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The genomic signature of trait-associated variants
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Abstract

Background: Genome-wide association studies have identified thousands of SNP variants associated with hundreds
of phenotypes. For most associations the causal variants and the molecular mechanisms underlying pathogenesis
remain unknown. Exploration of the underlying functional annotations of trait-associated loci has thrown some
light on their potential roles in pathogenesis. However, there are some shortcomings of the methods used to date,
which may undermine efforts to prioritize variants for further analyses. Here, we introduce and apply novel
methods to rigorously identify annotation classes showing enrichment or depletion of trait-associated variants
taking into account the underlying associations due to co-location of different functional annotations and linkage
disequilibrium.

Results: We assessed enrichment and depletion of variants in publicly available annotation classes such as genic
regions, regulatory features, measures of conservation, and patterns of histone modifications. We used logistic
regression to build a multivariate model that identified the most influential functional annotations for trait-association
status of genome-wide significant variants. SNPs associated with all of the enriched annotations were 8 times more
likely to be trait-associated variants than SNPs annotated with none of them. Annotations associated with chromatin
state together with prior knowledge of the existence of a local expression QTL (eQTL) were the most important factors
in the final logistic regression model. Surprisingly, despite the widespread use of evolutionary conservation to prioritize
variants for study we find only modest enrichment of trait-associated SNPs in conserved regions.

Conclusion: We established odds ratios of functional annotations that are more likely to contain significantly trait-
associated SNPs, for the purpose of prioritizing GWAS hits for further studies. Additionally, we estimated the relative
and combined influence of the different genomic annotations, which may facilitate future prioritization methods by
adding substantial information.
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Background
Genome-wide association studies (GWAS) have been suc-
cessful in discovering associated variants for a wide range
of common diseases and traits [1,2]. More than 8,000 trait
associations have been recorded to date (as of 11 Jan 2013).
They can be divided into significant associations passing the
generally accepted genome-wide threshold (P-value = 5 × 10-8)
[3], or suggestive associations with a decreased significance
threshold (P-value = 5 × 10-5 – 5 × 10-8). Larger association
studies and increasingly informative genotyping arrays to-
gether with high-throughput sequencing are expected to
confirm some of the associations currently considered as
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suggestive and identify many new associations [4]. For
confirmed associations, experiments identifying the causal
underlying biology are expensive in both time and money.
This causes a bottleneck in elucidating the molecular
processes and pathways underlying these associations
[5-8] and hence in gaining new biological knowledge.
There has therefore been much interest in computational
prioritization of candidate variants, both to accelerate the
search for causal variants, and to provide insights into the
biology underlying disease states.
Although confirmed trait-associated SNP will most

often not be the causal variants, the surrounding genomic
regions in linkage disequilibrium (LD) with associated
SNPs are expected to contain causal variants with bio-
logical function. While it is clear that trait-associated SNPs
are enriched in genic regions the majority of trait-
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associated variants are not within genes [7,9]. Two studies
have previously investigated trait-associated SNP enrich-
ment in a range of genomic features [8,10]. Hindorff et al.
(2009) investigated 20 genomic features for enrichment or
depletion of trait-associated SNPs [8]. They found non-
synonymous sites and 5 Kb regions upstream of transcrip-
tion start sites significantly enriched for trait-associated
SNPs, while intergenic regions were significantly depleted
[8]. Knight et al. (2011) [10] replicated the significant
enrichment results of Hindorff et al. [8] and additionally
found that cis expression quantitative trait loci (cis-eQTLs)
were enriched for associated variants. Studies focusing on
the epigenomic landscape, such as DNA methylation [11]
and histone modification patterns [12] surrounding the
variants have shown SNPs and DNA modifications jointly
influencing transcription of nearby genes. Recently, com-
binatorial patterns of histone modifications were found to
indicate regions with particular functions, ranging from ac-
tive promoters or enhancers to transcriptionally silenced
loci [13]. Ernst et al. [13] also showed that GWAS variants
associated with diseases showing lineage-specific pheno-
types were enriched in enhancer regions predicted using
chromatin data from similar cells, e.g. acute lymphoblastic
leukemia variants were enriched within strong enhancers
found in T cells.
Alternative approaches to functional enrichment ana-

lyses have the potential to provide additional insight into
the influence of genomic features on trait associations.
To study enrichment or depletion both Knight et al. [10]
and Hindorff et al. [8] compared the annotations of
associated variants to background sets of SNPs present
on the original GWAS genotyping platforms. Hindorff
et al. [8] generated 100 randomly sampled background
SNP sets, weighted to approximate the composition of
the genotyping platforms originally used to uncover the
associations. Knight et al. [10] calculated enrichments
based upon backgrounds composed of all SNPs from
two popular genotyping platforms (the Affymetrix 500 K
platform, the Illumina HumanHap 550 K platform, and
the union of these two platforms). These approaches
have important caveats. Firstly, the platform, or combin-
ation of platforms, used to detect an association is not
always recorded, as shown by the GWAS catalogue [5].
Secondly, the underlying distributions of functional gen-
omics features and SNPs are ignored, although it is
known that their distributions in the human genome are
often non-uniform and clustered [14]. Sampling ran-
domly selected SNPs implicitly assumes that SNPs occur
uniformly across the genome, which may result in
misleading conclusions. It is also unclear what level of
sampling is sufficient to produce an appropriate null dis-
tribution for a given set of variants. If we aim to assess
the significance of the co-occurrence of associated SNPs
and genomic features, an appropriate background SNP
set should reflect the degree to which SNPs and genomic
features are clustered and occur in the genome. Finally,
previous studies have failed to take account of the often
strong inter-dependencies between different genomic
features e.g. the associations between chromatin structure,
gene density and evolutionary divergence rates [15]. These
inter-dependencies make it difficult to disentangle the
relative importance of individual genomic features when
analyzed separately.
Here, we investigated the genomic signature of 1,909

