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Abstract

levels across chromosomes.

Background: An enduring question surrounding sex chromosome evolution is whether effective hemizygosity in
the heterogametic sex leads inevitably to dosage compensation of sex-linked genes, and whether this
compensation has been observed in a variety of organisms. Incongruence in the conclusions reached in some
recent reports has been attributed to different high-throughput approaches to transcriptome analysis. However,
recent reports each utilizing RNA-seq to gauge X-linked gene expression relative to autosomal gene expression also
arrived at diametrically opposed conclusions regarding X chromosome dosage compensation in mammals.

Results: Here we analyze RNA-seq data from X-monosomic female human and mouse tissues, which are
uncomplicated by genes that escape X-inactivation, as well as published RNA-seq data to describe relative

X expression (RXE). We find that the determination of RXE is highly dependent upon a variety of
computational, statistical and biological assumptions underlying RNA-seq analysis. Parameters implemented in
short-read mapping programs, choice of reference genome annotation, expression data distribution, tissue
source for RNA and RNA-seq library construction method have profound effects on comparing expression

Conclusions: Our analysis shows that the high number of paralogous gene families on the mammalian

X chromosome relative to autosomes contributes to the ambiguity in RXE calculations, RNA-seq analysis that
takes into account that single- and multi-copy genes are compensated differently supports the conclusion
that, in many somatic tissues, the mammalian X is up-regulated compared to the autosomes.
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Background

Chromosome-based sex determination systems are most
often characterized by heterotypic sex chromosomes,
with one sex carrying at least one degenerate homolog
[1-3]. Heterokaryotypy may result from differential gene
loss or gain as the sex chromosome complement
evolves from an ancestral homologous pair. Depending
on the extent of the loss or gain, and the dosage sensi-
tivity of genes on the incipient sex chromosomes, nat-
ural selection may favor the evolution of compensating
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mechanisms to balance expression between the sexes
and between the sex chromosomes and autosomes. This
can be accomplished either by up-regulating expression
of sex-linked genes in the heterogametic sex or by
down-regulating expression in the homogametic sex in
relation to the autosomes. In Drosophila [4] and Sciara
[5], genes on the single X chromosome in males are tran-
scriptionally up-regulated, while in the nematode worm,
Caenorhabditis elegans, the two X chromosomes in her-
maphrodites are down-regulated to equal that of the XO
males [6]. In contrast, for organisms displaying female
heterogamety, such as birds, evidence of sex chromo-
some dosage compensation is lacking [7-10]. The differ-
ences in compensating mechanisms, or lack thereof, will
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likely reflect the relative content of haplosufficient vs.
haploinsufficient genes on the sex chromosomes, but will
also reflect early events of sex chromosome evolution,
outcomes of sexual selection and sexual conflict, and the
life history of the organism [11].

In eutherian mammals and marsupials, sex chromo-
some dosage compensation is achieved by global in-
activation of one of the two X chromosomes in
females. X chromosome inactivation (XCI) in euthe-
rians is initiated by the expression of the XIST non-
coding RNA just prior to implantation of the embryo,
leading to heterochromatinization of one of either par-
ental X chromosome in the fetus [12]. X-inactivation
in marsupials also involves heterochromatinization of
one X, governed by a non-coding RNA, RSX, with
XIST-like properties, but the paternal X is exclusively
chosen for inactivation [13,14].

Halving the apparent dosage of X-linked genes in fe-
male mammals via XCI presents an evolutionary conun-
drum: if sex chromosomes evolve from an ancestral
autosomal pair, it is the heterogametic sex that would be
impelled to compensate for the complete loss or degrad-
ation of the evolving Y. In other words, since female
mammals never receive a Y chromosome, it is difficult to
see how loss of gene dosage from the evolving Y would
have any influence on regulation of X genes in females.
The simplest compensating step in response to attritional
gene loss from the incipient Y would be cis-regulatory
change or cis-gene duplication, i.e. genetic mutation, of
genes on the X. In Drosophila, a male-specific epigenetic
mechanism of dosage compensation spares the homo-
gametic female a potentially detrimental up-regulation of
X-linked genes. If, however, compensation is achieved by
genetic mutation, selection would favor epigenetic down
regulation in females. Ohno recognized this and hy-
pothesized that down-regulation of X-linked genes
might evolve in response to regulatory changes to
the X that are transmitted from father to daughter
[15]. This would appear to be the scenario played out
in C. elegans and mammals. Regardless of the eventual
dosage compensation mechanism settled upon, the first
step in compensating for gradual haploinsufficient gene
loss on the Y must be an increase in transcription of
surviving genes on the X in males.

Ohno’s hypothesis appeared to be borne out in three
recent reports [16-18], which each showed by microar-
ray-based transcriptome analysis that the single active
X chromosome in both males and females in several
eutherian species was expressed at or near a 1:1 ratio to
the averaged expression of the diploid autosomal com-
plement, termed the “X:A ratio”. However, this work was
called into question by He and colleagues [19] who,
through analysis of high throughput transcriptome se-
quence (RNA-seq) data from various tissues from human
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and mouse, concluded that the X:A ratio of gene expres-
sion was closer to 0.5, indicative of a lack of X-linked
gene up-regulation. Xiong et al. report that the former
studies were compromised by apparent compression of
expression differences; a factor they argue is inherent to
microarray expression analysis. Recently, Disteche and
colleagues published a report re-analyzing RNA-seq data
from [19] as well as new RNA-seq data from human cells
and tissues and arrive at the conclusion that the mamma-
lian X chromosome is upregulated in relation to auto-
somes [20]. Additionally, three other studies [21-23]
following on the heels of [20] also report up-regulation
of the mammalian X. However, in reply to these reports,
He and colleagues maintain their conclusion that Ohno’s
hypothesis is “invalid” [24].

