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Translational signatures and mRNA levels are
highly correlated in human stably expressed genes
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Abstract

Background: Gene expression is one of the most relevant biological processes of living cells. Due to the relative
small population sizes, it is predicted that human gene sequences are not strongly influenced by selection towards
expression efficiency. One of the major problems in estimating to what extent gene characteristics can be selected
to maximize expression efficiency is the wide variation that exists in RNA and protein levels among physiological
states and different tissues. Analyses of datasets of stably expressed genes (i.e. with consistent expression between
physiological states and tissues) would provide more accurate and reliable measurements of associations between
variations of a specific gene characteristic and expression, and how distinct gene features work to optimize gene
expression.

Results: Using a dataset of human genes with consistent expression between physiological states we selected
gene sequence signatures related to translation that can predict about 42% of mRNA variation. The prediction can
be increased to 51% when selecting genes that are stably expressed in more than 1 tissue. These genes are
enriched for translation and ribosome biosynthesis processes and have higher translation efficiency scores, smaller
coding sequences and 30 UTR sizes and lower folding energies when compared to other datasets. Additionally, the
amino acid frequencies weighted by expression showed higher correlations with isoacceptor tRNA gene copy
number, and smaller absolute correlation values with biosynthetic costs.

Conclusion: Our results indicate that human gene sequence characteristics related to transcription and translation
processes can co-evolve in an integrated manner in order to optimize gene expression.
Background
The control of gene expression is one of the most im-
portant biological processes, which can be regulated at
diverse steps. Gene expression is the most energetically
expensive process within a cell, and an efficient usage of
gene expression machinery is of key importance for
proper cell functioning. The rates of gene expression are
mainly determined by the DNA sequences that modulate
transcription and translation processes [1], and the se-
lection for efficient ribosome usage seems to be a major
force that shapes the evolution of gene sequences to-
wards optimum gene expression [2]. Optimum gene ex-
pression can be understood as the maximum possible
ratio between the benefit due to expression of the gene
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at a determined level and the costs of its production [3].
Optimum gene expression requires a balanced contribu-
tion of the diverse processes that control this process, as
a gene that is transcribed at high rates should also be ef-
ficiently translated [4]. Therefore, it is expected that
gene sequence characteristics that participate in the dif-
ferent aspects of gene expression machinery will work in
an integrated manner and co-evolve in order to cope
with demands for optimum ribosome usage.
Analysis of diverse prokaryotic and invertebrate spe-

cies showed significant correlations between gene char-
acteristics related to expression, such as codon usage
[5-7], gene size [8,9], and folding energy at 5′ of mRNA
[10]. Due to the relative small population sizes, the gene
sequences of human, and other mammalian species, are
not expected to be strongly influenced by selection to-
wards expression efficiency [11,12]. In fact, except for
gene and CDS sizes, there seems to exist a weak correl-
ation between gene expression and specific gene
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signatures in humans, and higher correlation values are
only obtained when analyzing pooled groups containing
several hundred genes in each group [13-15].
One of the major problems in estimating to what ex-

tent a specific gene feature has undergone selection to
maximize expression efficiency in humans is the wide
variation that exists in RNA and protein levels among
distinct tissues and even within the same tissue in differ-
ent physiological and pathological conditions. In this
sense, studies on this subject matter would benefit from
the use of datasets of stably expressed genes (i.e. with
consistent expression between physiological states and
tissues), as those would provide more accurate and reli-
able measurements of associations between variations of
a specific gene characteristic and expression, and how a
distinct gene signature contribute to optimize gene ex-
pression. In this study we analyzed the association of
gene characteristics related to translation efficiency or
speed and mRNA expression using a dataset that was
curated specifically for stably expressed genes [16].

Methods
Datasets and sequences
The genes used in this work were subdivided in two
groups as follow:

Group 1: Formed by a dataset of stably expressed genes
[16]. The genes were strictly selected using uniform data
preprocessing and data quality control of 4,804 Affymetrix
HU-133A arrays performed in clinical samples. Details of
gene selection and analysis can be obtained in the Material
and Methods section of the above referred paper. The
complete list with Affimetrix GeneChip expression
intensity and variation was download from supplementary
Data S1 file of reference 16 (n = 575).
Group 2: formed by genes of Group 1, which were
expressed in at least 2 tissues and had a/standard
deviation/mean mRNA expression values < 0.4 (n = 196).
Group 3: formed by genes of Group 1, which were
expressed in at least 3 tissues and had a standard deviation/
mean ratio of mRNA expression values < 0.4 (n = 99).
Group 4: A list of genes with determined mRNA and
Protein concentrations, obtained from Vogel et al [17].
The mRNA and protein were extracted from the
human medulloblastoma Daoy cell line. mRNA
expression values were generated using NimbleScan
expression Robust Multi-array Analysis. Details of gene
selection and analysis can be obtained in the Material
and Methods and Supplementary Information of the
referred paper. The complete list with Protein and
mRNA expression intensity and variation was
downloaded from Supplementary Data File. This and
the previously described dataset were made non-
redundant as genes included in Group 1 dataset were
removed from this dataset (Group 4 = Vogel et al
dataset - Group 1, n = 503).

cDNA, coding, 50 UTR, 30 UTR sequences and gene
sizes were obtained from Biomart [18], www.biomart.
org. Sequences with “N” representing unknown bases
were removed from analysis. Coding sequences that do
not start with “ATG” or do not finish with a stop codon
or whose sequence sizes are not divisible by 3 were also
removed. The databases of sequences were made non-
redundant with respect to alternative splice variants, as
only the longest sequence was used to represent each
gene sequence. Since we used measures of codon bias,
genes that do not code for proteins were removed from
the analysis.

Gene information and characteristics
Gene ontology was used to analyze the gene functions of
the datasets used in the present work [19], www.
geneontology.org. A set of 21 Biological Process Terms
were selected from the Refine Selection menu of QuickGO
[20], www.ebi.ac.uk/QuickGO. The genes were downloaded
from Biomart [18], www.biomart.org.
tRNA Adaptation index (tAi) was measured according to

dos Reis et al. [7]. The relative adaptiveness values for all
human codons were obtained from Waldman et al. [15].
Codon Adaptation index (CAI), GC and GC3 contents
were obtained using the CAI server [21], http://genomes.
urv.cat/CAIcal/E-CAI. Isoaccepting tRNA gene copy num-
bers were obtained from Lavner and Kotlar [22].
Since previous reports have shown correlations be-

tween amino acid and gene expression [22], we also
performed correlation analysis of the frequencies of
amino acids and mRNA levels. The frequency of amino
acids weighted by expression was calculated according
to Lavner and Kotlar [22] and the amino acids size/com-
plexity scores were obtained from Dufton [23].
RNA folding energies of 50 bp fragments of specific

gene regions were obtained with the RNAFold program
[24] using default settings. Only the minimum-free-en-
ergy (dG) structure was taken into account. The regions
analyzed were:

a) The first 50 bases of cDNA.
b) The bases -52 to -2 of 50 UTR.
c) The first 50 bases of coding sequence.
d) The last 50 bases of coding sequence.
e) The last 50 bases of cDNA.
f ) 50 random bases from cDNA.

Statistical analysis
All comparisons and statistical analysis were performed
using R Statistical Package version 2.12.1 (http://www.
r-project.org).

http://www.biomart.org/
http://www.biomart.org/
http://www.geneontology.org/
http://www.geneontology.org/
http://www.ebi.ac.uk/QuickGO
http://www.biomart.org/
http://genomes.urv.cat/CAIcal/E-CAI
http://genomes.urv.cat/CAIcal/E-CAI
http://www.r-project.org/
http://www.r-project.org/
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Results
Correlations between gene structural parameters and
gene expression are higher in stably expressed genes
We selected a number of parameters representing the
characteristics of the gene sequences that could be influ-
ential to the expression variation: Coding sequence size,
untranslated regions size, mRNA stability, translation ef-
ficiency measured by tAi and CAI indexes and amino
acid frequencies. Our rationale is that if gene sequences
are selected to maximize expression efficiency we would
expect a significant correlation between gene transcrip-
tion, represented by mRNA levels, and parameters
related to translational. The results of Spearman correl-
ation analysis between gene characteristics and mRNA
levels are shown on Table 1. There was a significant
negative correlation between mRNA levels, CDS size
and 30 UTR size in Group 1 and Group 4. tRNA adapta-
tion index (tAi) showed a positive correlation with
mRNA levels in Group 1 and Group 4. There was a sig-
nificant positive correlation between mRNA levels and
folding energy of the 50 UTR mRNA sequences from -2
to -52 in Group 1. There were no significant correlations
between 50 UTR sizes of and mRNA levels. Group 1
showed higher correlation values with CDS length, and
folding energy in the end of 50 UTR of mRNA than
Group 4. The correlation values among gene character-
istics and mRNA levels of Group 1, and to a lower ex-
tent of Group 4, are higher than the values reported in
the literature. The correlation values presented with sta-
bly expressed dataset (Group 1) are the highest reported
up to the present date, and they indicate that selection
for gene sequence characteristics towards expression ef-
ficiency in human genes may be more relevant than
previously believed. Significant Spearman correlations
between mRNA levels and frequency of amino acids in
Group 1 (p < 0.05) were found for amino acids Cys, Asp,
Gly, His, Ile, Lys, Leu, Met, Pro, Gln, Ser, Val, Trp
(Additional file 1: Table S1). Except for Gly and Trp, the
amino acids showing significant correlations in Group 1
also exhibited significant correlation in Group 4. The
signals of the correlations for Groups 1 and 4 (positive
or negative) were coincident for all 20 amino acids. The
Table 1 Correlation analysis between gene parameters and m