significantly trait-associated SNPs (P-value < 5 × 10-8) by
analyzing the overlaps between regions annotated for 58
genomic features with the associated variants and their
LD SNP partners. We used a novel circular permutation
approach to assess the significance of the observed
results and to calculate enrichment or depletion scores
for each genomic feature. Our permutation approach
preserves the observed distribution of annotations and
SNPs around the genome, and establishes a robust null
distribution from which the significance of the observed
enrichments and depletions can be calculated. We
compared the permutation results with results obtained
by a sampling strategy based on Hindorff et al. [8],
which randomly samples genotyping platforms and SNPs
from the HapMap II project present in CEU (Caucasian
population). In addition to examining the annotations
investigated by Hindorff et al. [8] and Knight et al. [10],
we included 15 different annotations relating to chroma-
tin states associated with regulatory regions [13], eQTLs
[16], higher order chromatin structure [17] and regions
with identified evolutionary signatures [18]. Most of the
annotations we examined are correlated with at least
some of the others, prompting us to investigate their
combined effects. We applied stepwise logistic regression
in order to derive a minimum set of enriched or depleted
annotations that jointly influence trait-association status.
The logistic regression approach accounts for any redundant
information carried by individual variables, for example
due to co-location of different functional annotations.
Additional annotations are only included if they add in-
formation that is not explained by other annotations that
are already in the model resulting in a final model that
incorporates the most important variables only. All ana-
lyses performed took the underlying LD structure into ac-
count, as all analyzed SNPs – trait-associated and non-
associated – were investigated with their LD partners at
the chosen LD cut-off. The enrichment/depletion and lo-
gistic regression analyses were repeated with another SNP
set consisting of 2,410 suggestively trait-associated SNPs
(P-value between 5 × 10-5 and 5 × 10-8). The results shed
new light on the genomic architecture of trait-associated
SNPs and may be useful to aid prioritization of associated
variants for further study and as prior weighting for asso-
ciation studies.
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Results
Confirmation of functional enrichments by two
independent methods
Figures 1, 2, and 3 display the results obtained by circular
permutations and the sampling method for 54 annotations
and are summarized according to annotation class. Four
of the annotations were excluded from further analyses, as
their coverage by all analyzed SNPs was very low, and thus
not informative. Summary statistics for the analyzed
annotations including the number of observed sites, the
percentage of total nucleotides covered in the genome,
the percentage of SNPs covered in the genome, and the
average length of the annotated sites in base pairs were
calculated for all annotations (Additional file 1). Odds
ratios, which indicate enrichment/depletion of trait-
associated SNPs, were calculated for each annotation.
An odds ratio equal to unity indicated that trait-
associated SNPs were as likely to coincide with the
analyzed genomic feature as non-associated SNPs. An
odds ratio above unity indicated that the genomic fea-
ture was enriched for trait-associated SNPs, while odds
ratios below unity were evidence for depletion. Fold en-
richment and odds ratios were approximately equiva-
lent, (see Additional file 2 and Additional file 3). In
general, the odds ratios for a particular annotation were
very similar between the sampling and permutation
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Figure 1 Genic and regulatory features. Enrichment of trait-associated S
results are compared (□,◊) for a variety of genic features (see Methods for
from 1 (p≤ 0.05). Odds ratios below or above one show depletions or enri
approaches with odds ratios correlating strongly (r2 =
0.98, P-value = 1.01 × 10-51). However, two (vega
PseudoGenes and inactive/poised promoters) of 54
annotations obtained different significance using the
two different methods. The odds ratios associated with
these two annotations are almost identical, which means
that the differences are due to different confidence
intervals obtained by the two methods. Table 1 shows a
comparison of odds ratios and P-values obtained using the
permutation and sampling methods on the significantly
and suggestively trait-associated SNPs. Table 2 shows the
average of the CI widths for each of the three annotation
classes per method. Note that P-values from permutation
were truncated at <5.00 × 10-5 due to the number of
permutations performed (i.e. 20,000). A more extreme
threshold would not materially change the conclusions and
each order of magnitude decrease in the threshold requires
an order of magnitude increase in the number of
permutations and hence computation. The effect of the
annotation was declared significant if the observed
P-value passed the significance threshold set by the
Bonferroni correction for the number of annotations
studied (P-value ≤ 8.62 × 10-4).
The striking similarity of enrichment patterns seen over-

all between two independent methods provides strong
evidence for the co-occurrence of trait-associated SNPs
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Figure 2 Regions with conserved and evolutionary signatures. Enrichment of trait-associated SNPs in selected evolutionary signatures.
Sampling and permutation results (□,◊) are compared for regions identified as unusually conserved or divergent by a variety of measures
(see Methods for full details); solid symbols indicate odds ratios significantly different from 1 (p ≤ 0.05). Odds ratios below or above one show
depletions or enrichments respectively.
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and genomic regions annotated with specific functional
annotations. Of the 21 analyzed classes of annotation
associated with genic features only intergenic regions
showed depletion. All other genomic features associated
with genes were enriched to various degrees for trait-
associated SNPs (Figure 1). The odds ratio for the eQTLs
(4.42 [3.52-5.54]) was the highest significant odds ratio
obtained for the random sampling approach. There is
growing evidence in the scientific community that eQTLs
influence complex traits by measurably changing expres-
sion levels of genes [16]. The differences in significance of
the odds ratios in two of the genomic features between
the two methods are most likely caused by the differences
of theoretical versus empirical confidence intervals (see
Discussion, which highlights the value of the empirical
method (circular permutations)).

Chromatin states are a stronger predictor of trait
association than sequence conservation
All of the 13 annotation classes associated with conser-
vation and other evolutionary signatures were only mod-
estly enriched using either method, showing odds ratios
of less than two (Figure 2). Three of the annotations
(evofold, vista enhancers and exapted repeats) failed to
reach [19] significance. The negative set (Figure 2) is
intended as an approximation to a negative control for
the evolutionary signatures annotation class, and was
composed of intergenic SNP data lacking any other
genic or conserved/evolutionary annotations irrespective
of the chromatin states present. However, almost half of
trait-associated SNPs or their LD partners were found to be
within this negative set (see Discussion), which could explain
the modest depletion seen in that class. The relatively weak
performance of evolutionary measures is a surprising result
given the ubiquitous use of evolutionary conservation in
computational variant prioritization approaches [20-24].
The results for 19 genomic annotations corresponding to

distinct chromatin states are shown in Figure 3. Regions
associated with a variety of states implicated in gene activa-
tion as identified by histone modifications were enriched
for trait-associated SNPs. Strong enhancers of proximal
genes (OR = 3.93 [2.88-5.58]) followed by open chromatin
(OR = 3.51 [2.84-4.30]) and transcriptional transition
(OR = 2.88 [2.08-4.24]) were the three most significantly
enriched features identified by their distinct chromatin
states for the permutation based approach. Almost three-
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Figure 3 Chromatin states. Enrichment of trait-associated SNPs in selected chromatin features. Sampling and permutation based results are
compared (□,◊) for regions associated with chromatin states with varying functions (see Methods for full details); solid symbols indicate odds
ratios significantly different from 1 (p≤ 0.05). Odds ratios below or above one show depletions or enrichments respectively.
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quarters of trait-associated SNPs or their LD partners were
located in regions annotated as exhibiting a relatively
‘open’, de-condensed higher order chromatin structure
(Additional file 1). Strong enhancers regulating distal genes
(Figure 3) were also enriched for trait-associated SNPs, al-
beit less so than strong enhancers which regulate proximal
genes (Figure 3). Conserved distal regulatory enhancers are
frequently found at loci containing developmental genes
[25,26]. The results presented here may therefore reflect
the depletion of variants in such enhancers due to their
detrimental effects upon developmental processes. Both
the relatively repressive, ‘closed’ higher order chromatin
domains and heterochromatin features show depletions.
Repetitive/CNV regions obtained odds ratios close to one
and therefore were not significantly enriched or depleted.
Analyses were repeated using a more liberal LD cut-off

point of r2 > 0.7 to determine LD partners. The results
obtained from these data were similar to the ones
obtained using r2 > 0.9 with only a few annotations be-
coming significant (Additional file 4, Additional file 5 and
Additional file 6).