The widely divergent conclusions, i.e. compensation vs.
no compensation, of these studies highlight the dramatic
differences in biological conclusions that can be drawn
from different analytical approaches applied to similar or
even identical next-generation sequence datasets. As the
recent controversy over RNA editing illustrates [25-28],
even though the computational tools available for next-
generation sequencing analysis may be vetted in the lit-
erature, parameters that can profoundly affect outputs
are often applied haphazardly. In this report we consider
several issues that may contribute to variation in calculat-
ing the whole chromosome expression values that form
the basis of conclusions drawn regarding the relative
expression of X-linked genes to that of autosomal
genes. We compared the global transcriptional output
of the X chromosome with that of the autosomes
using our own RNA-seq datasets and those utilized
in [19] and [20] that are publically available [29-31].
Our analysis also includes RNA-seq data we have
generated from X monosomic mouse and human tis-
sues. Since X monosomy obviates X-inactivation, re-
sults from X monosomic samples are not confounded
by the effects of X-linked genes that escape inactiva-
tion. We report that assumptions made in dataset trim-
ming and several factors integral to the implementation
of RNA-seq quantitative analysis have a large effect on
the global calculation of the relative expression of the
X chromosome to that of autosomes.

Results

Data distribution and treatment of outliers

Unless otherwise stated, gene expression levels are rep-
resented as FPKM (fragments per kilobase of exon per
million fragments mapped). In their recent study
reporting mammalian X chromosome to autosome ex-
pression ratios (X:A) equal to ~0.5, He and colleagues
utilized RNA-seq datasets that then were truncated by
removing substantial proportions of both highly and
lowly expressed loci in order to exclude the effect of
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FPKM values at or near 0 while arbitrarily preserving a
median value for statistical testing [19]. Contrarily,
Disteche and colleagues contend that compensation of
the mammalian X, can only be discerned once the
skewed content toward reproductive genes on the X is
taken into account [20]. Nevertheless, they too only de-
tect compensation in most human tissues once genes
with FPKM < 1 are excluded. Likewise, each of the
other reports addressing the Ohno controversy [21-23]
disregard genes with FPKM < 1, or as in [24] RPKM < 3.
However, FPKM determination is not absolute and can
vary significantly based on sequencing depth, sequen-
cing platform, RNA source and other factors [32].
Moreover, since functional genes expressed at any level
may be subject to selection for dosage compensation,
exclusion of data based on the level of expression may
skew final analysis.

In our analysis, the distribution of raw FPKM values,
calculated using Cufflinks v1.0.3 (see below), showed a
marked shift towards lowly expressed genes (example
shown in Figure 1A), and the clustering of raw FPKM
values near 0 created a large number of identified outliers
in the dataset. Log, transformation of all FPKM values
allows datasets to be more normally distributed, lending
greater accuracy to summary statistics while drastically
reducing the number of outliers (Figure 1B). Data was
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only filtered out of these analyses if it was identified
as a statistical “outlier” as determined by evaluating
the properties of the distribution of the data rather
than by arbitrarily designated thresholds (Additional
file 1: Table S1). Using this method the X:A ratio is
replaced by computing the differences in the mean
chromosome-wide estimates of log-transformed FPKM
values (i.e. relative X expression (RXE) = logy(X) —
log>(A)). Because of the shift to a log,-scale, if the X
and autosomal expression means are equal, then the
difference between those values will be 0, indicating
dosage compensation is occurring. Any positive value
represents higher X chromosome expression and nega-
tive values represent, on average, higher autosomal
gene expression. A lack of dosage compensation be-
tween the X and autosomes would yield a value equal
to -1 (a two-fold higher level of expression for the au-
tosomes or an X:A ratio of 0.5).

Mapping parameters in measuring chromosome-wide
gene expression

We found that altering the parameters used by various
software packages to map RNA-seq data to reference
genomes has a profound impact on the calculation of
chromosome-wide expression values. To highlight
shifts in global expression estimates created by solely
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Figure 1 Box plots and frequency histograms reveals log,-transformed FPKM values following a “normal” distribution. (A) Untransformed and
(B) log,-transformed FPKM values, for chromosome 1 from the human lymphoblast 45X™ sample.
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employing different mapping parameters, we calculated
RXE with three different parameter sets implemented
in Bowtie v0.12.7. In their recent RNA-seq study of X:
A ratios, Xiong and colleagues [19] implemented what
has been termed “unique” mapping parameters to map
their datasets, meaning each short sequence read is
aligned to the best position in the genome while any
read which maps to multiple positions is excluded
from the output. Mapping all 10 of our datasets using
unique parameters yielded lower RXE values than other
mapping approaches (Table 1). Estimates of RXE for a
variety of tissues range from -1.43 to -0.32 (or an X:A
ratio of 0.37 and 0.8, respectively), describing a level of
general X-expression less than that of autosomal expres-
sion and well within the range of RXE that would
characterize a system with no dosage compensation.
Ostensibly, unique mapping parameters are employed
to create FPKM values while avoiding potential
confounding effects of including genes that are errone-
ously counted as “expressed” due to cross-mapping of
short reads to multiple loci. However, paralogous gene
families having even short segments of high similarity
will be completely excluded by such methods. Since
gene duplication is one potential means of achieving
dosage compensation upon loss of a homolog, we ex-
amined the relative X chromosome content for highly
similar paralogous gene families (> 70% sequence simi-
larity) compared to the autosomes. For human we
found ~2 fold enrichment for paralogous gene families
on the non-recombining portion of the X chromosome
compared to autosomes, and ~1.5 fold enrichment for
mouse (Additional file 2: Table S2). Such enrichment
means that when only unique mapping parameters are
considered, the X chromosome would be more likely to

