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Abstract

ferulic acid, an autotoxin from rice straw.

mechanisms of autotoxicity in plants.

Background: Autotoxicity plays an important role in regulating crop yield and quality. To help characterize the
autotoxicity mechanism of rice, we performed a large-scale, transcriptomic analysis of the rice root response to

Results: Root growth rate was decreased and reactive oxygen species, calcium content and lipoxygenase activity
were increased with increasing ferulic acid concentration in roots. Transcriptome analysis revealed more transcripts
responsive to short ferulic-acid exposure (1- and 3-h treatments, 1,204 genes) than long exposure (24 h, 176 genes).
Induced genes were involved in cell wall formation, chemical detoxification, secondary metabolism, signal
transduction, and abiotic stress response. Genes associated with signaling and biosynthesis for ethylene and
jasmonic acid were upregulated with ferulic acid. Ferulic acid upregulated ATP-binding cassette and amino acid/
auxin permease transporters as well as genes encoding signaling components such as leucine-rich repeat VIl and
receptor-like cytoplasmic kinases VII protein kinases, APETALA2/ethylene response factor, WRKY, MYB and Zinc-
finger protein expressed in inflorescence meristem transcription factors.

Conclusions: The results of a transcriptome analysis suggest the molecular mechanisms of plants in response to
FA, including toxicity, detoxicification and signaling machinery. FA may have a significant effect on inhibiting rice
root elongation through modulating ET and JA hormone homeostasis. FA-induced gene expression of AAAP
transporters may contribute to detoxicification of the autotoxin. Moreover, the WRKY and Myb TFs and LRR-VIIl and
SD-2b kinases might regulate downstream genes under FA stress but not general allelochemical stress. This
comprehensive description of gene expression information could greatly facilitate our understanding of the
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Background

Monoculture of crops leads to decreased growth and
yield in the next season, with autotoxicity the major cul-
prit [1-3]. Autotoxicity occurs when a plant releases
toxic chemical substances into the environment that in-
hibit germination and growth of conspecific plants [4].
Recently, an increasing number of reports have provided
evidence for the role of autotoxicity in replant failure
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and soil sickness [1]. Autotoxicity is a common problem
in continuous monocropping of rice [2] because decom-
posing rice straw is left in fallow fields [5]. A range of
secondary metabolites in rice straws, such as phenolic
acids [6] and a few flavones and terpenoids [7], are po-
tent autotoxins.

Phenolic compounds are common in soils. Whitehead
[8] reported that the concentration of phenolic com-
pounds in rhizosphere soil solution may reach 90 ppm.
Various phenolic compounds such as ferulic acid (FA),
o-hydroxy phenyl acetic acid, and p-coumaric acid have
been isolated from decomposing rice residues in soil [5].
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These compounds inhibit the growth of rice seedlings in
the order of FA >p-coumaric acid > o-hydroxy phenyl
acetic acid [9]. Exposure of plant roots to FA reduces
water use [10], inhibits foliar expansion [11] and root
elongation [12], and decreases nutrient uptake [13-15].
Further, FA exposure rapidly depolarizes root cell mem-
branes, causing a generalized increase in membrane
permeability, inducing lipid peroxidation and affecting
certain enzymatic activities [16-18]. Ferulic acid may be
esterified with cell wall polysaccharides, be incorporated
into lignin structures, or form bridges that connect lig-
nin with wall polysaccharides, thus resulting in cell wall
rigidity and restriction of cell growth [19,20]. Ferulic acid
affects cell wall-bound peroxidase (POD) and phenylalan-
ine ammonia-lyase (PAL) activities, lignin content, and
root growth in seedlings [21].

Several reports demonstrated that autotoxins induce
oxidative stress in plants [22,23]. Reactive oxygen species
(ROS) play a vital role in the plant defense against stresses
and in cell growth and development [24,25]. Low concen-
trations of ROS, as a signal, can lead to repair of cellular
damage, but high levels can lead to programmed cell
death [26]. Calcium is a crucial regulator of growth and
development in plants [27]. ROS-activated calcium chan-
nel activity is required during the growth of cells in the
elongation zone of the root [28].