Similar enrichment trends for significantly and
suggestively associated SNPs
There has been substantial interest in the roles of GWAS
variants showing ‘suggestive’ levels of significance (i.e.
SNPs with P-values = 5 × 10-5 – 5 × 10-8), as they are
believed to contain many true positives with modest effect
sizes [27]. If that is correct, we might expect similarities in
the functional enrichment patterns of these two classes of
variants. Figure 4 highlights the 14 significant enrichment/
depletion results of the suggestively associated SNPs in
the annotations, nine of which are from the genic annota-
tion category. The trends are similar to those observed for
genome-wide significant SNPs, but with lower odds ratios
(see Additional file 7). Additional file 8 shows the results
of analyses of significantly and suggestively trait-associated
SNPs for all annotations.
Table 3 presents the β-coefficient (the ratio of the

estimated effect to its standard error) from the logistic
regression models for the significantly and suggestively
trait-associated SNPs in the final models. The significant
β-coefficients are plotted in Figure 5. The annotations
were ordered in terms of significance and effect size in
the logistic regression for the significant trait-associated
SNPs. Negative values implied that trait-associated SNPs
were depleted in those regions, once the effects of the
previously added annotations were taken into account.
The final model for the significant SNPs included 25
annotations, 17 of which were significant. The OMIM
morbid regions and OMIM genes were excluded from
the analysis, as they were trait-associated by definition



Table 1 Odds ratios of sampling and permutations for two datasets

Sampling Permutations

Significantly associated SNPs Significantly associated SNPs Suggestively associated SNPs

OR [95% CI] P-value OR [95% CI] P-value OR [95% CI] P-value

Genic and regulatory features

TSS 1 kb upstream 3.23 [2.42-4.31] 3.25 × 10 -17 2.86 [2.10-3.97] <5.00 × 10 -05 1.25 [1.01-1.60] 1.94 × 10 -02

TSS 5 kb upstream 3.24 [2.69-3.91] 1.56 × 10 -38 3.01 [2.41-3.76] <5.00 × 10 -05 1.24 [1.08-1.44] 9.00 × 10 -04

CpG Islands 3.69 [2.49-5.47] 2.09 × 10 -12 3.03 [2.10-4.70] <5.00 × 10 -05 1.05 [0.79-1.49] 4.05 × 10 -01

ORegAnno 2.69 [1.85-3.90] 6.24 × 10 -08 2.58 [1.86-3.85] <5.00 × 10 -05 1.37 [1.05-1.91] 8.40 × 10 -03

vega Genes 2.08 [1.83-2.37] 1.84 × 10 -29 1.98 [1.70-2.31] <5.00 × 10 -05 1.17 [1.08-1.28] 5.00 × 10 -05

OMIM Genes 2.62 [2.30-2.98] 1.35 × 10 -48 2.51 [2.13-2.97] <5.00 × 10 -05 1.24 [1.13-1.35] <5.00 × 10 -05

OMIM Morbid Regions 4.33 [3.57-5.25] 5.95 × 10 -58 4.24 [3.20-5.75] <5.00 × 10 -05 1.38 [1.18-1.62] <5.00 × 10 -05

Exons 4.09 [3.34-5.01] 5.35 × 10 -49 3.67 [2.94-4.62] <5.00 × 10 -05 1.39 [1.20-1.65] <5.00 × 10 -05

Intronic SNPs 2.02 [1.78-2.30] 1.92 × 10 -27 1.92 [1.63-2.25] <5.00 × 10 -05 1.15 [1.06-1.26] 3.00 × 10 -05

Non-Syn. SNPs 4.26 [3.26-5.57] 2.24 × 10 -31 3.78 [2.90-5.17] <5.00 × 10 -05 1.37 [1.12-1.70] 7.00 × 10 -04

Coding SNPs 3.94 [3.15-4.92] 1.73 × 10 -38 3.52 [2.78-4.55] <5.00 × 10 -05 1.37 [1.16-1.63] 5.00 × 10 -05

Syn. SNPs 3.15 [2.32-4.28] 6.45 × 10 -15 2.81 [2.10-3.94] <5.00 × 10 -05 1.24 [1.00-1.59] 3.09 × 10 -02

Gained Stops 8.42 [1.17-60.53] 1.04 × 10 -02 8.17 [2.26-Infinity] 9.50 × 10 -04 4.74 [1.50-Infinity] 2.10 × 10 -03

3′UTR 3.24 [2.46-4.26] 2.69 × 10 -19 2.92 [2.26-3.92] <5.00 × 10 -05 1.29 [1.07-1.61] 4.75 × 10 -03

5′UTR 2.97 [1.70-5.19] 5.08 × 10 -05 2.45 [1.56-4.90] 5.00 × 10 -05 1.37 [0.97-2.30] 5.71 × 10 -02

RNA Genes 1.74 [0.52-5.85] 3.80 × 10 -01 1.46 [0.64-7.02] 2.25 × 10 -01 0.50 [0.27-1.50] 6.21 × 10 -02

ncRNA 1.62 [0.86-3.04] 1.57 × 10 -01 1.49 [0.80-3.61] 1.08 × 10 -01 1.38 [0.93-2.35] 6.73 × 10 -02

tSmiRNA 8.46 [0.44-164.37] 5.83 × 10 -02 7.13 [1.33-Infinity] 9.95 × 10 -03 0.00 [0.00-Infinity] <5.00 × 10 -05

eQTLs 4.42 [3.52-5.54] 7.12 × 10 -45 4.67 [3.35-6.39] <5.00 × 10 -05 1.94 [1.61-2.40] <5.00 × 10 -05

vega PseudoGenes 2.07 [1.35-3.19] 8.09 × 10 -04 1.76 [1.11-3.07] 1.16 × 10 -02 1.10 [0.82-1.58] 2.85 × 10 -01

Intergenic SNPs 0.89 [0.78-1.01] 7.19 × 10 -02 0.83 [0.71-0.98] 1.11 × 10 -02 0.94 [0.86-1.03] 8.68 × 10 -02

Conserved regions and evolutionary signatures

Evofold 2.14 [0.63-7.20] 2.59 × 10 -01 1.99 [0.89-Infinity] 7.47 × 10 -02 0.79 [0.40-4.00] 2.60 × 10 -01

Pos. Sel. Genes 1.96 [1.71-2.24] 2.05 × 10 -23 1.88 [1.60-2.23] <5.00 × 10 -05 1.12 [1.03-1.23] 6.65 × 10 -03

Enhancers 2.01 [0.76-5.32] 1.60 × 10 -01 1.97 [0.92-12.07] 5.17 × 10 -02 1.02 [0.57-2.67] 4.72 × 10 -01

Exapted Repeats 1.62 [0.57-4.60] 4.47 × 10 -01 1.67 [0.82-9.04] 1.23 × 10 -01 0.88 [0.46-3.00] 3.25 × 10 -01

PREMOD 1.63 [1.35-1.97] 4.22 × 10 -07 1.64 [1.38-1.97] <5.00 × 10 -05 1.07 [0.94-1.22] 1.78 × 10 -01

tfbsConsSites 1.74 [1.41-2.14] 1.64 × 10 -07 1.69 [1.41-2.05] <5.00 × 10 -05 1.02 [0.89-1.18] 4.23 × 10 -01

InDels 1.80 [1.58-2.05] 3.61 × 10 -19 1.85 [1.66-2.08] <5.00 × 10 -05 1.11 [1.02-1.21] 7.15 × 10 -03

MCS17way 1.75 [1.52-2.03] 1.61 × 10 -14 1.72 [1.51-1.97] <5.00 × 10 -05 1.01 [0.91-1.11] 4.62 × 10 -01

MCS28wayPlacMammal 1.96 [1.68-2.28] 6.51 × 10 -18 1.92 [1.67-2.22] <5.00 × 10 -05 1.03 [0.93-1.15] 3.05 × 10 -01