Table 1 RXE based on mapping parameters

Mapping parameter

Tissue Unique Non-unique Non-unique splicing

X™, Human lymphoblast  —0.86 -0.34 0.21

XP, Human lymphoblast ~ —0.92 —0.54 —0.04
Human lymphoblast -0.75 -042 -0.20
Human brain -0.32 -0.15 —-0.00
Human liver -143 -1.06 -0.79
Mouse brain -068 -0.53 -0.20
X™, mouse brain -0.99 0.88 -0.70
XP, mouse brain -0.76 -0.88 -0.96
XX, Mouse Brain -0.87 -0.82 -0.86
XY, mouse brain —045 —-044 -0.60

Relative X-chromosome expression values based on mapping parameters.
Numbers based on calculations from raw number of reads mapped. No
annotation was used to delineate between genetic categorical groups (i.e.
exon, introns, etc.). All ratios were log,-transformed to maintain consistency
with other expression values.
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have reads excluded as compared to autosomes, skewing
the estimates of RXE downward. To more accurately ac-
count for paralogous transcripts/genes, we implemented
a mapping approach, termed “non-unique”, that aligns
each read only to the best fit position in the genome but
does not exclude reads that map to multiple positions.

Mapping with non-unique parameters in Bowtie
yielded RXE estimates ranging —-1.06 to -0.15, describ-
ing both a lack of dosage compensation (RXE to be at
half that of A in some cases) and dosage compensation
(RXE = 0, i.e. X and A almost equal) (Table 1). RXE for
most tissues increased (values of the index moved close
to zero) as compared to unique mapping runs. We also
found a consistent increase in the number of reads
mapped to paralogs in non-unique mapping runs versus
unique mapping runs for both mouse and human tis-
sues (Figure 2). The smallest libraries in the analysis,
normal mouse XX brain and 39, X™ mouse brain,
showed the least amount of change, consistent with the
notion that the ability to map paralogs is highly
dependent upon sequencing depth (see below).

The report of Xiong and colleagues ignored alternative
splicing in mapping program implementation, as reads
spanning splice junctions were discarded. Mapping our
datasets using TopHat, which considers both paralogous
transcripts and splice site junctions (referred to hereafter
as “non-unique, spliced” mapping), shifted RXE levels to
a range of —0.96 to 0.21 (Table 1, Additional file 3: Table
S3, Additional file 4: Table S4) [33,34]. Consideration of
splicing pushed estimates of RXE both up or down, de-
pending on the library examined; however, many of the
estimates for a specific tissue increased their estimates
of RXE. Also, three of the 10 datasets showed a twofold
or greater up-regulation of the X chromosome.

For a deeper understanding of how paralogs may be
affected by mapping protocol we compared RXE of non-
paralogous genes, all paralogs, and cis- versus trans-
paralogs (“cis” meaning paralogs that have duplicated on
the same chromosome; “trans” meaning paralogs that have
translocated or duplicated across multiple chromosomes).
Results of RXE analyses show that, in general, paralogs are
more likely to be involved in dosage compensation than
non-paralogs (Table 2). Across all five tissue-specific
datasets, incorporating two different methods of library
construction, RXE values for all paralogs were higher than
all non-paralogous genes. Moreover, across these same tis-
sues, RXE values for cis-paralogs were higher than for
trans-paralogs. We also found a considerable effect for
overall activity of the X within a tissue. For instance, in
brain where 34.3% of X genes are identified as active, RXE
was 0.16, while in liver where the X is relatively less active
(30.5% of genes active), RXE is —0.28. While this pattern
holds in all comparisons, it is most pronounced when con-
sidering cis-paralogs.
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Figure 2 The mapping algorithm differences between the average (per gene) number of reads mapped to paralogs (>70% similarity)
vs. average (per gene) number of reads mapped to non-paralogs. All human (A) and most mouse (B) tissues show a disproportionate effect
of mapping to paralogs. Y-axis values indicate the difference in the number of reads mapped to paralogs averaged across all paralogs as
compared to the number of reads mapped to non-paralogs averaged across all non-paralogs. Blue diamonds indicate the usage of a “unique”
mapping approach. Red squares indicate the usage of a “non-unique” mapping approach.

Genome annotation removes sequences/transcripts that arise from experi-
In the analysis of RNA-seq data it is customary to use mental or transcriptional noise. In calculating RXE, we
one of several available reference genome annotations utilized six different annotations: RefSeq; RefSeq (protein
when mapping sequence reads and calculating FPKM. coding); Ensembl (gene); Ensembl (transcript); UCSC
Mapping short sequence reads to a reference genome (hgl9) known genes; and Gencode. These annotations

Table 2 RXE across paralogs

Human brain Human liver Human lymphoblast 45, X™ Human lymphoblast 45, XP Human lymphoblast
cis-paralogs 2.57 (41, 30)* 0.18 (31, 28) 0.51(13,18) 0.79 (14,17) 0.24 (38, 31)
trans-paralogs -0.64 (76, 43)" 0 (69, 40) 0.20 (56, 31) —0.55 (61, 63) —0.06 (77, 44)
all paralogs 0.49 (106, 65)* 0.03 (93, 60) 0.14 (66, 43) —0.15 (68, 46) 0.19 (104, 70)
non-paralogs ~ -0.18 (415, 546)°  —0.5 (378, 520)" -0.32 (269, 393)" -0.38 (272, 412)" -0.73 (400, 559)"

Relative X-chromosome expression values across both cis and trans-paralogs for five human libraries. Cis-paralogs show an increased RXE compared to trans-paralogs and
non-paralogous elements. Bolded value identifies case where X chromosome and autosome expression are significantly different from each other (p < 0.05, Kolmogorov-
Smirnov test, with bootstrapping —1000 replicates). Cross indicates X chromosome expression greater than autosomes, while asterisk indicates X chromosome expression
less than autosomes.



