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Abstract

Background: One of the major open challenges in next generation sequencing (NGS) is the accurate identification
of structural variants such as insertions and deletions (indels). Current methods for indel calling assign scores to
different types of evidence or counter-evidence for the presence of an indel, such as the number of split read
alignments spanning the boundaries of a deletion candidate or reads that map within a putative deletion. Candidates
with a score above a manually defined threshold are then predicted to be true indels. As a consequence, structural
variants detected in this manner contain many false positives.

Results: Here, we present a machine learning based method which is able to discover and distinguish true from false
indel candidates in order to reduce the false positive rate. Our method identifies indel candidates using a discriminative
classifier based on features of split read alignment profiles and trained on true and false indel candidates that were
validated by Sanger sequencing. We demonstrate the usefulness of our method with paired-end Illlumina reads from
80 genomes of the first phase of the 1001 Genomes Project (http://www.1001genomes.org) in Arabidopsis thaliana.

Conclusion: In this work we show that indel classification is a necessary step to reduce the number of false positive
candidates. We demonstrate that missing classification may lead to spurious biological interpretations. The software is
available at: http://agkb.is.tuebingen.mpg.de/Forschung/SV-M/.
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Background

The detection of genetic variation between individuals is
a key challenge in current research in genome biology.
This variation includes single nucleotide polymorphisms
(SNPs), structural variants (SVs) and copy number vari-
ants (CNVs) such as deletions, insertions or duplications,
as well as copy number invariant changes like translo-
cations or inversions. SNPs are used extensively to link
phenotypic traits with associated genotypes in genome-
wide association studies (GWAS) [1] and to infer rela-
tionships in evolutionary studies [2,3]. SVs can provide
additional insights into the genomic causes of phenotypic
diversity [4,5]. Moreover, it is assumed that the total num-
ber of nucleotides spanned by SVs greatly exceeds that
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of SNPs in human and plants [6,7]. Hence SVs will be
included more and more into these studies [6,8]. Further-
more, SVs are associated with different types of human
diseases [5,9-13] and plant phenotypes [14,15]. Compared
to SNP identification, the detection of larger divergent
sequences remains a challenging task. We here present a
machine learning approach to predict SVs based on NGS.

Traditionally, structural variants, in particular deletions
and duplications, have been identified using array-based
technologies (arrayCGH or SNP arrays) [16], but these
strategies suffered from a limited size and localization
resolution, which is dependent on the density of probes
or known markers. With the advent of NGS methods,
whole-genome studies became feasible. Small insertions
and deletions (hereafter called indels) up to a few base
pairs in length were called by sensitive alignment tools
in the routine re-sequencing process [2,17,18]. However,
the detection of larger structural variants based on depth-
of-coverage (DOC) [19] or paired-end mapping (PEM)
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[20,21] methods could not reduce the SV size and local-
ization resolution to the one base pair level. DOC [19]
algorithms detect regions with absent (deletion) or sig-
nificantly elevated (duplication) coverage, but are not
able to determine the exact insertion location on the
base pair level of the duplicated sequence. PEM [20,21]
methods exploit the fact that the distance between the
alignment locations of read pairs on a reference genome
(the ‘insert size’ of the read pairs) usually follow a nor-
mal distribution. Clusters of read pairs mapping to the
same genomic regions, whose distance is much shorter
(longer) than expected can be explained by an insertion
(deletion) in the newly sequenced individual compared
to the reference genome. The standard deviation and the
mean of the insert size distribution define the sensitiv-
ity of this method. Recently, so-called split-read mapping
approaches (SRM) were introduced to pinpoint structural
variants and especially indels in the genome correctly to
the base pair level [22-24]. These methods use mapped-
unmapped read pairs (MUR) from a paired-end alignment
performed by existing short read mapping tools. The
mapped partner serves as anchor to realign the unmapped
partner using alignment algorithms allowing for long-
range gaps in both the reference sequence (deletion) or the
read (insertion). We will refer to the initial mapping which
identifies MURs as first and the split read alignment as
second mapping pass throughout this manuscript.