MCS28way 1.93 [1.67-2.24] 6.32 × 10 -19 1.87 [1.65-2.15] <5.00 × 10 -05 1.00 [0.91-1.11] 4.99 × 10 -01

MCS44way 2.01 [1.74-2.33] 2.10 × 10 -21 1.96 [1.72-2.24] <5.00 × 10 -05 1.02 [0.93-1.13] 3.33 × 10 -01

MCS44wayPlacental 1.93 [1.66-2.24] 5.26 × 10 -18 1.89 [1.65-2.17] <5.00 × 10 -05 1.01 [0.92-1.13] 4.10 × 10 -01

MCS44wayPrimates 2.00 [1.72-2.33] 1.42 × 10 -19 1.98 [1.73-2.30] <5.00 × 10 -05 1.00 [0.91-1.12] 4.69 × 10 -01

Sequence annotation negative 0.84 [0.74-0.95] 6.34 × 10 -03 0.81 [0.71-0.94] 1.95 × 10 -03 0.91 [0.84-0.99] 1.53 × 10 -02

Chromatin signatures

Open Chromatin 3.65 [3.18-4.18] 2.73 × 10 -80 3.51 [2.84-4.30] <5.00 × 10 -05 1.31 [1.19-1.44] <5.00 × 10 -05

Closed Chromatin 0.36 [0.31-0.41] 1.22 × 10 -51 0.30 [0.25-0.38] <5.00 × 10 -05 0.77 [0.70-0.84] <5.00 × 10 -05

Active promoter 3.22 [2.34-4.43] 2.27 × 10 -14 2.76 [1.99-4.03] <5.00 × 10 -05 1.15 [0.92-1.50] 1.28 × 10 -01

Weak promoter 3.14 [2.31-4.27] 7.60 × 10 -15 2.82 [2.09-3.98] <5.00 × 10 -05 1.21 [0.98-1.58] 4.64 × 10 -02
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Table 1 Odds ratios of sampling and permutations for two datasets (Continued)

Inactive/poised promoter 4.24 [1.84-9.77] 2.47 × 10 -04 3.65 [1.76-14.19] 9.50 × 10 -04 0.68 [0.40-2.00] 1.35 × 10 -01

Strong enhancer (proximal) 4.18 [3.14-5.56] 6.58 × 10 -27 3.93 [2.88-5.58] <5.00 × 10 -05 1.48 [1.19-1.89] 1.50 × 10 -04

Strong enhancer (distal) 2.84 [2.13-3.78] 8.19 × 10 -14 2.71 [2.03-3.78] <5.00 × 10 -05 1.29 [1.05-1.66] 6.35 × 10 -03

Weak/poised enhancer (proximal) 2.61 [2.01-3.40] 7.69 × 10 -14 2.47 [1.92-3.29] <5.00 × 10 -05 1.08 [0.89-1.32] 2.32 × 10 -01

Weak/poised enhancer (distal) 2.65 [2.18-3.23] 1.14 × 10 -23 2.57 [2.09-3.20] <5.00 × 10 -05 1.22 [1.06-1.42] 3.25 × 10 -03

Insulator 1.76 [1.28-2.40] 4.35 × 10 -04 1.69 [1.29-2.32] 1.50 × 10 -04 1.06 [0.86-1.36] 3.05 × 10 -01

Transcriptional transition 3.22 [2.31-4.48] 2.50 × 10 -13 2.88 [2.08-4.24] <5.00 × 10 -05 1.26 [1.00-1.65] 3.25 × 10 -02

Transcriptional elongation 2.45 [2.01-2.97] 1.46 × 10 -20 2.13 [1.71-2.69] <5.00 × 10 -05 1.14 [1.00-1.31] 3.25 × 10 -02

Weak transcribed 2.52 [2.16-2.94] 7.00 × 10 -34 2.33 [1.96-2.80] <5.00 × 10 -05 1.18 [1.06-1.33] 8.50 × 10 -04

Polycomb repressed 2.06 [1.67-2.52] 2.85 × 10 -12 2.14 [1.66-2.78] <5.00 × 10 -05 1.31 [1.13-1.54] 1.00 × 10 -04

Heterochrom; low signal 0.56 [0.48-0.64] 2.85 × 10 -15 0.54 [0.45-0.64] <5.00 × 10 -05 0.94 [0.85-1.05] 1.39 × 10 -01

Repetitive/CNV (proximal) 1.85 [0.49-7.04] 3.36 × 10 -01 1.27 [0.54-6.02] 6.65 × 10 -01 0.33 [0.18-1.00] 1.86 × 10 -02

Repetitive/CNV (distal) 0.32 [0.03-2.98] 6.25 × 10 -01 0.25 [0.11-Infinity] 3.02 × 10 -02 0.63 [0.33-3.00] 1.46 × 10 -01

DNase Clusters 2.60 [2.28-2.96] 7.63 × 10 -48 2.64 [2.36-2.97] <5.00 × 10 -05 1.15 [1.06-1.26] 3.00 × 10 -04

Human Insulators 2.14 [1.63-2.82] 2.19 × 10 -08 1.94 [1.50-2.61] <5.00 × 10 -05 0.99 [0.83-1.23] 4.61 × 10 -01
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and we wanted to show the most influential annotations
for trait-association status without influencing the model
a priori. The estimated effects of the annotations ranged
between −1.41 and 1.15 and the β-coefficient (see
Methods) ranged between −6.69 and 13.31. The most
significant annotations enriched for trait-associated
SNPs were open higher order chromatin domains,
eQTLs, DNase clusters, and exonic regions. Annotations
depleted of trait-associated SNPs included the regions
associated with heterochromatin and low expression sig-
nal. The high and significant enrichment signals in the
open chromatin regions, eQTLs and strong enhancers
(proximal) observed in the enrichment/depletion ana-
lyses were replicated in the logistic regression. Four of
the annotations (transcriptional elongation, synonymous
SNPs, active promoters and 50UTRs) were significantly
depleted in the logistic regression analysis, but showed sig-
nificant enrichment when analyzed individually. Many
annotations significant in the enrichment/depletion analysis
when analyzed individually were not included in the final
model suggesting that they have little explanatory power
additional to annotations already included in the model.
Annotations included in the model, such as transcriptional
elongation, could have been overlooked in the enrichment/
Table 2 Average of confidence interval width of
sampling and permutations

Permutation Sampling

Genic and Regulatory
Features

2.08 1.90

Conserved Elements 1.92 1.12

Chromatin States 2.13 1.89
depletion analysis since their odds ratios were very similar
to the rest of the annotations. However, the influence of the
transcriptional elongation, when compared to the strong
enhancers (proximal) in the logistic regression, is nearly
equivalent in magnitude, although the direction of
the weights is opposite as judged by the value of the
β - coefficient. These differences highlight the importance
of jointly analyzing all the genomic features.
Six annotations were found to have significant (P-value