Jue et al. BMIC Genomics 2013, 14:150
http://www.biomedcentral.com/1471-2164/14/150

were each implemented on four “non-unique, spliced”
mapping files from the following datasets: human liver,
human brain, 45, X™ and 45, X? human lymphoblastoid
cell lines (Table 3). RefSeq generally consists of genetic
annotations that are non-redundant and supported by
explicit relationships between nucleotide and protein
sequences. Gencode contains these same types of anno-
tations, but also uses computational methods to predict
other genes that are then validated manually. These
other structures result in the addition of more alterna-
tively transcribed variants, non-coding loci, and
pseudogenes to this annotation as opposed to RefSeq,
but evidence requirements for inclusion may be lower
in some cases. The Ensembl annotation incorporates
additional computational steps, outside database re-
sources, and evidence testing, which further add add-
itional structures to the reference annotation. The
UCSC annotation is generally less conservative than
RefSeq and includes gene predictions for both protein-
coding and non-coding RNA genes. It is clear from our
analysis that estimates of RXE can vary dramatically,
even within a tissue type, depending on which annota-
tion is implemented in the transcript assembly step (i.e.
within Cufflinks) (Table 3). For instance, the 45, X™
lymphoblastoid cell line dataset showed the greatest
variability between annotations with the Ensembl
(gene) annotation providing an RXE value of 0.34
while the RefSeq (protein coding) annotation gave a
value of -0.17. Implementation of different genome
annotations leads to contradictory conclusions; for ex-
ample, in the 45, X™ lymphoblastoid cell line the X
undergoes strong compensation with the Ensembl
(gene) annotation, but undergoes incomplete dosage
compensation with the RefSeq (protein coding) annota-
tion (Table 3). In addition, we observe lower RXE
values when comparing the RefSeq to RefSeq (protein
coding) annotations, suggesting that non-coding tran-
scripts play a significant role in dosage compensation.
In our analysis, RefSeq likely provided the most consist-
ent results due, at least in part, to the fact that its entries
are non-redundant and are developed by evidence-based
gene identification.

Table 3 RXE based on annotation
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Dosage compensation in tissues

Using transformed data with outliers removed and the
preferred, aforementioned methods of “non-unique,
spliced” mapping and RefSeq reference annotation
implemented in Cufflinks, we determined that expression
of X-linked genes exhibit a similar expression range
when compared to that of any autosomal pair (Figure 3A,
Additional file 5: Figure S1). Additionally, examination of
the mean relative chromosomal expression value of any
one chromosome compared to the average expression of
all autosomal chromosomes (i.e. including A to A com-
parisons as well as X to A comparisons) and RXE showed
that the RXE values fall well within the normal range for
most samples (Figure 3B). The mean RXE values ranged
from —0.61 to 0.20 in the 10 tissues; however, in only two
tissues (mouse X™ brain and mouse XX brain) were
those values less than expected from a typical distribu-
tion of any other chromosome-to-chromosome relative
expression values. Alternative means of central tendancy
summarization (i.e. median scores) also matched this pat-
tern of partial to complete dosage compensation (RXE
ranged from 0.047 to -0.58), but with slightly lower
values. The mouse X™ brain and XX brain libraries rep-
resent the libraries sequenced with the lowest depth of
coverage in our RNA-seq data collection, suggesting an
interaction between sequence coverage and the analysis
of global gene expression (discussed below). However,
none of the RXE values for any tissue indicated a lack of
dosage compensation (RXE = -1).

Library preparation and depth of coverage

The final factors we found that heavily influence the cal-
culation of global RXE are library preparation and size or
depth of coverage. Of the 10 principal libraries used in
this study, 6 were produced internally for the ABI SOLiD
platform. The other datasets were obtained from public
databases and were prepared for the Illumina deep se-
quencing platform. While protocols for library prepar-
ation for both platforms involve a step to remove rRNA
from the sample before sequencing, the two differ in im-
plementation. Library preparation for the SOLID plat-
form utilized ribo-depletion, a subtraction of ribosomal

Annotation type Human liver Human brain

Human lymphoblast 45, X™ Human lymphoblast 45, XP

RefSeq -0.28 0.16
RefSeq protein coding -041 -0.11
Ensemble (gene) -0.33 -0.09
Ensemble (transcript) -0.12 0.09
UCSC (h19) known genes 0.05 0.08
Gencode -0.07 0.09

-0.14 -0.19

-0.17 —-0.25
0.34 0.02
0.01 -045
0.00 —-0.66

-0.12 -0.38

Variation in relative X-chromosome expression values resulting from different genome annotations used in mapping. All data was log,-transformed. For each row,
the same mapping file was used, but a different annotation was implemented in the program Cufflinks in order to generate FPKM values for each gene.
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Figure 3 Box plots of log,-transformed gene expression data. (A) Boxplots of log,-transformed FPKM values for each chromosome in the
human lymphoblast 45, X? sample and (B) Boxplots of the average gene expression of each chromosome relative to the average gene
expression of all autosomes. Blue dots indicate X chromosome values for each library. In B, note that a value of 0 indicates equal expression with
other chromosomes, while a value of —1 indicates expression at half the level of other chromosomes.

RNA using probes that specifically bind and remove
rRNA, while Illumina library preparation generally used
poly-A selection, which isolates mRNA from total RNA
(and, thus rRNA). Poly-A selection enriches for
processed mRNAs and is 3’-biased, while ribo-depletion
does not exclude non-polyadenylated RNAs that may be
non-coding. Analyzing the top 250 highest expressed
genes, with no consideration to chromosomal location,
we discovered that SOLiD libraries were typically
enriched for small RNA genes (e.g. Sno and micro);
whereas, [llumina libraries were enriched for riboprotein

coding genes (Table 4, Additional file 6: Table S5). It is
evident that these two transcript groups have a large in-
fluence on determination of FPKM values in their re-
spective libraries given their inherent high rates of
expression. However, mapping implemented in TopHat
helped to mitigate the influence these different classes of
transcripts have on genome-wide expression values.

