘Sanger’
in the rest of the text. Based on the overlap, each cCNV
region is assigned two values between 0 and 1 ranging
between no overlap (0), partial overlap (between 0 and
1), and full overlap (1).
To obtain the number of bases in genic

regions, we use the following formula:

Genic (c) =
∑

c∈ cCNV regions

length(c) ∗ refSeq overlap(c) where

for each cCNV region c, we scale its length given in
number of bases with the fraction of the segment over-
lapping with the gene (refSeq_overlap). Non-genic
regions are simply the inverse of genic regions:

NonGenic (c) =
∑

c∈ cCNV regions

[
length(c) − Genic (c)

]
. Finally,

to obtain the number of bases overlapping Sanger

regions, we use: Sanger (c) =
∑

c∈ cCNV regions

length(c) ∗ Sanger overlap(c) ,

where Sanger_overlap indicates the fraction of the seg-
ment overlapping with Sanger regions.
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Comparison of configurations and estimating
concordance
Figure 2 depicts our analysis flow which compares the
results from the execution of FREEC and CNV-seq.
After Alignment, the CNV step applies a selected

FREEC or CNV-seq configuration resulting in CNV
calls. The cCNV step merges all the output segments
from the configurations. cCNV segments are character-
ized in the Overlap step to quantify the intersection
with genic regions, and 8,599 validated segments from

Figure 1 cCNV: Merging of CNV segments from multiple FREEC configurations. A. cCNV algorithm. B. Example of merging CNV calls.

Figure 2 Comparison of analysis outputs. Our analysis pipeline which compares the results from analyzing results from three FREEC modes.
cCNV merges all the output regions for the three. cCNV segments are characterized with respect to coverage and overlap overall, in genic and
non-genic regions, and in the context of the 8,599 validated segments from [11].
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the Sanger set. In the last step, Concordance Assess-
ment, we assess concordance between the three FREEC
normalizations. We measure the similarity using the
Jaccard index (JI) on any two sets of output comparing
the sets at the level of individual base pairs. Given two
configurations A and B, we use the following to com-

pute Jaccard Index: JI
(
confA, confB

)
=

∣∣confA ∩ confB
∣∣

∣∣confA ∪ confB
∣∣ . It

computes the ratio of the total number of cCNV bases
in the intersection of configurations A and B over total
number of bases in the union of the of the two sets JI is
reported for each genome and four CNV segment sets:
all regions, genic, non-genic, and Sanger.

Variation profiles of cCNV
Additionally, for the output of FREEC, the number of
bases falling under a range of copy number amplifica-
tions and deletions is reported for individual genomes
and within segment sets. The output of this characteri-
zation is binned using the following breakpoints: less
than 2 copies, 2 to 6 copies, and more than 6 copies.

Results
cCNV regions
We focus only on the autosomal CNV segments (chro-
mosomes 1 through 22). We transform the CNV regions
called by FREEC to cCNVs. We interchangeably refer to
CNV and cCNV regions in the remainder of the text -
all discussion refers to the CNV obtained as a result of
combining CNV regions from FREEC configurations, i.e.
one should consider all CNV references to be cCNV.
Table 1 provides a summary of the output from three
separate control genome choices for FREEC and Table 2
provides a summary for the output of CNV-seq. In
FREEC, GC content normalization outputs CNV regions
ranging 57-98 Mb among the eight genomes. Adding
mappability as a normalization parameter results in a
substantially reduced total number of bases called in
comparison to GC content normalization - calling only
25% of the total base pairs outputted by GC normaliza-
tion but going as low as 6-7% in three genomes (CEU,
YH1, and KOR). Adding an in-population control gen-
ome as normalization parameter in FREEC yields a
smaller reduction of the total lengths ranging from 25

to 60% with one exception (YRI2, with an over 2-fold
increase in total lengths). With YRI1 as a control gen-
ome, the total length of base pairs in the control config-
uration is in the 60% range for most genomes, with Yh1
at 82%, and CEf at 95%, of the GC content normaliza-
tion total length, except for an over 2-fold increase with
YRI2. Using YRI2 as a control results in a number of
variant base pairs comparable to the GC content nor-
malization total length for most genomes, and around
70% of the total length in YRI1 and CEf. Using YRI1 or
YRI2 as a control genome yields to similar summaries
in case of mappability and GC content normalization.
We observe ~10% variation due to the “padding” effect
discussed earlier.
In CNV-seq, the total length of CNV regions ranging