Deletions up to a few tens or hundreds of base pairs
in length can be identified by array based, DOC and
PEM approaches, while conventional short read align-
ments are designed to find only deletions of a few base
pairs. In contrast, SRM predictions can in principle span
the whole range of deletion lengths. However, the size
of insertions is limited, and spurious alignments of the
indel-flanking read parts might lead to multiple contra-
dicting indel candidates. Both limitations directly depend
on the read length and are thought to be counterbalanced
by longer sequences from advanced technologies. Finally,
deletions can be identified by limited de novo assembly
methods, but they are not yet used routinely and require
whole-genome alignments or close relative genomes for
comparisons.

Though a large number of software packages for indel
prediction from NGS data have been developed, applica-
tion of these methods to identical data sets reveals little
overlap [5]. This is caused by different indel identifica-
tion strategies. To reduce the number of false positive
indel candidates, SRM methods, such as Pindel [22], rely
on conservative realignment strategies. Here, solely per-
fect and uniquely mapped reads are considered for further
analysis. Moreover, the realignment of the unmapped
partner has to be mismatch-free as well. These constraints
reduce the set of possible indel candidates drastically.
Existing SRM programs report an indel as soon as two
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independent reads support the same SV, and if their part-
ner reads lie within concordant insert sizes [22,23]. Other
methods use several alignment features as evidence of an
indel. However, either relying on logical rules [22,24] or
on generative probabilistic models [25], they require an
empirically defined threshold, above which a candidate is
a true SV. The most reliable way to verify indels is by cap-
illary sequencing, but this is unfeasible for a genome-wide
scan. Thus, to identify a comprehensive set of indels, a
non-conservative mapping strategy is needed that takes
non-unique and non-perfect mapping reads into account.
Furthermore, to rate their trustworthiness, an evalua-
tion method is needed which collects information about
numerous alignment features from different approaches
and automatically weighs their contributions.

Here we introduce an extended realignment split read
strategy to identify a comprehensive set of indel candi-
dates. A de novo machine learning method is applied to
discriminate between ‘true’ and ‘false’ indel candidates
based on more than 10 alignment features, which can be
derived from any short read mapping tool. Its core is a
support vector machine (SVM) [26], a discriminative clas-
sifier that is trained on diverse alignment information on
indel examples validated by reliable Sanger sequencing.
Our SVM approach avoids the step of defining thresh-
olds for each feature by automatically learning them from
Sanger validated training data. We show that a com-
monly used criterion, namely the number of split read
pairs supporting the same indel, is not sufficient to distin-
guish true indels from false candidates, but that additional
features can accurately predict bona fide SVs. Concomi-
tantly, our method reports the contribution of each fea-
ture to this decision process. Our approach was applied
to 80 genomes of Arabidopsis thaliana [2] and its validity
demonstrated by recovering a highly similar population
structure of the analyzed strains solely based on positively
classified indels compared to taking SNP data as a basis.

Results

Indel candidate detection

We performed a custom split read alignment method to
retrieve indel candidates from the Arabidopsis thaliana
strain ICE111 from phase I of the 1001 Genomes Project
[2]. The read lengths ranged from 36 to 64 bp with an
average sequencing depth of 21x. All mapped-unmapped
read pairs (MURs) were retrieved from the available align-
ments from Cao et al. [2], which allowed 4 base pair
differences between read and reference, of which at most
3 could be gaps. The mapped partner may have multi-
ple alignment positions across the whole genome. Because
of many ambiguous alignments due to the high repet-
itivity of centromeric sequences, all MURs within cen-
tromeres were excluded. The unmapped partners of the
MURs were mapped against Col-0 (TAIRS8) in a 5,000 bp
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window downstream of the mapped partner using Gotoh’s
alignment algorithm [27], allowing for long-range gaps
as well as additional SNPs or few base pair-sized indels
(Additional file 1). All best-scoring alignments were
reported and indels with a minimum support of two reads
constituted the indel candidate set to be further evaluated.

Feature selection

The split read alignment approach identified 14,155
potential indel candidates for the Arabidopsis thaliana
strain ICE111. We randomly selected 219 deletion and 43
insertion candidates across all chromosomes from this set
and labeled them as true or false after Sanger sequencing.
Thus, we retrieved two training sets. The training cor-
pus for deletions consisted of 172 correctly and 47 falsely
labeled examples and the training corpus for insertions of
33 true and 10 false ones. These sets were used to train a
SVM [26].