To examine the effect of library size on RXE estima-
tion, we included 9 more human lymphoblastoid cell
line RNA-seq libraries from a recent study [31], for a
total of 14 human RNA-seq libraries analyzed. We
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Table 4 Small RNA and riboprotein enrichment based on library preparation (lllumina or SOLiD)

Tissue Xp lymphoblast (SOLiD)

Human lymphoblast (lllumina)

XY mouse brain (SOLiID) Mouse brain (lllumina)

Mapping Unique Non-unique NUS Unique Non-unique NUS Unique Non-unique NUS Unique Non-unique NUS
parameter
Category Small RNAs 193 190 4 2 8 1 47 62 2 4 2 4
Ribo 20 26 42 58 80 62 2 1 3 3 8 3
Other 37 34 204 190 165 187 201 177 245 243 240 243

We compared small RNA (sno and micro) and riboprotein biases using three different mapping parameters: unique, non-unique, and non-unique splicing (NUS).
Four different libraries were analyzed including: XP lymphoblast (SOLID), normal human lymphoblast (lllumina), mouse brain (lllumina) and mouse brain 40,

XY (SOLiD).

calculated the library size and the associated RXE value
for each library (Additional file 7: Figure S2). As antici-
pated, the 10 human lymphoblastoid cell lines, which
were relatively small libraries (<50 million reads), clus-
tered together with RXE values ranging between -0.4
and —0.1. Smaller libraries also appeared to be more
variable in their estimates of RXE. For the 45, X™ and
45, XP lymphoblastoid cell line libraries, which were
much larger (>250 million reads), the RXE wvalues
approached and surpassed 0. Overall, RXE values look
to asymptote to ~1 as library size increases. Given this
result and our observations about the divergent behav-
ior of our smaller mouse libraries, it has been demon-
strated that low coverage libraries lack the power to
properly assess expression of lowly expressed genes and
paralogs and, in turn, alter the final RXE values.

Functional components of dosage compensation

Selection for dosage compensation of a particular
gene will depend on its stoichiometric relationship to
its functional partners. In order to see if gene func-
tion corresponds to a tendency for compensation we
examined RXE for trans-paralogs only and cis-
paralogs only in relation to GO-term Molecular Func-
tion categories previously identified to be susceptible
to gene dosage effects [35]. In the GO-categories
Binding Activity and Enzyme Activity, all tissues except
for liver showed higher RXE values for cis-paralogs
than trans-paralogs (Figure 4). The “gene balance hy-
pothesis” [36] suggests that dosage compensation
would be more likely to be found in gene networks that
require many components for proper functionality and
are, thus, dosage-sensitive. Regulatory processes are
identified as likely candidates for this type of con-
straint. For GO-term Biological Processes categorical
groups, both Negative Regulation of Biological Pro-
cesses and Positive Regulation of Biological Processes
had RXE values indicative of being dosage compen-
sated. Other groups, whether they were possibly related
to regulatory process (e.g. Regulation to Response to
Stimulus) or core cellular processes (Cytoskeleton
Organization and Cellular Component Organization),
showed less evidence for strong selective pressures for

dosage compensation (Figure 5). These results are es-
sentially in agreement with the recent report by [37].

Discussion

Given the variable conclusions reached in several in-
vestigations concerning sex chromosome dosage
compensation in different organisms [38-42], how
confident can we be that any particular report has
accurately measured expression levels clustered by a
chromosome-to- chromosome level? Recently, data
from a previously reported non-dosage compensated
Z-chromosome in the silkworm [39] has now been
re-analyzed with consideration for statistical biases
and concludes that the Z is being dosage compen-
sated, rejecting the premise that ZW sex determin-
ation necessitates deviation from dosage compensation
[43]. Our analysis of RXE in human and mouse identi-
fied similarly serious issues that are not only important
to the specific question of dosage compensation but ad-
dress broader issues concerning the implementation of
analytical tools for next-generation sequencing data.

Brain XM =trans paralogs
25 Lymphoblast =Cis paralogs
2
1.5 X?
' Lymphoblast
1 Lymphoblast
w .
X o5 Liver
0 - I- g
-05
-1
1.5
-2

Figure 4 Relative X-chromosome expression (RXE) values for cis
and trans paralogs associated with GO terms binding activity
(dark colors) and enzyme activity (light colors) for five human
tissue samples. RXE values were generated using non-unique,
splicing mapping parameters. All samples, excluding liver, exhibited
greater RXE values from cis-paralogs. Number of genes in each
category on the X-chromosome and the average per autosome are
listed in Additional file 8: Table S6.
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-1.2 -1 -0.8 -0.6 -0.4 -0.2

RXE log, (FPKM)

Negative Regulation of Biological Processes

Positive Regulation of Biological Processes

Regulation of Response to Stimulus

Cytoskeleton Organization

Cellular Component Organization

Figure 5 RXE values for genes associated with specific Gene Ontology (GO) terms in five human tissues. Number of genes in each
category on the X-chromosome and the average number of genes per autosome are shown in the parentheses, respectively (Nx, Navg. per aa)-
Sample sizes for the each group is as follows: Negative Regulation of Biological Processes: Brain — Ny=66, Nayg per 4a=99; Liver — Ny=63, N,yg per an=95;
Lymphoblast X™ = Ny=48, Nayg per aa=73; Lymphoblast X" = Ny=47, Navg per aa=72; Lymphoblast XX = Nx=64, Nyg. per 4a=98; Positive Regulation of
Biological Processes: Brain — Ny=86, Nayg, per aa=108; Liver — Ny=82, Noyg per aa=105; Lymphoblast X™ = Ny=67, Nayg. per Aa=80; Lymphoblast X” — Ny=68,
Navg. per aa=79; Lymphoblast XX — Ny=88, N,uq per aa=108; Regulation of Response to Stimulus: Brain — Ny=55, Naug per aa=72; Liver — Nx=52,
Navg. per 4a=69; Lymphoblast X™ — Ny=36, Nayg per an=51; Lymphoblast X" — Ny=38, Nayg per aa=50; Lymphoblast XX = Ny=50, Nayg per aa=71;
Cytoskeleton Organization: Brain — Ny=21, Nayg per aa=25; Liver — Ny=21, Noyg per an=24; Lymphoblast X™ = Ny=15, Nayg, per aa=19; Lymphoblast
XP = Ny=14, Navg per an=19; Lymphoblast XX — Nx=22, Nyyg per an=24; Cellular Component Organization: Brain — Nx=98, Nayg per an=111; Liver —
Nx=95, Navg. per aa=105; Lymphoblast X™ = Ny=75, Naug, per aa=76; Lymphoblast X” = Nx=70, N,yg. per aa=84; Lymphoblast XX — Ny=101, N,g per aa=108.