≤ 0.05) effects on trait-association status of suggestive
SNPs: eQTLs, open chromatin, exons, gained stop codons,
vegaGenes, and strong enhancers (proximal). The annota-
tions included in the model for suggestive SNPs had
reduced β-coefficients when compared with their value in
the logistic regression model for significantly associated
SNPs, consistent with the weaker enrichments seen for
the suggestive class and the mixture of true and false
positives in this SNP set.
The results from logistic regression demonstrate the

value of a comprehensive modeling approach that helps
identify annotations providing independent information
on the trait-association status of SNPs. Some of the indi-
vidual annotations have highly significant effects in both
the logistic regression and the enrichment analyses.
Nonetheless, the overall explanatory power of the final
model as evidenced from the pseudo-r2 values (Table 4)
is relatively limited. One might imagine that the power
of predictive modeling might be enhanced by the inclu-
sion of quantitative variables rather than the essentially
binary variables used here. This was borne out by an
examination of models including a quantitative estimate
of the upstream proximity of GWAS hits to TSSs. Add-
itional file 9 shows two histograms of A) the upstream
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distance to TSS in both, significant and suggestive trait-
associated SNPs, with a clear change in frequency at
distances greater than 20 Kb away from the TSS and B)
a closer look at the <20 Kb region. Distance to TSS was
included after optimization in spite of the inclusion of
other TSS associated categorical variables, such as 5 Kb
upstream TSS regions. The effect of distance to TSS is
negative with a β-coefficient of −12.18, implying that
a larger distance away from the TSS results in a de-
crease in the likelihood that a particular SNP is sig-
nificantly trait-associated. Additional file 10 shows the
β-coefficients of the logistic regression incorporating the
distance to TSS effect. A table of all coefficients is shown
in Additional file 11. The pseudo-r2 value of the final
model improved to 42% (McKelvey and Zavoina’s), relative
to models lacking this variable (Table 4). Additional file 12
shows the effect of including distance to TSS for six rep-
resentative genomic annotations for the significantly
trait-associated SNPs. The importance of a number of
other annotations declined correspondingly, with the
odds ratios for strong enhancers (proximal), eQTLs and
active promoters reduced the most. The reduction of
the odds ratio of eQTLs confirms previous results that
eQTLs are usually found close to the transcription start
site of genes [28].

Discussion
We analyzed the enrichment and depletion of signifi-
cantly and suggestively trait-associated SNPs in genomic
regions annotated for 58 different functional genomics
features. For the significantly trait-associated SNPs we
observed significant enrichment in genic annotations
and several features associated with particular chromatin
states. The enrichment in genic annotations has been
well documented in previous studies [8,10], while there
has been modest evidence for enrichment of trait-
associated SNPs in regions with distinct chromatin
structures [13]. However, the greatest insight is provided
by logistic regression analysis, which evaluates the gen-
omic features in terms of their influence on trait-
association status in the context of the complete model
for prediction of trait association status for SNPs.
Annotation classes associated with genes (Figure 1)

showed enrichments and depletions comparable to previ-
ous studies. The highest significant enrichment was
observed in gained stop codons obtained by the



Table 3 Comparing significant vs. suggestive logistic regression results

Significantly associated SNPs Suggestively associated SNPs

Annotation Estimated effect Std. error β-coefficient P-value Estimated effect Std. error β-coefficient P-value

Open Chromatin 0.79 0.06 13.31 2.00 × 10-40 0.15 0.04 3.43 5.94 × 10-04

eQTLs 0.72 0.07 10.7 1.01 × 10-26 0.39 0.08 5.06 4.10 × 10-07

DNase Clusters 0.46 0.05 8.52 1.58 × 10-17 NA NA NA NA

Heterochrom; low signal −0.37 0.05 −6.69 2.26 × 10-11 NA NA NA NA

Exons 0.58 0.09 6.52 6.94 × 10-11 0.17 0.07 2.35 1.85 × 10-02

Strong enhancer (A) 0.47 0.08 5.98 2.29 × 10-09 0.21 0.1 2.12 3.37 × 10-02

Transcriptional elongation −0.43 0.07 −5.87 4.26 × 10-09 NA NA NA NA

TSS 5 kb upstream 0.36 0.07 5.53 3.26 × 10-08 NA NA NA NA

vega Genes 0.27 0.05 5.51 3.59 × 10-08 0.09 0.04 2.17 2.98 × 10-02

Polycomb repressed 0.24 0.07 3.6 3.19 × 10-04 0.13 0.07 1.86 6.32 × 10-02

Gained Stops 1.15 0.35 3.32 8.95 × 10-04 1.49 0.42 3.58 3.44 × 10-04

Syn. SNPs −0.32 0.1 −3.12 1.83 × 10-03 NA NA NA NA

Non-Syn. SNPs 0.23 0.09 2.56 1.06 × 10-02 NA NA NA NA

Active promoter −0.25 0.1 −2.47 1.37 × 10-02 NA NA NA NA

MCS44wayPrimates 0.17 0.07 2.33 2.00 × 10-02 NA NA NA NA

MCS44way 0.24 0.11 2.31 2.07 × 10-02 NA NA NA NA

5UTR −0.31 0.16 −2.01 4.50 × 10-02 NA NA NA NA

Inactive/poised promoter 0.37 0.2 1.87 6.14 × 10-02 −0.59 0.41 −1.43 1.54 × 10-01

MCS44wayPlacental −0.2 0.11 −1.8 7.14 × 10-02 NA NA NA NA

Enhancers 0.53 0.29 1.8 7.22 × 10-02 NA NA NA NA

Insulator −0.18 0.1 −1.8 7.24 × 10-02 NA NA NA NA

InDels 0.11 0.06 1.76 7.79 × 10-02 NA NA NA NA

tSmiRNA 0.83 0.51 1.61 1.08 × 10-01 −9.42 66.4 −0.14 8.87 × 10-01

Weak/poised enhancer (B) 0.1 0.06 1.52 1.28 × 10-01 NA NA NA NA

Repetitive/CNV (B) −1.41 1 −1.41 1.58 × 10-01 NA NA NA NA

Repetitive/CNV (A) NA NA NA NA −0.9 0.71 −1.27 2.05 × 10-01

RNA Genes NA NA NA NA −0.73 0.58 −1.26 2.08 × 10-01
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permutation method, but not the sampling method. This,
and other sparsely annotated genomic features (i.e. with a
low percentage of the genome covered; Additional file 1),
resulted in large confidence intervals on the estimated
odds ratio by either method. The observed differences in
significance are due to the theoretically determined
P-values, which were a widely used asymptotic approxi-
mation (see Methods), employed in the sampling method
versus those determined empirically in the circular
permutations method (see Methods). Theoretical values
were used for the computationally intensive sampling
method since they were necessarily based on a limited
number of random samples, and such limitations do not
apply to the permutation approach. The confidence
intervals derived by permutation are generally slightly
more conservative (i.e. larger) than those from the sam-
pling approach. This is consistent with the permutation
approach taking appropriate account of non-random
distributions of annotations and SNP locations. As ex-
pected among the genomic features enriched for signifi-
cantly trait-associated SNPs were the OMIM morbid
regions, identified as regions associated with traits in
GWAS and linkage studies [29]; these regions may ap-
proximate a positive control.
Conserved elements and regions with other evolutionary

signatures (Figure 2) usually exhibited significant though
modest enrichment with odds ratios ranging from 1.64 to
1.97. Odds ratios for evofold, VISTA enhancers and
exapted repeats were found to be not significant, but other
conserved regions and evolutionary signatures showed
odds ratios comparable to each other. The PREMOD [30]
annotation is the only annotation obtained from a predict-
ive algorithm that shows significant enrichment (OR = 1.64
[1.38-1.97]). It is, unlike other algorithms, not restricted to
modules located proximal to genes, but mostly contains
distal predicted cis-regulated module predictions [30]. This
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has implications for follow-up studies, as trait-associated
SNPs in conserved regions tend to be prioritized for
further studies [31] either manually or via algorithms
[20,21,23,32]. Conserved regions have also been shown to
add little information to the prediction of nucleotides
acting as eQTLs, with no significant odds ratios of enrich-
ment observed for conserved phastCons elements [33]. It
is likely that many of the most conserved sites (‘MCS’,
obtained through phastCons) are shared among the sets of
sites identified using different alignments with a varying
number of investigated species (Figure 2).
We detected enrichment for trait-associated SNPs in

various chromatin states (Figure 3) associated with a var-
iety of regulatory functions. The proximal and distal sets
of the chromatin states influence expression of proximal
Table 4 Pseudo-r2 values for logistic regressions for significan