Group 30 UTR size 50 UTR size CDS size

1 −0.29(1.2e-12) −0.05(0.23) −0.46(<2.2e-

2 −0.39(1.3e-08) −0.01(0.89) −0.51(1.2e-1

3 −0.34(4.7e-4) −0.18(0.07) −0.53(1.7e-0

4 −0.26(4.5e-09) 0.01(0.11) −0.23(2.3e-0

ref 13 −0.20(1.0e-1

ref 14 −0.18(<1.0e-

ref 15

Spearman rank coefficients (p values) between gene characteristics and mRNA expr
higher correlations in Group 1 were found for amino
acids Ser (cor = -0.4, p < 2.2e-16), Lys (cor = 0.35 p <
2.2e-16) and Gln (cor -0.25, p = 6.7e-10). These values
were higher than previously published correlations in
mice [25] and human [17] data. In order to further
analyze the correlations between amino acids usage and
gene expression, and to compare our data with previ-
ously published results of human genes [22], we corre-
lated (spearman rank) the frequency of amino acids
weighted by expression with the isoaccepting tRNA gene
copy numbers and amino acids size/complexity score,
which gives an estimate of the biosynthetic cost of
amino acids [22,23]. Notably, Groups 1, 2 and 3 showed
a higher positive correlation with isoaccepting tRNA
gene copy number for each amino acid than Group 4
and from the groups reported by Lavner and Kotlar [22].
Groups 1, 2, and 3 also showed smaller negative correla-
tions scores between the frequency of amino acids
weighted by expression and amino acids size/complexity
(Table 2). There is a significant negative linear correl-
ation (r = -0.55, p = 0.01) between amino acids size/com-
plexity and isoaccepting tRNA gene copy number [22],
where amino acids with more tRNA genes have also
smaller biosynthetic costs.
The parameters with significant correlation values

(p < 0.05) were used as variables in multiple linear regres-
sions and tested for their combinatorial effects in gene ex-
pression variation. CAI was not included in this analysis
since tAi, which is also an index of codon bias, produced
higher correlation coefficients and smaller p values. Using
Akaike information criterion (AIC) we determined the
best fitted regression models for Groups 1 (stable expres-
sion) and 4. This analysis was performed with the step
command from library MASS, and the penalty per param-
eter used was log(# parameters).
The best regression model for Group 1 (model1,

Table 3), included as independent variables the coding se-
quence length (Lcds), tRNA Adaptation index (tAi), length
of 30 UTR (L3utr), folding energy of the 50 bases from -2
to -52 of 50 UTR (dG), and the frequencies of amino acids
Cys, Glu, Leu, Gln, Ser, Asp. This model could predict
42% of mRNA variation in Group 1 (R-squared = 0.418,
RNA expression

tAi CAI dG 50 UTRs

16) 0.32(3.3e-15) 0.07(0.08) 0.12(0.004)

4) 0.39(4.6e-08) 0.15(0.03) 0.2(0.005)

8) 0.18(0.07) −0.01(0.89) 0.022(0.82)

7) 0.40(<2.2e-16) 0.21(3.1e-06) −0.02(0.20)

2)

04)

0.23 (<0.0003)

ession.