@ Human Brain

Human Liver

B 45, X", Human Lymphoblast
45, X?, Human Lymphoblast

46, XX, Human Lymphoblast

While our analysis focused on chromosome level com-
parisons, the issues we address will likely impinge on
conclusions drawn from many types of global or clus-
tered analysis of short read sequences. Our examin-
ation of the effects of library construction/sequencing
methods, mapping protocols, sequence annotations
and statistical treatment of data on estimates of RXE
may also prove to be incomplete as RNA-seq data ana-
lysis continues to mature. The pitfalls we illustrate for
RNA-seq are similarly presented for repetitive elements
in short read genome assemblies by [44].

Three key questions considered in mapping short read
sequence to a reference genome have a profound effect
on downstream quantitative analysis of RNA-seq
datasets: 1) are reads that align to more than one location
in the reference reported in the mapped dataset; 2) if so,
how many of those alignments are reported; and 3) if
reporting of multiply-aligning short reads is limited, what
rules govern the location to which a reported short read
is assigned? Unique mapping parameters, implemented
in a mapping program such as Bowtie, typically elide any
reads that align to more than one location, hence genes
that contain even short segments of high similarity to
other genes will be excluded from further analysis. De-
pending on the limits to reporting of multiply-aligned
read, “non-unique” parameters, may either swamp quan-
titative analysis with inclusion of high copy-number

repeat transcripts or lead to inappropriate inclusion of
non-expressed paralogs. Default parameters in programs
such as TopHat and Cufflinks report multiply-aligned
reads that may dramatically influence conclusions
drawn in clustered analyses. Our analysis shows that
the X chromosome is enriched for paralogous gene
families relative to the autosomes. Since gene duplication
is a straightforward method for achieving dosage com-
pensation of a haploinsufficient gene, implementation of
short-read sequence analysis tools that are inclusive of
limited multiply-aligned sequences is essential to gener-
ating the most biologically realistic RXE levels.

Another consideration that appears to have a signifi-
cant effect on the calculation of RXE is the use of a
mapping tool that includes splice junction fragments.
Consideration of splice junction fragments removed
biases created by enrichment for small RNAs or
riboproteins that were introduced during library prepar-
ation for either SOLID or Illumina platforms. Differences
in the consideration of splice junction fragments may
also underlie the large discrepancy in RXE values pro-
duced from using different gene annotations. While all
tissues across all annotations exhibited higher levels of
RXE than those described in [19], we found considerable
variation in RXE estimates when comparing values be-
tween all five annotations. This is of particular concern
considering that some of these comparisons should be
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very similar. For instance, Ensembl uses Gencode anno-
tations in the formulation of Ensembl genes and
Ensembl Transcripts annotations. The fact that choice of
annotation for mapping assignment is an unexpectedly
important facet of RNA-seq analysis has also been
reported by others [45].

Previous RNA-seq studies of X:autosome expression
applied arbitrary cutoffs when filtering data, removing a
proportion of genes that are highly or lowly expressed
[19-24]. In each of these reports the approach to data
trimming can be seen to improve the fit of the calculated
X:autosome expression ratio to the authors’ desired con-
clusion. Trimming according to expression level clearly
introduces bias because compensated genes may be dis-
proportionately represented within different expression
level classes. In other words, excluding genes with low,
or high, FPKM values may result in exclusion of a sig-
nificant cohort of compensated X-linked genes. Most
FPKM estimation programs such as Cufflinks have some
type of threshold criteria for determining whether or not
a FPKM value will be called for that locus. Ascertain-
ment bias from arbitrary cutoffs will be particularly
acute for smaller libraries. Many RNA-seq studies, in-
cluding the X dosage reports discussed herein, cite [29]
for the designation: 1 transcript per cell is equivalent to
FPKM-=3. It should be noted that that equivalency only
holds for the specific approach (i.e. RNA source, library
preparation, mapping parameters) used in [29]. This is
particularly the case when using Cufflinks, in which
FPKM estimates, without some sort of standard refer-
ence, are meaningful only in the relative sense. Recent
studies indicate biologically relevant transcripts are rep-
resented at much greater depth [46,47] and need to be
accounted for in mapping and transcript assembly.

We found library size and type are very important in
interpreting global expression analysis. The decision
about which method of library construction to use can
have a profound influence on characterization of expres-
sion profiles [48]. In our study we included results from
both Illumina RNA-seq and SOLiD RNA-seq, revealing
differences between the two platforms largely due to the
method of rRNA exclusion in library construction. Our
comparisons of non-coding versus protein-coding anno-
tations show that methods that exclude non-coding ele-
ments present lower estimates of RXE. Sequencing
depth also plays a role in accurately modeling global or
clustered gene expression. Library size and RXE are
positively correlated in our analyses. Recent studies have
indicated that a lack of sequencing depth is typically as-
sociated with the inability to detect lowly expressed
genes [46,49-51].