Genotyping arrays only

McFadden McKelvey &

Significant 1 (no TSS) 0.07 0.1

Significant 2 (with TSS) 0.07 0.1

Significant 2 (without TSS) 0.07 0.1

Suggestive 1 (no TSS) 0.09 0.1

Suggestive 2 (with TSS) 0.09 0.1

Suggestive 2 (without TSS) 0.09 0.1
and rather more distant distal genes, respectively [13].
The significant enrichment signal in the enhancer annota-
tion is consistent with the results of Ernst et al. [13], who
investigated GWAS results for immune and blood related
phenotypes in chromatin data from the GM12878 lym-
phoblastic cell line. The authors reported a two-fold en-
richment for a combination of the proximal and distal
strong enhancers for SNPs associated with leukemia,
rheumatoid arthritis, and systemic lupus erythematosus
[13]. We are able to confirm their observed enrichment of
trait-associated SNPs and also observe enrichment signals
with larger odds ratios in the strong enhancer sets of
proximal genes than for the strong enhancer set of distal
genes. A third of the significantly trait-associated SNPs
used here are associated to immunity-related traits, so a
tly and suggestively associated SNPs

Genotyping arrays and annotations

Zavoina’s McFadden McKelvey & Zavoina’s

4 0.11 0.28

4 0.12 0.42

4 0.11 0.28

6 0.09 0.18

6 0.09 0.18

6 0.09 0.18
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strong signal in the enhancer regions of a lymphoblastic
cell line is intuitively reasonable. A clear difference is seen
between open and closed domains of higher order chro-
matin. This was expected as closed chromatin is known to
contain a somewhat higher density of SNPs [15], but is also
likely to contain fewer trait-associated SNPs due to low
gene density [17]. Open chromatin, however, is present at
gene and regulatory feature dense areas [17] and is there-
fore more likely to harbor trait-associated variants.
The suggestively trait-associated SNPs showed similar

results to the significantly associated SNPs, but with more
moderate odds ratios. This result is consistent with sug-
gestively associated SNPs containing both false positives
(which we would expect to have no bias towards particu-
lar annotations) and true associations, whose effects were
not of sufficient magnitude to show genome wide signifi-
cance. These true positives would be expected to have the
same bias towards particular genomic features as trait-
associated SNPs of genome wide significance [10].
While significantly trait-associated SNPs are consistently

documented, suggestive associations often remain unre-
ported, since they are assumed to contribute less to our
understanding of the underlying biology. Additionally, the
NHGRI GWAS catalog only incorporates SNPs with asso-
ciation levels starting at 5 × 10-5, where the more com-
monly accepted level for suggestively associated SNPs
starts at 5 × 10-4 [5,7]. This means that the significantly
associated SNP set is likely to be a more comprehensive
and complete SNP set, despite containing a smaller num-
ber of SNPs. The similarity of enrichment trends between
the significant and suggestive sets are encouraging and
may be of use to aid further research into areas of the
human genome surrounding suggestively trait-associated
variants on exonic variants, which may introduce bias to-
wards certain genomic features, such as genic regions,
which may affect the results for the suggestively associated
SNPs more than the significantly associated SNPs, as there
are more of the latter. However, the enrichment trends
between the two sets suggest that this is not a major prob-
lem. The results are therefore encouraging and may be of
use to aid further research into areas of the human gen-
ome surrounding suggestively trait-associated variants.
A combination of the two full logistic regression models

identified six annotations that significantly influenced
trait-association status for both significantly and suggest-
ively associated SNPs. These annotations were open
chromatin, eQTLs, exons, strong enhancers (proximal) of
proximal genes, vegaGenes, and gained stop codons.
These results are biologically reasonable, as the disruption
of coding regions of genes gives rise to different phe-
notypes. Open chromatin is, as mentioned before, densely
populated by genes and regulatory features, while recent
literature indicates that eQTLs are highly influential in
causing phenotypic variation by regulating gene
expression [16,28,34-37]. In the significantly trait-
associated model, the conserved regions included were
the most conserved elements identified in the primate
lineage, followed by all conserved sites identified between
44 vertebrates. This suggests that these two levels of con-
servation are sufficiently different from each other to be
separately included in the model. The previously observed
trend of more moderate effects in the suggestively trait-
associated SNP dataset was confirmed in all genome
annotations, with the exception of the gained stop codons,
which had a stronger effect on suggestively associated
SNPs.
The majority of significantly trait-associated SNPs and

their LD partners (55%) overlap in regions identified as
containing genes listed in the vega database [29,38]. This
percentage can be increased to 70% by adding the re-
maining 7 genic annotations found to influence significant
trait-association status: eQTLs, exons, TSS 5 Kb upstream,
gained stops, synonymous SNPs, non-synonymous SNPs
and 50UTR. One or more of the conserved region
annotations overlap with 72% of significantly trait-
associated SNPs, which is reduced to 48% if the genomic
features overlapping with the highest number of SNPs,
positively selected genes and regions showing constraint in
the accumulation of indels, are excluded from that analysis.
These latter two genomic features contained the highest
number of trait-associated SNPs in regions with evolution-
ary signatures. Most widely used prediction algorithms
[20,32] already make use of conserved sites to predict trait-
associated SNPs, but could possibly be improved if
conserved indels were included into their predictive
methods. The negative set was overlapping with 47% of the
trait-associated SNPs. It is, for example, possible that a SNP
overlapping with conserved sites has LD partners, which
overlap with the negative sequence annotation.
The variables identified as informative in the logistic re-

gression do indeed harbor many trait-associated SNPs on
closer inspection. Some (4%) significantly trait-associated
SNPs or their LD partners overlapped with none of the
genomic features with a positive influence on trait-
association status. In contrast, 23% of background SNPs
were not overlapping any of those genomic features
(Additional file 13). The odds ratio, which was calculated
for the observed distribution of significantly associated
SNPs and their LD partners that are overlapping with the
12 identified annotations with a positive β-coefficient, was
7.70 [6.09-9.73] and a P-value of 6.19 × 10-126. The 4.2% of
the trait-associated SNPs that are not explained by those
12 annotations overlap mainly with heterochromatin and
intergenic regions. The chromatin states defined by Ernst
et al. [13] cover the entire genome, so that all trait-
associated SNPs co-occur with at least one of the states.
Table 4 shows the McFadden’s and McKelvey and