Table 2 Correlations between amino acids frequencies
weighted by expression and isoaccepting tRNA gene
copy number, and amino acids size/complexity score

Frequency
weighted by
expression

Isoaccepting tRNA
gene copy number
spearman (p value)

Amino acids size/
complexity score
spearman (p value)

Group 1 0.69(8.0e-04) −0.75(1.2e-04)

Group 2 0.69(6.7e-04) −0.73(2.4e-04)

Group 3 0.69(8.1e-04) −0.73(2.4e-04)

Group 4 0.65(1.8e-03) −0.80(1.6e-05)

High exp* 0.56(1.0e-02) −0.79(2.8e-05)

All genes* 0.58(7.8e-03) −0.80(2.0e-05)

Spearman rank coefficients (p-values). *From reference 22.
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adjusted R-squared = 0.414, p < 2.2e-16, Figure 1A). Inter-
estingly when tAi and log(Lcds) were replaced by the ratio
tAi/log(Lcds) in model 1 there was a slight increase in
the model performance (R-squared = 0.420, adjusted R-
squared = 0.418, p < 2.2e-16).
The best regression model for Group 4 included tAi,

L3utr, dG and the frequencies of amino acids Cys,
Glu, Leu, Gln, His, Arg, Tyr as independent variables
(model2, Table 4). This model could predict 33% of
mRNA variation in Group 4 (R-squared = 0.34, adjusted
R-squared = 0.33, p < 2.2e-16, Figure 1D).
When variables from model1 were used in regression

analysis in Group 4 dataset it was possible to predict about
35% of mRNA variation (R-squared = 0.36, adjusted R-
squared = 0.35, p < 2.2e-16, Figure 1C), while variables of
model2 in Group 1 could predict about 31% of mRNA
variations (R-squared = 0.32, adjusted R-squared = 0.31,
p < 2.2e-16, n = 503, Figure 1C). These results show that
both regression models performed satisfactorily in both
datasets and model1 produced higher adjusted R-squared
values.
Table 3 Summary of regression analysis
(Group 1 & regression model1)

Predictor Coeficient
(95% CI)

Significance Contribution*
(95% CI)

Log(Lcds) −0.36(-0.49,-0.23) 1.98e-07 0.26(0.19,0.33)

tAi 13.39(8.51,18.27) 1.09e-07 0.17(0.11,0.23)

Log(L3utr) −0.25(-0.34,-0.16) 1.48e-07 0.16(0.10,0.22)

dG 0.05 (0.04,0.06) 7.40e-08 0.04(0.02,0.06)

Cys −10.62(-18.41,-2.83) 0.00764 0.01(0.00,0.02)

Asp −4.82(-10.04,0.40) 0.07043 0.01(0.00,0.02)

Glu −5.55(-9.22,-1.88) 0.00316 0.02(0.01,0.03)

Leu −10.37(-9.22,-1.88) 2.60e-08 0.06(0.03,0.09)

Gln −16.13(-21.45,-10.79) 5.05e-09 0.08(0.04,0.12)

Ser −10.37(-14.69,-6.05) 3.15e-06 0.19(0.14,0.24)

*Relative importance to log(expression) normalized to sum 100%. Lcds length
of coding sequence.
L3utr length of 30 UTR.
The independent variables selected in model1 were used
for regression analysis in two subsets of Group 1, com-
prised by genes stably expressed in at least 2 tissues and a
standard deviation/mean ratio of mRNA expression
values < 0.4 (Group 2, n = 196, Figure 2A), and with genes
stably expressed in at least 3 tissues with a standard devi-
ation/mean ratio of mRNA expression values < 0.4 (Group
3, n = 99, Figure 2B). It was possible to predict about 51%
of mRNA levels in Group 2 (R-squared = 0.532, adjus-
ted R-squared = 0.51, p < 2.2e-16), and about 50% of
mRNA levels (R-squared = 0.553, adjusted R-squared =
0.50, p < 2.2e-16) in Group 3. tAi did not significantly con-
tribute to the prediction of mRNA levels in Group 3, pos-
sibly due to little variation of tAi values within this group,
which was formed by genes with the highest mRNA levels
(see below and Table 5).
These results clearly show a high association between

mRNA levels and gene sequence characteristics related to
translation in stably expressed datasets. These correlations
indicate that sequence characteristics that modulate tran-
scription and translation processes co-evolve in order to
optimize ribosomal usage. This phenomenon, which has
been underestimated due to the low correlations between
gene expression and gene sequence characteristics re-
ported in other studies, may have played a relevant role on
the evolution of the human gene sequences.