The evolution of dosage compensation of sex-linked
genes will be driven by the fitness cost of under-
expression in the heterogametic sex weighed against the
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cost of over-expression in the homogametic sex on a
gene-by-gene basis. It is expected that only some genes
will necessitate compensation once they become hemi-
zygous. Therefore, gene function and the relative repre-
sentation of certain functional groups on the sex
chromosomes becomes an important consideration in
the detection of dosage compensation at the chromo-
some level. Although only weakly supported, our RXE
calculations with respect to gene ontology classification
largely agree with the predictions of the gene balance
hypothesis [36], in which regulatory genes tend to be
compensated while structural genes tend not to be.

High-throughput gene expression profiling forms the
experimental basis of several recent reports that show
either no evidence for dosage compensation such as in
birds [8,42] and lepidoptera [39], or that show some
amount of dosage compensation such as in platypus
[38], stickleback [40], and flour beetle [41]. Even with
the greater sensitivity afforded by next-generation se-
quencing and RNA-seq analysis, the choice of analytical
tools and decisions implicit in their implementation, par-
ticularly with respect to inclusiveness of data, will have a
profound effect on the conclusions drawn in any clus-
tered analysis. More importantly, as others have argued,
compensation may be more local than global [11,36]. In
the absence of an overriding chromosome-wide epigen-
etic mechanism, detection of dosage compensation for a
sex chromosome will clearly depend mostly on the rela-
tive number of dosage sensitive genes to dosage insensi-
tive genes that reside on it.

Conclusions

Our analysis of RNA-seq data, in consideration of sev-
eral mitigating factors, indicates that gene expression
from the X chromosome in mammals is up-regulated in
many somatic tissues. While not every tissue-specific
RNA-seq dataset has an RXE > 0, no tissue in our ana-
lysis exhibits RXE as low as the values reported in [19].
Some of these differences in RXE can be attributed to
tissue specific activity of X-linked genes [52], however
we find RXE values falling within the range of variability
of other chromosome-to-chromosome expression ratios.
In addition, we identified serious issues not only import-
ant to addressing dosage compensation but to the larger
concern of accurately implementing analytical tools for
next generation sequencing. Our study shows how
choices made along the entire pipeline of next-gen se-
quence analysis can profoundly influence the final con-
clusions to questions asked by many biologists.

Methods

In order to generate an global estimate for the relative
expression of the X-chromosome to the autosomes, we
implemented an analytical framework to RNA-seq that
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involved taking into consideration the methods and vari-
ous assumptions associated with each methodological
step: library construction; sequencing run; mapping reads
from sequencing runs to a reference genome; assigning
those mapped reads to annotated region of interest; cal-
culating an expression value for that region of interested
largely based on the mapping of those reads.

Mapping

We implemented three different mapping protocols in
our study to address three specific base assumptions
about how mapping should be done and are referred as
follows: “unique”, “non-unique”’, and “non-unique,
spliced”. Mapping runs were conducted using the Bowtie
v0.12.7 algorithm and program [53]. “Unique” means
that a read is only included in the mapping results file if
it maps to only one unique location in the reference. In
terms of Bowtie parameters, this means that parameter k
and m were set to 1. If the read maps to more than one
region of a reference, then it is discarded from down-
stream expression estimates. A “non-unique” approach
allows those reads that map to multiple locations in the
reference to be included in downstream analyses. To iso-
late the effect of simply including multiply-mapped
reads, our “non-unique” mapping allows for multiply-
mapped reads to be report but only once. For this ap-
proach, Bowtie parameter k was set to 1, while m had
no limit. Additionally, all subsequent mapping matches
for a read were ranked using the “best” and “strata” algo-
rithms within Bowtie that rank the matches for a specific
read using the number of mismatches within seed and
across the entire read as well as the Phred scores at
those mismatches. Our “non-unique” analysis only re-
ports the “best” ranked match for a mapped read. Lastly,
a “non-unique, spliced” mapping approach is most com-
monly recognized and implemented in the TopHat
v1.3.1 program [33], which includes the consideration of
splice junctions for discontinuous mapping of reads. All
default parameters were used for these runs; however,
no novel transcripts were predicted as Gencode v4 and
mm9 USCS gene models were used to define all splice
junctions for human and mouse, respectively. This ap-
proach allows for non-unique mapping as well and uses
a similar methods of assigning alignment scores, but re-
ports up to 20 randomly selected sequences if alignment
scores are identical (default setting). To detail whether
the distribution of genetic entities such as paralogous
genes among chromosomes might bias a specific map-
ping strategy, paralogs were identified using BioMart
and differences in read mapping for those paralogs with
>70% sequence similiarity were examined for both
unique and non-unique mapping runs. Our 70% mini-
mum cutoff for paralogs was empirically determined by
the ability of the Biomart paralogs search algorithm to
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identify X-linked multigene families (eg. X/r) of which
we had prior knowledge.

Reference annotation

To describe the role that reference annotation had on
RXE, we examined different approaches to assigning reads
for expression calculations: (1) mapped reads only,
disregarding a priori regions of interest (such as exonic re-
gions); (2) RefSeq exon annotations for genes to determine
which reads mapping to specific regions we would be
retained in our estimates of expression; (3) RefSeq exon
annotations for protein coding genes only; (4) Ensembl
exon annotations for genes; (5) Ensembl exon annotation
for transcripts; and (6) Gencode exon annotations. For ap-
proach (1), we estimated relative expression by weighting
the number of reads that mapped to any specific chromo-
some by the number of genes found on that respective
chromosome (patterns of chromosomal gene-enriched
were described using BioMart) and then dividing the
weighted number for the X-chromosome by that number.
By averaging values of this relationship across all chromo-
somes, we calculated a value for RXE for each library that
we examined (data was log2-transformed to maintain
consistency for reasons described below). Alternatively, for
approaches (2)-(6), we implemented the program Cufflinks
v1.0.3 [34] to estimate fragments per kilobase of exon per
million fragments (FPKM) — an index typically used in
RNA-seq analyses — using different annotations with the
same mapping results files. Default parameters were used
for all Cufflinks FPKM calculations except for limiting
FPKM calculations to the sites determined by the afore-
mentioned associated annotations (without allowing add-
itional transcript prediction). All multi-mapped reads
contributions to FPKM values are equally distributed
across all valid mapping sites (i.e. if a single read maps to
10 sites, then each sites is awards 1/10™ of that read to its
total read count). Software-based bias corrections (both
Fragment and Multi-map) were implemented but neither
had any significant effect on results.