22-63 Mb with YRI1 as a control genome and 43-113
Mb with YRI2 as a control genome. These values are
comparable to the ranges in the analogous FREEC runs
with control genome normalization.
We then classify the called segments as genic, non-

genic and also compare them to a list of commonly
occurring variant regions previously reported [3]. Table 3
shows the representation of genic segments in the cCNV
regions. In FREEC as shown in Table 4, genic regions on
average constitute 49.7% (sd = 17.5%) in mappability,
17.5% (sd = 5.8%) in GC content, and 27.9% (sd = 15.7%)
in control genome normalization. As we change the con-
trol genome to YRI1 or YRI2, similar distribution for
genic regions is observed for mappability normalization.
However, in control normalization, the impact varies:
more genic regions are returned in UG1, CEU, and Yh1,
but mappability still has more enrichment in genic
regions for all genomes.
Table 5 shows the representation of Sanger regions in

the total cCNV regions. In FREEC as shown in Table 6,
Sanger regions on average account for 14.9% (sd =
4.9%) in mappability, 23% (sd = 5.7%) in GC content,
and 22.4% (sd = 6.8%) in control genome normalization.
Using YRI1 or YRI2 as a control genome, again similar
trends are observed for mappability normalization. In
control normalization, YRI1 as control increases the
representation of these regions in UG1. Using YRI2 as a
control substantially reduces the representation of these
regions for KOR.

Table 1

FREEC
Normalization

UG1 UG2 YRI1 YRI2 CEU CEf Yh1 KOR

GC content 77,347,858 79,636,676 97,902,881 70,686,285 76,746,044 89,623,788 78,456,632 57,134,301

Mappability 19,520,720 17,252,109 24,758,352 17,768,115 4,925,758 20,064,719 5,697,806 3,931,768

Control genome (in Population) 37,100,227 20,683,564 67,291,545 163,831,511 48,113,551 32,010,850 50,189,736 33,322,468

Control genome (YRI1) 41,084,695 37,640,839 - 163,831,511 52,945,367 87,318,862 50,727,044 38,000,863

Control genome (YRI2) 117,640,623 74,253,250 67,291,545 - 58,461,174 62,120,940 69,839,893 78,225,240
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Effect of using mappability track on copy number
estimation
Using mappability tracks significantly alters the number
of copy number variants reported. We calculate the
Jaccard Index as a measure of similarity between the
reported CNVs by FREEC using mappability normaliza-
tion over GC content normalization. Averaged over the
eight genomes, the JI was 0.123 (sd = 0.057), indicating
low levels of commonality between the reported CNVs
(Figure 3A). We annotate the reported calls as genic,
non-genic and investigate any differences. Interestingly,
JI is higher in genic regions (mean = 0.29, sd = 0.135)
than in non-genic regions (mean = 0.074, sd = 0.039),
with a significant difference (p-value = 0.0006, Wilcoxon
rank sum test). Next, we investigate whether the ampli-
tude of copy number calls varies when mappability is
used in normalization (Figure 3B, individual cCNV data
is shown in Supplementary Figure 3 [see Additional File
2]). We find significant differences between the reported
calls when mappability is used. Using mappability causes
a fraction change in the number of CNV deletions
reported by FREEC and shift towards higher copy num-
ber calls. On average, 70% of the deletions disappear con-
sistently across the 8 individual genomes (sd = 12.5%).
The higher copy number in the range of 2 to 6 copies
increases by 108% in a highly variable fashion (sd = 67%).
Most of these regions appear to be from non-genic areas
of the genome.

Effect of using a control genome on copy number
estimation
We observe higher similarity between the copy number
variants reported when a control genome is used for nor-
malization as opposed to the mappability criterion shown
above. The JI between normalization using a control gen-
ome and GC content normalization is 0.384 (sd = 0.176)
when averaged over 8 genomes, with similar values
within genic and non-genic annotations of the genome
(Figure 4A, also Supplementary Figure 4B and 4C [see

Additional File 2]). There is no consistent change in the
numbers of called deletions or high amplifications
between using a control genome and GC content. We
observe 0-mean for the fractional change for all regions,
with high variability (sd = 82.2%). The fraction changes
given in Figure 4B (see also, Supplementary Figure 3 [see
Additional File 2]) show the copy number range from 2
to 6 exhibiting high fractional change (mean = 85.3%)
and great variability (sd = 102.1%). This change is most
notable in the non-genic regions (mean = 120.2% and
sd = 139.4%). Even more striking is variability in the frac-
tional change of the high copy number in the genic
regions (mean = 36.6%, sd = 127.8%).
In CNV-seq, genic regions are represented in levels

comparable to the levels of FREEC with mappability:
53.3% (SD = 5.2%) for YRI1 as a control, and 54.7%
(sd = 3.25%) for YRI2 as a control. Furthermore, we
observe higher representation of Sanger regions: 35%
(sd = 5.4%) with YRI1 as control, and 27.2% (sd = 3.6%)
with YRI2 as control).