Pindel [22] uses the number of split-read alignments
supporting an indel with identical genomic coordinates as
the only evidence for an indel. In a first study, only this
alignment feature was used for classification (named f1
training hereafter). The fI-based training was contrasted
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to the use of several alignment characteristics, 13 for
insertions (f13) and 17 for deletions (fI7). These fea-
tures can be grouped into four main categories (Figure 1).
The first considers the number of uniquely mapped reads
(UMRs) and non-uniquely mapped reads (N-UMRs) over-
lapping the sequence space within a deletion. Since this is
not determinable for insertion signatures, this feature is
only available for deletions. The second group comprises
the number of UMRs and N-UMRs 60 bp downstream as
well as 60 bp upstream of the indel candidate to represent
the coverages to the right and left where 60 bp reflects
approximately the maximum read length. A ‘true’ dele-
tion should show either zero or a low number of UMRs
within the deleted region compared to the UMR-coverage
up- and downstream thereof, whereas a certain number of
N-UMRs might be tolerated. The third group of features
examines the concordance of SNP and short indel calls
detected by the two mapping passes (the short read map-
ping tool and our split read alignment step). Since these
variations are compared to each other position-wise, short
indels are considered as consecutive single position vari-
ants (SPVs). These features can be interpreted as a check
if the aligned reads of the first mapping pass in the vicinity
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Figure 1 Description and categorization of features. The first category of features includes deletion candidates only, whereas categories 2-4
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of an indel derive from the same haplotype as the split
reads spanning the indel. The last category includes gen-
eral attributes such as the indel length and the split read
alignment support of identically-located indels.

Discriminative training

We trained a SVM [26] using a simple-to-interpret linear
kernel on all three sets of features (fI, f13, f17) perform-
ing a 10-fold cross-validation for deletions and a 5-fold
cross-validation for insertions and repeated each cross-
validation 100 times (Additional file 2). The resulting
average area under the receiver operating characteristic
curves (AUC) and average specificity-sensitivity-break-
even-points (Spec-Sens-BEP) (Figure 2) suggest that the
fI-based classification did not notably exceed the perfor-
mance of a random guess for deletions (AUC=49.3% +
8.8%, Spec-Sens-BEP=49.4% £ 7.5%) and performs slightly
better for insertions (AUC=67.0% + 7.7%, Spec-Sens-
BEP=60.5% + 7.7%), whereas the use of 13 (AUC=93.5% +
2.6%, Spec-Sens-BEP=91.2% =+ 5.0%) and 17 features
(AUC=95.1%=+1.3%, Spec-Sens-BEP=89.7%+2.2%) reveal
high concordance with the true classification.

The training of the SVM based on a linear kernel
enabled us to identify the contributions of each fea-
ture to an indel prediction. Positive weights contribute
to the support, and negative to the rejection of a can-
didate (Figure 3). Interestingly, the criteria for deletions
and insertions notably differ from each other. While the
strongest argument in favor for deletions is the number of
SV supporting reads, it is the sequence length for inser-
tions. Furthermore, the agreement of SPVs between the
first and the second mapping pass contributes more to
the acceptance of insertions, but is used as an indication
against the trustworthiness of deletions. This effect might
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be explained by alignment errors by the first mapping pass
close to deletions causing false positive SPV calls. Our
classifier for insertions is trained on a dataset including
43 true insertions. Due to the limited size of this training
dataset, it is to be expected that larger training datasets
will further improve the prediction performance.

Indel prediction

Applying our machine learning approach with the f13/f17
feature set to indel candidates of strain ICE111 positively
classified 10,256 out of 13,547 deletions in total (76%), and
373 from 608 insertions (61%), respectively. The length of
deletions ranged from 2 to 4,880 bp with a mean of 334 bp
and a median of 12 bp. For insertions the length ranged
from 2 to 5 bp with a mean and median of 4 bp. Thus, the
SVM was capable to extract information from the defined
features leading to falsifications of indel candidates. 'False’
SVs can be attributed to spurious mappings dependent on
the length of the split read fragments or to multiple best-
scoring alignments across the reference.