Data manipulation and selection

We implemented three treatments of raw results to in-
crease impartial statistical rigor, the amount of data used
in the analysis, and overall robustness of analysis: (1) we
log-base two transformed all FPKM values; (2) we re-
moved any outliers that were 1.5 times the mid-50 per-
centile distance greater or less than the 75th and 25th
percentiles, respectively; and (3) we used mean values
and instead of median values. A log,-transformations of
data changes the scale of analyses and allows for more
appropriate assessment of lowly-expressed loci (particu-
larly, FPKM values <1) and highly-expressed loci (redu-
cing effects of large values on moment estimation) by
allowing the distribution of data to closely resemble a
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“normal” distribution model and, thus, better describe
the central tendencies of that distribution. Taking an im-
partial approach to outlier identification minimizes dif-
ferences among tissues with very specific patterns of
gene expression and removes data points that may overly
influence mean estimation of a general pattern in relative
X and autosomal gene expression while maintaining stat-
istical rigor.

Given that we used a log,-transformation, instead of
the traditional X:A ratio (described as X expression di-
vided by autosome average expression), we used an
index of log,(X expression) — log,(A expression) to de-
scribe patterns in relative X expression, or RXE. Here, a
value of zero means equal expression of X and A, a value
of 1 means twice as much expression of X than A, and a
value of —1 means half as much expression on the X as
compared to A. Therefore, it follows that values near
zero indicate dosage compensation, while values near —1
indicate no dosage compensation occurring.

Final relative X-chromosome expression estimation

Using information gathered from the above treatments
of data, we decided on using a “non-unique, spliced” ap-
proach to mapping that uses the conservative gene-
identifying RefSeq annotation and log,-transformation of
FPKM values with a traditional approach to outlier re-
moval to estimate RXE. In addition to estimating RXE,
we also calculated the relative expression of each
chromosome to all other chromosomes (excluding the Y
and mitochondria) in order to see if the X truly deviates
from the expression patterns of other chromosome (i.e.
is at half the expression level of other chromosomes).

Functional component dosage compensation

All FPKM values for 5 human tissue-types (brain, liver,
lymphocyte, lymphocyte X™, and lymphocyte X*) were
filtered based on the GO-term of interest by mining the
on-line AMIGO database for gene names associated
with each Biological Process term of interest. Molecular
Function group comparisons were done in a similar
fashion, however, the identification of term of interest
was based on results by Kondrashov and Koonin’s [35]
that found some specific terms to be overly-represented
in haplo-insufficient genes.

Data access
GSE16921; GSE12946; SRA001030; SRA047980

Additional files

Additional file 1: Table S1. Proportion of total genes removed
through implementation of methods from cited dosage compensation
studies. Proportion of total genes that yielded a FPKM value > O that
would not be included in the final calculations of RXE as defined by
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of the authors in the methods of the studies referenced below. ®
Utilizing described Miller's Jackknife/Mann-Whitney U-test approach,
applied unique mapping, established all genes that had a FPKM of
zero, then removed a compensatory amount of genes from the upper
end of the distribution. ® Applied unique mapping, then removed all
genes that had a FPKM <1. © Applied non-unique, splicing mapping,
then removed all genes that had a FPKM <1. 4 Applied non-unique,
splicing mapping, then removed outliers.

Additional file 2: Table S2. Paralog enrichment by chromosomal
location in both mouse and human. Paralogous transcripts were
determined by using BioMart (Ensembl), isolating paralogs with
identity >70%. Number of genes per chromosome was calculated
using RefSeq genome annotation.

Additional file 3: Table S3. RXE comparison using analysis methods
implemented in cited dosage compensation studies. ¢ Applied unique
mapping. included all expressed genes and reported median values. °
Applied unique mapping, then removed all genes that had a FPKM <1
and reported median values. < Applied non-unique, splicing mapping,
then removed all genes that had a FPKM <1. Gene expression was
calculated using cufflinks algorithm for all three analysis strategies to
produce RXE values.

Additional file 4: Table S4. Reads and genes mapped by mapping
parameter, for libraries analyzed in both mouse and human.

Additional file 5: Figure S1. Box plots of log,-transformed data of all
FPKM values by chromosomal location. (A) human brain, (B) human liver,
(©) normal human lymphoblast, (D) X™ human lymphoblast, (£) X™
mouse brain, (F) X° mouse brain, (G) 40, XX mouse brain, (H) 40, XY
mouse brain, (I) mouse brain.

Additional file 6: Table S5. Small RNA and riboprotein enrichment
based on library preparation (lllumina or SOLID). We compared small RNA
(sno and micro) and riboprotein biases using three different mapping
parameters: unique, non-unique, and non-unique splicing (NUS). Six
different libraries were analyzed including: X™ lymphoblast (SOLID),
human brain (Illumina), human liver (Illumina) and X™ mouse brain
(SOLID), X mouse brain (SOLID), and 40, XX mouse brain (SOLID).

Additional file 7: Figure S2. Library size affects relative X-
chromosome expression values in mammalian tissues. Plot of average
log,-transformed RXE based on number of reads mapped. Includes
data from human lymphoblast 45, X™ (n=1), human lymphoblast 45,
XP (n=1), human lymphoblast (n=10), human brain (n=1), and human
liver (n=1) RNA-seq samples.

Additional file 8: Table S6. Gene counts for relative X-chromosome
expression (RXE) values for cis and trans paralogs associated with GO
terms binding activity and enzyme activity for five human tissue samples
as described in Figure 4.
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