Discussion
The findings presented here have established that a cal-
culation of CNV in whole genome sequencing data with-
out proper normalization with a control genome can be
misleading. Much attention needs to be paid to the type
of sample, context of the analysis and the population
represented in the genome as they may have profound
effects on the number of CNV calls. Major challenges in
the CNV calling come from the technical difficulty to
map regions of the genome with lower mappability and
account for repeat regions in a balanced manner. We
show that FREEC applied with mappability normalization
results in lower concordance between the reported CNVs
when compared to GC based normalization. There is

Table 2

CNV-seq
Normalization

UG1 UG2 YRI1 YRI2 CEU CEf Yh1 KOR

Control genome (YRI1) 43,235,491 42,881,033 - 63,065,487 22,266,758 27,151,018 25,818,765 38,632,528

Control genome (YRI2) 113,662,351 106,834,661 108,082,096 - 59,313,018 49,010,115 79,994,365 43,093,200

Table 3

CNV-seq
Normalization

UG1 UG2 YRI1 YRI2 CEU CEf Yh1 KOR

Control genome
(YRI1)

46% 46% - 55% 57% 53% 61% 56%

Control genome
(YRI2)

55% 55% 59% - 56% 56% 54% 48%

Table 4

FREEC
Normalization

UG1 UG2 YRI1 YRI2 CEU CEf Yh1 KOR

GC content 13% 12% 28% 20% 12% 24% 11% 21%

Mappability 30% 29% 79% 51% 48% 80% 36% 45%

Control genome (in
Population)

10% 21% 37% 51% 14% 56% 13% 21%

Control genome
(YRI1)

22% 21% - 51% 21% 38% 17% 25%

Control genome
(YRI2)

26% 24% 37% - 17% 32% 22% 23%
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enrichment of CNVs in genic regions - in most indivi-
duals genic CNVs encompass about 30-50% of the total
CNVs (and they represent about 1% of the genome).
Furthermore, in mappability normalization, there is sig-
nificantly higher concordance in the genic regions which
could be due to the fact that the mappability of genic
regions is typically higher. The coarse definition of mapp-
ability in FREEC considers equally all bases with non-
zero mappability score is better suited for regions that
exhibit higher mappability. Therefore, with non-genic
regions likely to have lower mappability scores, this cri-
terion filters out fewer non-genic regions that are overall
with lower mappability.
We observe that GC content based normalization in

FREEC is likely not accounting for the expected lower
number of reads within regions of lower mappability.
Algorithms that attempt to call absolute copy number are
susceptible to deletion-bias since they typically compare
read-counts in specific regions against the background
read-count distribution across the whole genome within
a single sequencing run. Algorithms implicitly assume
that reads are generated uniformly from across the whole
genome with read-counts within any given window there-
fore following a Poisson distribution [4]. However, it is
essential to note that while reads are likely generated uni-
formly from across the genome, they are not necessarily
mapped uniformly across the genome even in a purely
diploid sample. Regions of the genome with lower mapp-
ability tend to accumulate lower read-counts, thus leading
to read-count artifacts that can be interpreted as dele-
tions in the absence of proper read-count normalization
techniques. Algorithms that attempt to call relative copy
numbers, such as CNV-seq, are less prone to mappability
artifacts although they suffer from run-specific sources of

read-count variability. Indeed, 99% of the output from
CNV-seq is regions that FREEC considers highly-
mappable.
The use of a control genome to normalize the read-