Stably expressed genes tend to have distinct structural
characteristics and biological functions
Gene characteristics related to translation were com-
pared using Kruskal. Wallis-test followed by post-hoc
analysis using Mann–Whitney tests with Bonferroni cor-
rection. The results show that stably expressed genes
(Groups 1, 2 and 3) tend to have smaller CDS lengths
than “non-stably expressed” Group 4 dataset (p < 0.001).
Group 1 and Group 4 had similar tAi values, while com-
parison among stably expressed Groups 1, 2 and 3 shows
that the more tissues the gene is stably expressed the
higher the tAi (p < 0.05). 30 UTR sizes in Groups 2 and 3
were significantly smaller than in Groups 1 and 4. There
was a small progressive decrease in folding energy when
comparing Groups 4, 1,2, 3. Significant differences
(p < 0.01), however, were only found between Group 4
and the other 3 groups. The highest differences were
found when comparing the expression levels among
Groups 1, 2 and 3, that showed a progressive ~4 fold in-
crease in mRNA levels (p < 0.001) (Table 5).
The analysis of gene ontology showed that most genes

in our datasets belong to at least one of the 21 Biological
Process Terms used (Additional file 1: Table S2). Genes
related to cell transport were the most frequent in
Groups 4 and 1, while genes related to translation were
the most frequent in Groups 2 and 3. The highest varia-
tions were seen in genes related to translation process



Figure 1 Scatter plots of mRNA levels (x-axis) vs fitted model values (y-axis). A. Regression of model1 in Group 1 (adjusted R-squared = 0.41,
p < 2.2e-16, n = 575). B. Regression using variables from model1 in Group 4 (adjusted R-squared = 0.31, p < 2.2e-16, n = 503). C. Regression using
variables from model2 in Group 1 (adjusted R-squared = 0.35, p < 2.2e-16, n = 575). D. Regression of model2 in Group 4 (adjusted R-squared = 0.33,
p < 2.2e-16, n = 503).
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and ribosome biosynthesis, whose frequencies increased
progressively in groups 4, 1, 2, 3. Since translation and
ribosome biogenesis categories are related, their genes
were pooled and compared with the pool of genes
present in the remaining 19 categories. Since a gene can
be present in more than one category the genes present
in the two pools were rendered unique (i.e. repeated
genes were counted only once), and the genes present in
Table 4 Summary of regression analysis
(Group 4 & regression model2)

Predictor Coeficient
(95% CI)

Significance Contribution*
(95% CI)

tAi 25.0(20.14,29.94) < 2e-16 0.28(0.13,0.43)

Log(L3utr) −0.14(-0.23,-0.05) 0.00355 0.17(0.08,0.26)

dG 0.02(0.01,0.03) 0.03023 0.01(0.00,0.02)

Cys −22.39(-26.59,-18.20) < 2e-16 0.18(0.10,0.26)

Glu −5.34(-8.96,-1.72) 0.00396 0.01(0.00-0.02)

Gln −10.58(-17.53,-3.63) 0.00292 0.06(0.01,0.11)

His −14.64(-23.84,-5.44) 0.00189 0.21(0.10,0.32)

Leu −7.92(-11.85,-3.99) 8.75e-05 0.05(0.01,0.09)

Arg 5.60(1.10,10.10) 0.01488 0.01(0.00-0.01)

*Relative importance to log(expression) normalized to sum 100%.
L3utr length of 30 UTR, dG minimum folding energy. tAi tRNA adaptation index.
the translation and ribosome biogenesis categories were
removed from the second pool formed by the genes
present in the remaining 19 categories. After this pro-
cedure the frequencies of translation and ribosome bio-
synthesis genes pool in groups 4, 1, 2 and 3 were 18.02%
(62/344), 27.82% (111/399), 50.62% (81/170), 68.97%
(60/87) (Table 5). The frequencies between each pair of
groups are significantly different (Pearson chi-squared
test with Yates’ correction, largest p < 0.009). These re-
sults show that stably expressed genes tend to be smaller
than genes in the other two databases and are enriched
for genes directly related to protein synthesis. These two
characteristics are likely to be connected to gene expres-
sion levels, since genes related to translational machin-
ery are frequently highly expressed, and highly expressed
genes tend to have small size.
Discussion
In the present paper we show that by using a dataset of
stably expressed genes it is possible to predict about 42%
of mRNA variation using 8 independent variables com-
posed by gene characteristics related only to translation
process. The predicted variation can be increased to
about 51% when selecting genes that are stably