Zavoina pseudo-r2 values for the empty and full models
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with and without distance to TSS for suggestively and sig-
nificantly trait-associated SNPs. The logistic regression
model without the distance to TSS for the significantly
associated SNPs explained 11-25% of the observed vari-
ance, which was an increase of 4-11% when compared to
the empty model, which only included the effects of the
genotyping arrays. An ANOVA test, using a chi-squared
test, showed the difference between the two models to be
significant (Deviance = 1501.00, P-value = 3.13 × 10-309).
The difference between the two models for the suggest-
ively associated SNPs was also significant, albeit less so
(Deviance = 113.06, P-value = 1.49 × 10-18). The pseudo-r2

values for the model including the distance to TSS range
from 12-42% depending on the method to calculate the
value. Although the full model without the Distance to
TSS variable is a substantial improvement on the empty
model, the pseudo-r2 suggests much variance remains un-
explained. This is hardly surprising when it is considered
that the data contains millions of SNPs which are func-
tionally annotated, either directly or through LD partners,
but which are not known to be trait-associated. This
indicates that there is quite some way to go before one
can use annotation information to predict trait-association
status with any confidence. Improvements in the accuracy
and precision of annotation will undoubtedly help – for
example the resolution of conserved regions or chromatin
states can be expected to improve over time. Such im-
provement combined with better information on SNP trait
association status such as effect size or size and power of
individual studies might further speed progress towards
models that are better able to predict functionally relevant
SNPs, either for focused functional studies, or for inclusion
in health prediction algorithms. Additionally, the investiga-
tion using distance to TSS highlights the importance of
quantitative variables, which may be a future avenue to
take, once these annotations become available.

Conclusion
We have identified genomic features which are significantly
enriched or depleted for both significantly and suggestively
trait-associated SNPs. Additionally, we were successful in
assigning weights to 17 genomic features, which indicate
their relative influence on trait-association status of GWAS
hits significant at the genome-wide level. These weights
could be used to further prioritize GWAS hits as candidates
for potential follow-up studies. The most informative and
influential genomic features for significant trait-association
status were regions associated with particular chromatin
states, as identified using logistic regression. Conserved
elements and regions with other evolutionary signatures
were shown to have relatively weaker influence than either
chromatin states or genic region annotations, once all other
included genomic features were taken into account. Distance
to transcription start site (TSS) was identified as an
influential factor, where SNPs further away from the TSS
were less likely to be significantly trait-associated. We have
also identified four genomic features – synonymous SNPs,
transcriptional elongation, 50UTRs and active promoters –
that are enriched for significantly trait-associated SNPs in
both the circular permutations and sampling method, but
show relative depletion in the logistic regression model,
which looks at relative influences across the analyzed gen-
omic features. This stresses the value of studying combined
influences of the genomic features relative to each other, ra-
ther than separately. With the data in place, we can now in-
vestigate different trait-subsets and other co-occurrences
within the genome.

Methods
Trait-associated SNPs
The significantly and suggestively trait-associated SNP sets
were derived from the NHGRI GWAS catalogue; accessed
25 Aug 2011 [5]. This dataset reported 4,520 SNPs with at
least one associated trait (5,800 reported associations in
total) from 764 studies. A unique SNP is the “rs” number of
a SNP that is associated to at least one trait. The common
genome-wide level significance threshold (p < 5 × 10-8) was
used to define 1,909 significantly trait-associated SNPs from
586 studies. The suggestively trait-associated SNPs set
was defined as SNPs with association P-values between
5 × 10-8 and 5 × 10-5. SNPs that were located on either the
Y-chromosome or unassigned chromosomes were removed
from all analyses. SNPs in the suggestively associated SNPs
set found to be in LD (r2 > 0.9) with significant SNPs were
removed from the dataset, resulting in 2,410 unique rs
numbers from 412 studies.

Total number of analyzed SNPs
A list of 3,840,944 SNPs incorporated all SNPs that were
included on different genotyping arrays and also those that
are part of the HapMap CEU II data. The latter was
included to account for SNPs that were identified as trait-
associated SNPs through imputation in meta-analyses. The
list included information on linkage disequilibrium (LD)
partners of all SNPs (see below), the location of SNPs in the
genome and the observed co-occurrences with annotations
for the selected genomic features (see below). Autosomes
and the X chromosome were analyzed in this study.

LD partners
The HapMap CEU II data was used to define LD partners
of all SNPs. LD partners were defined as SNPs from the total
set in LD (r2 > 0.9) with the analyzed SNPs [39,40]. The dis-
tance between LD partners was up to 250Kb on either side
of the SNP. The maximum distance between two LD
partners for any particular SNP was therefore up to 500 Kb.
This r2 was chosen since the effect of SNPs in LD of that
value are said to be equivalent in trait-association studies [8].
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Genomic features
This study analyzed three main categories of annotations:
genic and regulatory features, regions with conserved or
evolutionary signatures, and chromatin states. Additional
file 14 provides further details of the annotations and their
sources. All annotations were downloaded in hg18, where
available. If they were not available, the UCSC liftOver
tool was used to transfer the annotated regions into hg18
[41]. A SNP was annotated as overlapping within a par-
ticular genomic feature if it or any of its LD partners was
located within the annotation. Trait-associated SNPs with-
out LD partners were analyzed on their own. We also
included a derived annotation as an approximation for a
negative control: From the intergenic dataset we excluded
sites overlapping with any form of evolutionary, regulatory
or genic annotation examined here, so that it is negative
for sequence annotation irrespective of epigenetic state.

Odds ratios
For a particular genomic feature, one overlap was counted,
if a trait-associated SNP or any of its LD partners co-
occurred in a region annotated for that genomic feature.
Non-overlaps were defined as the lack of co-occurrences
between a trait-associated SNP or its LD partners and an
annotation. Odds ratios were calculated to enable com-
parisons with previous studies [8], where an odds ratio
was defined as the product of the overlaps of the real data
and the non-overlaps of the sample data divided by the
product of the non-overlaps of the real data and the
overlaps of the sample data, i.e.: [(Overlaps Real Data)*
(Non-Overlaps Sample Data)]/[(Non-Overlaps Real Data)*
(Overlaps Sample Data)].
Odds ratios of enrichment/depletion were calculated by

comparing overlaps between genomic features and real
trait-associated data with overlaps of SNPs determined by
chance alone. The ‘epitools’ package [42] of the statistical
program R version 2.12.1 [43] was used for the cal-
culations. Odds ratio P-values were significant when
below the Bonferroni-corrected significance threshold,
which in our case was calculated for 58 independent
variables (P ≤ 8.62 × 10-4). These annotations were not in-
dependent from each other, which means that the
Bonferroni corrected P-value is conservative. Fold enrich-
ment, a ratio of hits in the associated data over the hits in
the permuted data, was calculated for the significant SNP
set to compare it to the calculated odds ratio to aid the in-
terpretation of results.