counts could be thought of as a possible surrogate for a
mappability track since presumably regions of poor
mappability wouldn’t change from the sample genome
to the control genome. Furthermore, it could be
hypothesized that the control genome ought to be cho-
sen from within the same population as the sample gen-
ome. For the FREEC output, we estimated the Jaccard
similarity indices of the control-genome based CNV
calls with the GC content based CNV calls for each of
the 8 samples by using an in-population control genome
and compared these with the respective values of the
mappability based CNV calls (Figure 5A and Supple-
mentary Figure 5 [see Additional File 2]). We observe
increased variation in the JI values for in-population
control genome based normalization when compared to
the mappability based normalization. Replacing the in-
population control genome with a single control gen-
ome for all samples, such as the use of YRI1 as a univer-
sal control, results in relatively smaller variation in JI
values (Figure 5B). Furthermore, choosing a universal
control with much higher average coverage of the gen-
ome than the sample yields higher similarity of CNV
profiles to the GC content normalization (Figure 5C). In
other words, if the aim is to maintain higher agreement
with the CNV calls out of the GC content normalization
procedure, a control genome with similar average cover-
age as the sample genome (YRI1) might be preferable to
a control genome with much higher average coverage
(YRI2). Further investigation is needed to determine
whether the choice of control genomes affects false posi-
tive rates. Relative concordance is worst when we look
at the genic regions (Supplementary Figure 5 [see Addi-
tional File 2]) and in-population control, both mappabil-
ity and population-specific variations contributing to
this effect. Mappability restricts the concordance most
tightly in the Sanger regions - possibly due to the fact
that these regions have been already mapped and vali-
dated in many individuals - so the individual and popu-
lation variability affects these results the least.
Finally, when the output of FREEC is compared to the

output of CNV-seq, we observe that an explicit normali-
zation (a control genome), also introduces an implicit
mappability normalization to the extent of FREEC’s use
of mappability. The level of agreement in terms of called
variant genes and Sanger CNVs between FREEC and
CNV-seq are given in Supplementary Tables 1 and 2 [see
Additional File 2]. While we observe comparable CNV
call profiles between effectively normalized FREEC and
CNV-seq, typically CNV-seq would call in the order of
40-50% of the genes or regions called by FREEC.

Table 5

CNV-seq
Normalization

UG1 UG2 YRI1 YRI2 CEU CEf Yh1 KOR

Control genome
(YRI1)

34% 34% - 29% 41% 43% 37% 27%

Control genome
(YRI2)

24% 24% 24% - 28% 34% 26% 31%

Table 6

FREEC
Normalization

UG1 UG2 YRI1 YRI2 CEU CEf Yh1 KOR

GC content 19% 21% 18% 25% 21% 19% 23% 38%

Mappability 19% 19% 5% 16% 12% 9% 18% 21%

Control genome
(in Population)

15% 28% 20% 12% 22% 21% 23% 37%

Control genome
(YRI1)

31% 32% - 12% 20% 17% 20% 36%

Control genome
(YRI2)

15% 22% 20% - 25% 19% 24% 26%
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Conclusions
We observe the effects of adding mappability and control
genomes for normalization and we find that both types
of normalization improve on the CNVs called by FREEC,
with similar CNV call profiles observed in CNV-seq.
Extending other tools with similar capability to normalize
the analyzed sequence would likely yield similar improve-
ment in concordance. The improvement in concordance
is evident with control genome normalization in FREEC

and to some extent with mappability normalization. We
have some reservation with FREEC’s current mappability
normalization, as it does not filter out all regions with
lower mappability scores - a more elaborate criterion for
the mappability filter (e.g. average mappability score) we
believe should yield performance comparable to control
normalization. Control genome normalization typically
introduces more new information to the CNV calls espe-
cially in the higher copy number regions. This effect is

Figure 3 Summary of mappability concordance. A. Summary of mappability concordance for the eight genomes given separately for all,
genic, non-genic, and Sanger regions. cCNVs are computed using in-population control. B. Mean fraction change with mappability normalization
at three levels: below 2 copies, 2-6 copies and more than 6 copies.
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smaller in genic regions and in majority of the genomes
when considering the validated Sanger segments.
The implication of our analysis is that CNV estimation

algorithms that use sequencing data should extend their
methods to account for mappability and other sources
of variation in the context of multiple sequences and
integrate this input into CNV call assessments. Notably,
steps should be taken to normalize the output in the

context of the population of origin as studies show
population-specific variations that may not be accounted
for by generic normalization approaches.
Understanding and optimizing CNV methods and

tools will be essential as whole genome sequencing will
be entering clinical practice in the near future with the
promise of characterizing tumor samples down to a sin-
gle cell. Robust and repeatable methods will be essential

Figure 4 Summary of control genome concordance. A. Summary of control concordance for the eight genomes given separately for all,
genic, non-genic, and Sanger regions. cCNVs are computed using in-population control.B. Mean fraction change with control normalization at
three levels: below 2 copies, 2-6 copies and more than 6 copies.
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for accurate tracking of the progression of cancer and
also characterization in the context of other sampled
tumors.

Additional material

Additional file 1: FREEC normalization options. Normalization in
FREEC.

Additional file 2: Supplementary figures and tables. Additional
figures and tables referenced in the main document.
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