Both allelopathy and autotoxicity play important roles
in regulating plant biodiversity and productivity [3].
Autotoxins can impact many physiological and biochem-
ical reactions in plants such as rice, alfalfa, cucumber,
tomato, corn, wheat, sugarcane [1,23]. The potential
mechanisms underlying autotoxicity have been explored
in alfalfa and cucumber [22,29]. In alfafa, cinnamic acid
is a phenolic acid and the major autotoxin in leaves and
root exudates [30]. In cucumber, autotoxins can inhibit
the membrane H'-ATPase activity that drives the uptake
of essential ions, other solutes and water [22]. However,
our knowledge of an autotoxicity mechanism is poorly
understood. Transcriptional profiling experiments using
microarrays are being conducted to examine the effects
of natural phytotoxins on the plant transcriptome [31].
Microarray analyses were used to analyze gene expression
profiles of plants exposed to the allelochemicals 2(3H)-
benzoxazolinone [32], fagomine, gallic acid, rutin [33], 3-
(3',4'-dihydroxyphenyl)-L-alanine [34], and juglone [35].

Rice (Oryza sativa L.) is a model for genomic research
into the responses of monocot species to environmental
stresses. In this study, we used FA as a rice-model auto-
toxin and used microarray assay to assess alterations in
rice root gene expression induced by the autotoxin. We
discuss the possible involvement of reactive oxygen
species (ROS) and calcium in allelochemical signal trans-
duction pathways. These data significantly expand on pre-
vious studies examining plant transcriptional responses to
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allelochemicals and provides a foundation for elucidating
the autotoxicity mechanism of O. sativa, particularly the
phytotoxic effect of decomposing rice residues in soil.

Results

Effect of FA on growth and root architecture of rice

To select an appropriate concentration of FA for stress
treatments, we conducted a dose-response analysis of
rice root growth 3 days after FA treatment (Figure 1A).
Compared with the control, 25 ppm FA significantly re-
duced root growth. With 50 ppm FA, root growth was
about half of the control growth, and with 200 ppm,
growth was almost completely inhibited.

Compared with the control, 50 ppm FA inhibited
crown root, lateral root and root hair formation. Both
the number and length of lateral roots and root hairs
were significantly reduced with 50 ppm FA as compared
with the control (Table 1).

Ferulic acid rapidly induced ROS and calcium
accumulation in rice roots

To determine whether FA treatment induced ROS pro-
duction, we labeled roots with the ROS-sensitive dye
CM-H,DCFDA (Figure 1B) or nitroblue tetrazolium
(Additional file 1: Figure S1), then treated them with
50 ppm FA for 1 or 3 h. Ferulic-acid stress significantly
increased the levels of dihydrodichlorofluorescein (DCF),
and thus ROS, in roots (Figure 1B, Additional file 2:
Figure S2). To determine whether FA treatment induced
calcium accumulation, we used a calcium indicator, Ore-
gon green 488 BAPTA-1, before FA treatment. Calcium
level was significantly increased in root tip regions with
50 ppm FA treatment for 1 or 3 h (Figure 1C and
Additional file 2: Figure S2).

Effect of FA on lipid peroxidation

Ferulic-acid—induced oxidative damage of roots was
positively confirmed by Schiff’s staining in the meristem
and elongation zone of roots (Additional file 3: Figure
S3). Ferulic-acid—induced root oxidative damage was
measured by LOX activity with non-denaturing PAGE.
We detected 3 LOX isozymes in rice roots treated with
50 ppm FA for 3, 6, 12, and 24 h (Additional file 3:
Figure S3).

Expression profiling by microarray assay

To identify genes and biological pathways associated
with FA toxicity and tolerance in rice roots, we used
large-scale expression profiling. RNA samples were col-
lected from root tips early (1 and 3 h) after FA treatment
to examine rapid changes in global patterns of gene
expression. We pooled RNA isolated from the two short
(1 and 3 h) FA exposures to maximize gene discovery.
Mechanisms of adaptation after long-term (24 h) FA
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Figure 1 Ferulic acid (FA) stress inhibits root elongation of rice seedlings. (A) Rice roots were measured after 3 d of treatment with

different concentrations of FA (0, 25, 50, 100, or 200 ppm). Results represent the means =+ SD (n = 30) of 3 independent experiments. Asterisks
indicate significant differences (P < 0.05) from the control treatment. (B) To assess reactive oxygen species (ROS) production under FA stress, root
samples were labeled with 10 uM CM-H,DCF-DA for 30 min and treated with 50 ppm FA for 1-3 h. Green fluorescence indicates the presence of
ROS. (€) To evaluate calcium accumulation under FA stress, root samples were labeled with 10 uM Oregon Green 488 BAPTA-1, a calcium
indicator, for 30 min and treated with 50 ppm FA for 1-3 h. Green fluorescence indicates the presence of calcium. Five control and 5 treated

roots showed similar results. Magnification for representing images was x 100.

exposure are important, but the physiological and meta-
bolic parameters measured after long treatment periods
might be distorted by the severe toxic effects of FA. We
aimed to understand the primary response to FA exposure
as opposed to responses to nonspecific cellular damage.
We performed microarray assays with RNA extracted
from roots treated with 50 ppm FA after short (pooled
from 1- and 3-h treatments) and long (24 h) exposure.
This FA level is comparable to that found in rice-field
soils [8,36]. In all, 1,204 genes were responsive to short
FA exposure and 176 to long exposure. After short FA
treatment, 972 genes were upregulated (FDR < 0.1, fold

change > 2) and 232 were downregulated (FDR < 0.1, fold
change < 0.5) (Additional file 4: Table S1).