Figure 2 Scatter plots of mRNA levels (x-axis) vs fitted model
values (y-axis). A. Regression using variables from model1 in Group
2, formed by genes that were expressed in at least 2 tissues and had
a standard deviation/mean ratio of mRNA expression values < 0.4
(adjusted R-squared = 0.51, p < 2.2e-16, n = 196). B. Regression using
variables from model1 in Group 3, formed by genes that were
expressed in at least 3 tissues and had a standard deviation/mean
ratio of mRNA expression values < 0.4 (adjusted R-squared = 0.50,
p < 2.2e-16, n = 99).

Table 5 Gene characteristics in the groups analyzed

Grp 3’ UTR size* CDS size* tAi +

1 981(842,1107)a 987(906,1028)a 0.367(0.36-0.37)a

2 801(663,935)b 790(654,943)b 0.371(0.37-0.30)b

3 717(513,856)b 612(498,726)b 0.377(0.37-0.38)c

4 1071(934,1226)a 1491(1356,1575)c 0.367(0.365-0.369)

* median (95% Confidence interval)l,+ mean:95% (Confidence interval), Grp Group, d
UTR, GO Tr&RibSy refers to the % of genes belonging to the pool of genes that bel
represent statistically significant differences (p < 0.05) among values in the same co
proportions with Yates’ correction.
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expressed in at least 3 tissues (Group ST3). Although
our results are based on the analysis of a dataset of 1078
genes, which comprises about 3-4% of the human coding
sequences, our results clearly demonstrate that gene se-
quence characteristics may contribute significantly to
the optimization of gene expression in human cells. It is
worth mentioning that the p values obtained for CDS
size and tAi in the correlation analysis were compara-
ble to other studies that used much larger datasets
[13-15,26]. The comparative analysis of mRNA of groups
1, 2 and 3 showed that the higher the mRNA expression
the higher the frequency of genes related to translation
and ribosome biosynthesis. These gene classes comprise
the majority of RNA within the cell. Gene ontology ana-
lysis of Group 4 showed that genes in this group were
somewhat enriched for genes related to translation and
ribosome synthesis (18.02%). This may explain the fact
that the correlation values for this group were in general
larger than those reported in other published datasets
[13-15]. Therefore, although, our sample represents only
a fraction of genes within the cell, it may represent a sig-
nificant fraction of expressed mRNA. Interestingly,
groups 2 and 3, which are highly enriched for highly
expressed translation and ribosome biosynthesis genes
have the highest correlations between amino acids fre-
quencies weighted by expression and amino acids iso-
accepting tRNA gene copy number, and the smallest
absolute correlation values with biosynthetic costs. One
possible explanation for these results is that high de-
mands for translation efficiency may occur at the ex-
pense of other aspects such as higher biosynthetic costs.
Two measures of codon bias were used in our analysis,

tAi and CAI. In both datasets tAi produced higher cor-
relation scores and lower p values than CAI. While CAI
and some other indexes that estimate the role of codon
bias in translational efficiency are based on the fre-
quency of synonymous optimal codons found in highly
expressed genes [27], tAi considers the tRNA pool
within the cell, in which each codon is assigned a value
that corresponds to the disponibility of the correspond-
ing tRNAs [7]. tAi is, therefore, a more direct measure
of biological function than CAI and other indexes based
on codon frequency. In mammals, the few reports
dG* mRNA* GO: Tr&RibSy

−11.6(-12.4,-11.3)a 743(627,891)a 27.8% a

−10.9(-12.1,-10.9)b 3026(1891,4935)b 50.6% b

- 10.1(-11.3,-8.6)b 8212(5123,9010)c 69.0% c

a −12.0(-12.1,-10.8)a 18.0% d

G refers to minimum-free-energy of mRNA structure formed by 50 bases of 5′
ong to translation or ribosome synthesis categories. Different letters (a, b, c, d)
lumn. Differences in GO: Tr&RibSy were determined using chi-squared test for
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showing significant effect of synonymous mutations in
gene expression and/or function, have mainly attributed its
effects to changes in mRNA conformation [28] and disrup-
tion of mRNA splicing [12,29]. The significant correlation
between tAi and mRNA levels observed here suggests that
synonymous mutations may have a more active and broad
role on gene expression than previously believed. Although
synonymous mutations have been classically considered as
“silent”, since they not alter the amino acid sequences of
proteins, recent evidences indicate that human synonym-
ous SNPs are targeted by positive and negative selection
and can modulate the phenotype in humans [30-32]. In
fact, besides modulating the levels of protein products
changes in translation efficiency can further affect protein
function by altering protein folding [33].
The stability at the 50 end of mRNA is related to the