Next, we compared our predictions of indels in the
strain JCE111 to those identified by two versions of Pindel
[22] (v0.1 and v0.24). The minimum length of deletions
was set to 5 bp for all three sets, and the maximum
deletion size constituted 5,000 bp due to the adjustable
restriction of the alignment space. Pindel detected a total
of 2,087 (v0.1) and 3,272 (v0.24) deletions larger than
5 bp. 99.8% (v0.1 and v0.24) of Pindel’s deletions were
shared among all unclassified deletions of our approach.
The SVM classification identified 220 (11%, v0.1) and 309
(10%, v0.24) false positive deletions among the Pindel
candidates. Further, our Gotoh approach detected an
additional set of 6,890 (v0.1) and 5,706 (v0.24) positively
classified deletions. This can be explained by different
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mapping strategies. Pindel [22] in version 0.1 requires
uniquely and error-free mapped reads and allows only
split read alignments where the read partners are aligned
within two times the average insertion size. On the
contrary, our SVM approach follows a less conservative
re-alignment strategy by analyzing non error-free and
multiple best-scoring alignments of the same read. More-
over, we tolerated split read mappings anywhere within
the alignment window, which results in a larger can-
didate set by allowing the detection of SVs in highly
divergent regions. The subsequent classification compen-
sates for these introduced levels of uncertainty. Indeed,
Sanger sequencing revealed 14 (out of 219 validated) dele-
tions, where the read partners showed discordant insert
sizes. Furthermore, a 61bp deletion, which was included
in the training set and falsified by Sanger sequencing,
was reported by Pindel, but correctly classified as false by

our SVM. This deletion would have proposed a potential
frameshift in a coding region.

Due to general alignment restrictions, detecting inser-
tions is limited in terms of their length. Aligning a short
sequence against a long one by introducing a series of gaps
into the long sequence at the same time leads necessar-
ily to an inferior alignment score. Thus, Pindel (v0.1) and
our approach share merely 15% of all insertions. Abyzov
et al. [28] investigated exactly this problem and proposed
an improved alignment algorithm called AGE. Applying
this algorithm we could increase the number of shared
insertions to 35%.

Indel detection and prediction on 80 genomes

Next, we detected and classified indels in 80 accessions
of Arabidopsis thaliana from the first phase of the 1001
Genomes Project [2]. The average coverage of strains was
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17x. By using a 5,000 bp alignment window, on aver-
age ~2,116 positive deletions and ~69 positive insertions
were reported per strain, the largest being 4,916 bp long.
Combining similarly localized indels of identical length
in different strains revealed 169,246 non-redundant dele-
tions and 5,500 insertions in this population. Altogether,
they span over 25 Mb in total. Almost half, ~44%, were
shared among more than one strain (Additional file 3).

We found 829 long-range deletions spanning at least one
complete gene sequence of the TAIR8 annotation with an
average allele frequency of ~2.7 (ranging from 1 to 65). Of
those deletions 101 were classified as whole gene losses if
there was no unique read coverage within the deletion (at
least 90% zero-covered positions) and sufficient coverage
in the same-sized flanking regions (at least 90% non-zero-
covered positions), as determined by the first mapping
pass. Their average allele frequency was ~4.4 (ranging
up to 29). Spurious read mapping within the deletion,
ambiguous split read alignments, gene translocations or
heterozygous deletions could explain long-range deletions
not meeting the aforementioned criteria.

As expected, only a minority (< 10%) of indels over-
lap with coding regions and have a potential deleterious
effect on proteins (Additional file 4). Indels that do not
alter the open reading frame of a gene outnumber those
that do by almost two to one (Additional file 4). How-
ever, the prediction of amino acid or framshift changes
has been performed for each SV separately without con-
sidering potential nearby SVs. It is known that additional
nearby variants can compensate for frameshifts [29], thus
the number of protein-changing SVs reported here might
still be an overestimate.