Sampling genotyping SNP platforms
The sampling method was based on Hindorff et al. [8]
and aimed to obtain sample sets of SNPs of equal size to
the set of trait-associated SNPs represented on genotyp-
ing platforms. We used weighted groups based on the
manufacturer(s) of the SNP platform(s) to draw the samples,
rather than on individual genotyping arrays, as that informa-
tion was often unavailable. The numbers of SNPs drawn
from each manufacturer group were proportional to the
number of SNPs observed in the real data. The HapMap
CEU II SNPs were included to account for the trait-
associated SNPs obtained from GWAS using imputed
genotypes. The LD partners were ascertained as for the
trait-associated SNPs. Odds ratios, confidence intervals and
P-values indicating the significance of the observed results
were calculated using the oddsratio.wald() function from the
‘epitools’ R package. This function calculated the odds ratios
by comparing unconditional maximum likelihoods of the
observed value compared with the mean number of hits of
the 100 samples.
Chromosome-bound circular permutations
A novel permutation approach was applied, which
preserved the internal structure of the datasets in terms
of relative distance between SNPs, the observed clus-
tering of annotations, and the LD structure around
SNPs. GWAS hit status (appears in NHGRI GWAS cata-
logue with required p-value or not) was established for a
list of a total of 3,840,944 known HapMap CEU II SNPs
in autosomes and the X chromosome with information
on LD (r2 > 0.9) SNP partners for each SNP appearing
on the list. For each permutation a randomly generated
number, drawn from a uniform distribution between one
and the number of SNPs per analyzed chromosome, was
used to shift the trait-association status of all SNPs
within a chromosome. Permutations were circular within
chromosomes: where a shift of status exceeded the SNPs
available before the end of the chromosome it resumed
at the beginning of the chromosome. This produced a
population of 20,000 permuted genomes containing the
same number of trait-associated SNPs and showing the
same degree of genomic clustering as observed in the
original SNP datasets. Overlaps between the permuted
trait-associated variants and the annotations were
counted. The odds ratios were calculated by comparing
the mean number of overlaps of permuted SNPs and the
observed results for the associated SNPs for each anno-
tation. The 95% confidence intervals were obtained by
calculating odds ratios for the 5th and 95th largest
values of the permuted hits. The P-value of the odds
ratios obtained by the permutations was calculated from
the proportion of permuted datasets that were more ex-
treme than the observations in the real trait-associated SNP
set. Hence the lower bound of the P-value was 5 × 10-5

when results from the real data were more extreme than
any of the 20,000 permutations.
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Logistic regression to establish relative importance of
annotations
Logistic regression was applied in order to model
annotations as variables that influenced trait-association
status of SNPs. The trait-association status was modeled
as a binary variable, where trait-associated SNPs were
coded as one and non-associated SNPs were coded as
zero. The analysis used the established SNP set with
3,840,944 SNPs and regressed the explanatory variables
(co-occurs with annotation or not) onto the trait-
association status at the chosen significance threshold.
The genotyping SNP platforms and HapMap CEU II
SNPs were included as explanatory variables in the
starting or empty model, as presence on a SNP genotyp-
ing array was significant in explaining trait-association
status in previous analyses. A stepwise logistic regression
determined the ex- or inclusion of annotations in the
model based on a reduction of the Akaike’s Information
Criterion (AIC) to (‘MASS’ package [44] for R). The
process halted, when the AIC increased rather than
decreased with additional variables. An estimated effect on
trait-association status, its standard error and P-value were
extracted for each included variable from the summary of
the final model. A β-coefficient, the ratio of estimated ef-
fect and its standard error, was calculated. The magnitude
of the β-coefficients indicates the trend and magnitude of
the effect of a variable, here of an annotation. The P-value
associated to the β-coefficients indicates the significance of
the annotation within the model.
Calculations of pseudo-r2 values
One interpretation of the r2 goodness-of-fit parameter
derived from linear regression is as the proportion of the
data variation that the model explains. Logistic regression
models do not generate an r2 value as such. However, a
pseudo r2 can be estimated in a variety of ways. Here, we
chose the McFadden’s pseudo-r2 as well as McKelvey and
Zavoina’s pseudo-r2. McFadden’s pseudo-r2 is calculated
by the ratio of the log likelihoods from empty and full
models [45]. McKelvey & Zavoina’s pseudo-r2 is calculated
using predicted values of the dependent variable [45]. The
R package ‘descr’ (function LogRegR2) [46] was used to
calculate the pseudo-r2 values.
Additional files

Additional file 1: Statistics of genomic features. Containing
distribution statistics of the analyzed genomic features including number
of sites, percentages of nucleotides covered, percentages of SNPs
covered and the average length of the annotated nucleotide sites.

Additional file 2: Fold Enrichment for significantly trait-associated
SNPs. Comparing odds ratios obtained by permutations, fold enrichment
and obtained percentages for observed and permuted significantly trait-
associated SNPs.
Additional file 3: Fold enrichment and odds ratios. Showing that
Odds ratios and fold enrichment are strongly correlated with each other
(r2 = 0.96). The correlation is highly significant (P-value = 7.8 × 10-40)
indicating that odds ratios can be interpreted as fold enrichment.

Additional file 4: Different r2 threshold comparisons in genic
regions. Showing the comparison between two different r2 thresholds
for the genic regions. Overall the odds ratios do not show significant
differences.

Additional file 5: Different r2 threshold comparisons in regions of
conserved and evolutionary signatures. Showing the comparison
between two different r2 thresholds for the conserved regions. Overall
the odds ratios do not show significant differences.

Additional file 6: Different r2 threshold comparisons in regions
associated with different chromatin states. Showing the comparison
between two different r2 thresholds for the different chromatin states.
Overall the odds ratios do not show significant differences.

Additional file 7: Correlation between ratio of odds ratios and CI
width for significantly and suggestively trait-associated SNPs.
Between the ratios of odds ratio and confidence interval width of
significant and suggestive SNPs (r2 = 0.89; P-value = 1.60 × 10-26). The ratio
can be a lot higher for suggestive SNPs, indicating that the confidence
intervals are shorter. However, this may be due to a difference in the
number of analyzed SNPs between the two datasets.

Additional file 8: Comparison of permutation results of significantly
and suggestively trait-associated SNPs. That compares all permutation
results for significantly and suggestively trait-associated SNPs.

Additional file 9: Histogram of distance to TSS for significantly
trait-associated SNPs. Showing the distribution of distance to TSS
across all significant and suggestive trait-associated SNPs and a close up
of the <20 Kb region.

Additional file 10: Distance to TSS logistic regression graph.
Showing the new β-coefficients of the genomic annotations in the
logistic regression analysis.

Additional file 11: Table of distance to TSS log reg. Showing the
estimated effect, standard error of the estimated effect, β-coefficient and
the P-value of the genomic annotation included in the optimized model
incorporating the distance to TSS variable.

Additional file 12: Table of changing odds ratios of select
annotations before and after taking distance to TSS into account.
Showing the changes in odds ratios of six different annotations before
and after distance to TSS was included into a logistic regression model.

Additional file 13: Histogram of annotation overlaps for SNPs.
Representing the percentage of SNPs (y-axis) overlapping with different
numbers of annotations (x-axis) in all SNPs (grey) and the significantly
trait-associated SNPs (black). A) Histogram of annotations identified to
have a positive β-coefficient. For all SNPs: Mean: 1.89, Standard Deviation:
1.83. Trait-associated SNPs: Mean: 3.60, Standard Deviation: 2.26. B)
Histogram of annotations identified to have a negative β-coefficient. For
all SNPs: Mean: 0.54, Standard Deviation: 0.98. Trait-associated SNPs:
Mean: 1.07, Standard Deviation: 0.78.

Additional file 14: Sources and description of genomic features.
Containing a full description of all analyzed genomic features and their
online sources.
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