translation efficiency in unicellular organisms [10,33].
Among all 50 bp fragments of diverse regions tested for
mRNA stability, the sequences from -52 to -2 of 50 UTR
gave the smallest p values on both, correlation and mul-
tiple regression analysis. Using E. coli and S. cerevisiae,
The 30 UTR of genes is usually larger than 50 UTR, and
usually contains elements involved in post-transcriptional
regulation of gene expression. In most cases, the binding
of proteins and miRNA to 3′ UTR seems to increase deg-
radation of mRNA molecules. In fact, miRNA regulation
of gene expression seems to be avoided by decreasing the
length of 30 UTR [34]. Interestingly, there is a significant
correlation between the size of 30 UTR and frequency of
tandem repeat sequences (r = 0.73, p = 0.0001) [35]. This
may be a strategy to adapt the size 30 UTR in order to
cope with changes in selective pressure for variations in
gene expression, as tandem repeats are prone to size vari-
ation due to slipped-strand mispairing. Our results sup-
port the biological importance of 50 and 30 UTR regions
for efficient gene expression in humans, as gene character-
istics of these regions (dG + log(3UTR)) can explain about
14% of mRNA variation in Group 1.
The correlation between mRNA levels and CDS length

could be explained by the correlation of the former with
gene length, which is a characteristic related to transla-
tion (Spearman rank of log CDS length vs log gene
length = 0.48, p < 2.2e-16). The regression models with
these two variables, however, showed that gene size and
CDS size independently contribute to the prediction of
mRNA levels (not shown), suggesting that these gene
characteristics can evolve with certain independence to
cope with optimal gene expression.
There was a progressive increase in mRNA levels of

about 4 fold when comparing the values of groups 1, 2
and 3, whereas the changes in the individual parameters
used as independent variables in regression analysis was
of lower intensity (i.e. 1.3 fold for CDS length, and 1.03
fold for tAi). This is likely to be related with the fact that
the ratio of the two major correlating factors (tAi/log
(CDS length) used as a single independent variable can
explain about 26.3% of mRNA variation, indicating that
the variations in these two characteristics occur in a
concerted manner. In this scenario small variations in
the diverse characteristics can lead to substantial vari-
ation in gene expression. Large variability increases the
repertoire of individual differences, which may be posi-
tively selected in order to cope with demands for effi-
cient ribosome usage without affecting the function of
the final protein product that is mainly determined by
secondary and tertiary structures of protein polypeptide.
The high prediction power of translation parameters of

model1 in Groups 1, 2, and 3, evidence the concomitant
evolution of gene signatures related to translational effi-
ciency and transcription activity measured by mRNA levels.
These results suggest that the evolution of coding se-
quences can be influenced by changes in non-coding se-
quences and vice-versa. Recent evidences indicate that
selection for efficient ribosome usage is the central force in
shaping codon usage at the genomic scale [2]. This relation-
ship has been discussed by Gingold and Pilpel [3], where
these authors argue that genes with higher mRNA levels
would be using up more ribosomes, and thus are under
stronger selection for global translation efficiency, therefore,
presumably creating the correlation between mRNA levels
and gene characteristics related to translation efficiency
such as tAi, CDS, 30 UTR sizes and stability of secondary
structures formed by folding of mRNA sequences near
translation initiation site. Selection for ribosomal usage effi-
ciency would be stronger in highly expressed genes, due to
higher energetic costs. It is well known that there is a
strong negative correlation between the expression level of
a protein and its rate of evolution [36,37]. This relationship
is currently explained by protein misfolding [37,38] and
misinteraction avoidances [39]. Our analyses indicate that
ribosomal usage efficiency may also be a relevant factor that
determines gene the evolution of coding sequences in hu-
man genes and also possibly in other vertebrates.

Conclusion
Our results indicate that human gene sequence charac-
teristics related to transcription and translation pro-
cesses can co-evolve in an integrated manner in order to
optimize gene expression.
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