Population structure

To further assess our method, we attempted to recover the
population structure of the 80 genomes with the predicted
indels. To this end, three principal component analy-
ses (PCA) [30] were performed: PCA1) on our 97,967
positively classified, non-private (shared by at least two
different strains) indels (Figure 4A), PCA2) on the 37,294
non-private indels identified by the program Pindel [22]
(v0.1) (Figure 4B), and PCA3) on the 53,417 non-private
indels identified by the program Pindel (Figure 4C). PCA1
can successfully reconstruct the population structure,
even slightly more distinctive as a PCA with non-private
SNPs [2]. The first principal component distinguished the
western and middle European accessions from the Cau-
casian and Russian individuals, explaining a variance of
20%. The second principle component with a variance of
6% was — as in Cao et al. [2] — not completely aligned with
the latitude of the accessions. Interestingly, the outlier Yeg-
1 from the Caucasus found by Cao et al. was positioned
near the South Russian and East Asian cluster in our anal-
ysis as well. PCA2 and PCA3 revealed that the reported
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indels of the program Pindel contain less information
about population structure compared to our method. Fur-
thermore, the clustering of the subpopulations in PCA1
is much more differentiable as in PCA2 and PCA3. The
larger set of indels due to the more non-conservative re-
alignment strategy and the removal of false indels (PCA1)
seem to reflect the population structure more clearly,
suggesting low rates of both false positives and false
negatives.

Discussion

We present a discriminative machine learning-based
approach for detecting true structural variants among
indel candidates. The key benefit of using a discrimina-
tive model is to learn to distinguish between true and
false candidates based on a Sanger validated ground truth,
thereby reducing the false positive rate among predicted
indels.

We use our method on indel candidates generated via
an exact Gotoh [27] re-alignment of paired-end reads,
for which one partner could not be mapped. By consid-
ering multiply mapped reads on the whole genome and
non-error free reads as well as accepting all mappings
within the entire alignment window we receive a larger
set of potential indel candidates. Consequently, this non-
conservative proceeding increases the chances for finding
more true positives, but on the other hand tends to iden-
tify more false positives as well. Due to that fact it is
essential to accurately classify indel candidates using our
machine learning approach.

Conceptually, our machine learning approach for true
indel detection can be combined with any kind of align-
ment strategy and candidate generation scheme. Indeed,
to be able to detect more insertions a different align-
ment method can be useful. With the Gotoh approach,
shorter insertions are preferentially called than longer
insertions in a pairwise alignment due to the reduced
number of nucleotide matches (i.e. positive scores) the
longer the insertion is. Abyzov et al. developed an align-
ment tool called AGE [28] to better call long inser-
tions. Their method was used on the ICE111 genome
in our framework and improved the overlap of inser-
tions between Pindel and the Gotoh approach from 15%
to 35%.

Current methods for indel scoring, which either rely
on logical rules [22,24] or generative probabilistic mod-
els [25], have to manually define a threshold above which
candidates are predicted to be true structural variants.
Our machine learning approach avoids this step by auto-
matically learning the threshold from the Sanger validated
training data. Furthermore, all non-discriminative meth-
ods for scoring indel candidates have to solve the difficult
task of how to weight different types of evidence for
the occurrence of an indel. Unlike these methods, our
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detected indels by the tool Pindel (v0.1) and (C) by Pindel (v0.24).
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discriminative approach automatically learns the weights
of different features. In addition, the automatic weight-
ing of features indicates which features are relevant
and which ones are less relevant for indel detection.
From our results, we can confirm that our discrimi-
native indel detection benefits from combining several
features [25].

The features we selected contain information that can
reliably distinguish between true indels and false can-
didates as demonstrated by the consistent reconstruc-
tion of population structure based on true predicted
indels. Furthermore, we showed that tools not relying
upon a classification step may lead to spurious biolog-
ical interpretations. Here, Pindel [22] identified a dele-
tion candidate causing a potential frameshift, which our
post-classification method predicted to be a false one;
this prediction was confirmed by one of the Sanger
sequences. The classifier was trained on a corpus of
reads from a paired-end library sequenced to 21-fold
coverage. Our method is robust to changes in fold cov-
erage if the features that are derived from the read
alignments, scale linearly with or are independent of
sequencing depth. It is expected, that longer reads will
improve our strategy since the longer the indel-flanking
read sequences the less ambiguous split read alignments
will be retrieved. The feature normalization we per-
form accounts for this fold change. To apply our method
in different species, one would need to create a new
Sanger validated dataset to account for its particular
genomic properties such as the degree of heterozygos-
ity or repetitiveness. However, to circumvent laborious
Sanger sequencing, the increasing number of de novo
assembled genomes or structural variant databases could
serve as an alternative and extensive ground truth in
future studies.

The software, Sanger validated training data and all
annotated indels for the 80 genomes are available at http://
agkb.is.tuebingen.mpg.de/Forschung/SV-M/.

Conclusion

We showed that accurate indel detection consists of two
steps — the realignment of unmapped reads and the
post-classification of detected candidates. Methods that
rely predominantly on re-alignment strategies often con-
tain a large number of false detected indels. We used
a nonconservative re-alignment strategy (e.g. allowing
multiply mapped reads) to enrich the number of can-
didates and applied a discriminative machine learning-
based approach to then classify indel candidates into
true and false ones. We achieved a classification accu-
racy of 95.1% + 1.3% for deletions and 93.5% + 2.6%
for insertions. Furthermore, we showed that indel clas-
sification reduces the number of false candidates signifi-
cantly and that missing classification may lead to spurious
biological interpretations such as false frame shifts or
gene losses.

Methods

Support Vector Machine

A Support Vector Machine (SVM) [26] is a classifier which
uses a hyperplane for classification. A SVM deals with
a binary classification problem. We assume that we are
given a set of data points D {15,915 o @ Ym) b
where x; € R?. The label y; of a point x; describes
whether the point is in the negative (y; —1) or the
positive class (y; = 1). A SVM tries to separate the set
D into a positive and a negative class by using a hyper-
plane. The process of finding the hyperplane is referred
to as training. The hyperplane then defines a decision
function to find the unknown label y; for a new data
point x;. We use a soft-margin variant of the SVM, the
C-SVM which is maximizing the margin and is mini-
mizing the training error at the same time. The C-SVM
uses a penalty factor C, which penalizes wrongly classified
points in the training set. Our developed software is writ-
ten in C/C++ and uses libsvm [31], a library for Support
Vector Machines.
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Classifier training

To train a classifier using a C-SVM and a linear kernel
we labeled a set of detected indel candidates by reliable
Sanger sequencing as true (positive class) and false indels
(negative class). We split the validated corpus into a train-
ing and testing set. The training set was used to learn the
discriminative model whereas the testing set measured
the accuracy of the model. We counted a correctly clas-
sified test point as a true positive (TP) if the test point
corresponded to the positive class and as true negative
(TN) if the test point corresponded to the negative class. A
false negative (FN) is a positive test point that is classified
into the negative class. Correspondingly, a false positive
(FP) is a negative test point that is classified into the pos-
itive class. For the actual training we selected 13 features
for insertions and 17 for deletions derived from the split
read alignment profiles (Figure 1). To train the SVM with
these features, we normalized the data within the inter-
val [0, 1] and used a 10-fold cross-validation for deletions
and a 5-fold cross-validation for insertions (Additional
file 2). We repeated each cross-validation experiment 100
times. After cross-validation the best performing soft-
margin parameter C value is 10 for deletions and 0.10
for insertions. To measure the performance we computed
the area under (AUC) the receiver operation characteris-
tic (ROC) curve and the specificity-sensitivity-break-even
point (Spec-Sens-BEP). The ROC curve is the fraction
of the TP over all positives TP 4+ FN (sensitivity or true
positive rate (TPR)) against the fraction of TN over all
negatives TN+FP (specificity or true negative rate (TNR)).
The Spec-Sens-BEP is the point where the TPR is equal to
the TNR.

Split read alignment

To detect indels we used the short read alignments of
80 strains from Arabidopsis thaliana against its reference
genome Col-0 provided by Cao et al. [2]. We parsed all
read pairs, from which only one partner could be mapped
(MURs). The mapped partner of a MUR may contain
mismatches and may have multiple mapping positions
across the whole genome. The mapped partner served
as an anchor point. We considered a sequence window
of length 5000 bp downstream of the anchor. Depend-
ing on whether the mapped read is located at the forward
or backward strand we have to span the alignment win-
dow upstream or downstream. Using an exact Gotoh [27]
alignment we aligned the unmapped read within this win-
dow against the reference (Additional file 1). The Gotoh
[27] alignment is based on the Smith-Waterman [32] algo-
rithm to compute a local pair-wise alignment between two
sequences a and b using affine gap costs. Gotoh described
in his work how to use dynamic programming to com-
pute an alignment with affine gap costs in O(mn), where
m and n are the lengths of sequences a and b. As alignment
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matrix we used the NUC4.2 scoring matrix (ftp://ftp.ncbi.
nih.gov/blast/matrices/), which scores a match with 5 and
a mismatch with -4. A gap opening is scored with -10,
whereas a gap extension scores with zero. Alignments
with a score less than the maximal alignment score minus
30 were discarded allowing for up to 7 mismatches or 3
gap openings. If the alignment contains a sequence of at
least two consecutive gaps either in the unmapped read
or in the reference, a possible indel location was reported.
For short reads this single split read alignment is not a
strong indicator of an indel due to similar regions and
alignment errors. Hence we considered a location as a
possible indel candidate only if we found a second inde-
pendent split read alignment that supported the same
location. Furthermore, each fragment of the split read
alignment (left and right part of the read compared to the
indel) had to be at least 8 bp long. We then used a pre-
trained SVM [26] to predict whether an indel candidate is
a true indel.

Population structure

Novembre et al. [30] showed that the eigenvectors of
the SNP covariance matrix reflect the population struc-
ture. We here used an indel covariance matrix. For this
purpose, we combined identical or few base pair-shifted
indels of the same length among different strains into an
MxN matrix, where M is the number of strains and N the
number of indels. All deletions and insertions with an SV
frequency of at least two among all strains were encoded
with 1 and -1, respectively. The absence of an indel was
specified with zero. To compute the underlying popula-
tion structure for all eighty genomes for the first phase of
the 1001 genomes project for Arabidopsis thaliana [2] we
conducted a principle component analysis (PCA) using a
custom Matlab script.

Additional files

Additional file 1: Split read re-alignment approach. The mapped read
serves as anchor for the re-alignment of the unmapped read. Using an
exact Gotoh alignment the unmapped read is aligned against the
reference. If the read can be split in at least 2 fragments it is an indication of
a possible deletion location (A). If the reference can be split in at least 2
fragments it is an indication of a possible insertion location (B).

Additional file 2: lllustration of the k-fold cross-validation process.
The positively and negatively labeled examples are split into k distinct
training and test sets t; and e;, where 1 < i < k. To determine the best
performing C value each training set t; is split into sub-training and
sub-testing sets t; and es, where 1 < s < k. On basis of these subsets the
SVM is trained several times using C values ranging from 10=° to 10°. The C
value with the highest Spec-Sens-BEP is used to train the SYM with the
entire training set t;. The test set ¢; is used to test the performance of the
trained SVM by computing the Spec-Sens-BEP. These steps are repeated k
times. Finally the average Spec-Sens-BEP is computed.

Additional file 3: Allele frequency of deletions and insertions in 80
genomes. The allele frequencies for deletions (A) and insertions (B), for
which there was sufficient read information (see Cao et al. [2] for criteria) in
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all 80 strains at or 10bp surrounding the indel. They are split by functional
annotation classes (obtained from TAIR8). The bars indicate the fractions of
indels of each annotation class per allele frequency from all indels of the
corresponding annotation class (the total number of indels in an
annotation class is denoted in parentheses in the legend labels). Indels
overlapping with features of different annotation classes were classified
based on following priorities: CDS > UTR > intron > transposon >
intergenic. Indels overlapping with coding features were classified based
on following priorities: gene loss (for deletions only) > start codon change
or loss > splice site change or loss > premature stop codon > stop codon
change or loss > in-frame. In-frame indels do not change the frame of the
coding sequence. Annotations were performed on each indel without
taking into account putative compensating indels or SNPs nearby.

Additional file 4: TAIR8 annotation classes. Annotation classes of
169,246 deletions (A) and 5,500 insertions (B) in 80 genomes of Arabidopsis
thaliana. For explanation of the classification scheme, see legend of
Additional file 3. (C) Fractions of indels overlapping with coding sequences
and overlapping with nongenic regions from all indels in corresponding
classes, split by the remainder of the division of their lengths by 3. In genic
regions, it is the frame of the CDS downstream of the indel. Structural
variations with a length dividable by 3 in coding regions do not alter the
open reading frame and are more likely to be synonymous.
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