We used GO analysis [37] to determine the functions of
the 972 upregulated genes (Table 2, Additional file 5:
Table S2). The most significantly enriched GO term was
“response to stress” (GO:0006950, FDR 2.00E-47). Other
enriched terms were “phenylpropanoid metabolic pro-
cess” (GO:0009698, FDR 2.10E-07), “transmembrane
transport” (GO:0055085, FDR 1.10E-12), “proteolysis”
(GO:0006508, FDR 1.30E-14), “cell wall macromolecule
metabolic process” (GO:0044036, FDR 6.10E-13) and
“signal transduction” (GO:0007165, FDR 6.30E-05). For
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Table 1 Effect of ferulic acid treatment on number and
length of crown root, lateral root and root hairs in rice

Character ? Water 50 ppm FA
Crown root number 6.93+0.88 293+0.70
Lateral root number/seedling 20.73+£263 6.67 £1.54
Lateral root length (mm) 6.15+093 2454060
Root hair number/mm® 735+650 40.1 +3.07
Root hair length (um) © 599.05 + 30.34 205.55+27.29

@ Number and length of root hairs on seminal root measured after 24 h FA
treatment; other characters were determined on seedlings after 3-day FA
treatment. Data are mean + SD.

b Number of root hairs from one side of 1-mm sections at the root hair zone
(3-4 mm behind the root tip) on seminal roots. Data are mean of 10 seedlings.
€ Length of the 20 longest root hairs from the root hair zone of each seminal
root. Data represent the mean of 10 seedlings.

molecular function, the significant GO terms were “kin-
ase activity” (GO:0016301, 1.10E-32), “calcium ion bind-
ing” (GO:0005509, FDR 7.80E-23), “transcription factor
activity” (GO:0003700, FDR 9.00E-19), and “chitinase
activity” (GO:0004568, FDR 1.00E-09).

These observations were further supported by compari-
son of metabolism genes with use of MapMan. The genes
encoding enzymes related to detoxification were cyto-
chrome P450, UDP glycosyltransferases, and glutathione-S
-transferases (Figure 2A). RT-PCR validated the micro-
array findings (Additional file 6: Figure S4).

Expression profiles of root architecture-related genes

To investigate the involvement of root architecture re-
lated genes in FA-induced stress, we analyzed the global
expression profiles of genes related to 3 such gene fam-
ilies (Table 3). In total, 3 of the 18 root architecture
related genes were slightly downregulated by FA (FDR <
0.1). FA repressed the expression of two lateral-root
genes (ARF-16, Os06g0196700, downregulated 1.7-fold;
OsCel9C, 0s05g0212300, downregulated 1.6-fold) and
one root-hair-related gene (OsCSLDI1, Os10g0578200,
downregulated 1.5-fold) in rice roots (Table 3).

Polysaccharide and cell wall metabolism

To investigate the involvement of cell-wall-related
genes in FA-induced stress, we analyzed the global ex-
pression profiles of genes related to 34 such gene fam-
ilies (Additional file 7: Table S3). In total, 30 of the 639
cell-wall-related genes showed significant responses to FA:
16 were upregulated and 14 downregulated. Upregulated
genes predominantly belonged to the expansins (EXP),
yieldins (GH18), xyloglucan endotransglycosylases/hydro-
lases (XTH), beta-galactosidases (BGAL), glycoside hydro-
lases 17 (GH17), pectin acetylesterases (PAE). and glycosyl
transferases 21A (GT31a).
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Expression profiles of ROS-related genes

We analyzed the global expression profiles of genes re-
lated to 15 ROS-related gene families (Table 4, Additional
file 8: Table S4). Among the 343 ROS response-network
genes spotted on our arrays, transcripts of 270 showed
changed expression after FA treatment (Additional file 8:
Table S4): 55 were significantly regulated, 51 upregulated
and four downregulated. The genes included alternative
oxidases (AOX), glutathione peroxidase (GPx), glutathi-
one reductase (GR), glutaredoxins (Grx), glutathione-
S-transferases (GST), monodehydroascorbate reductase
(MDAR), class III peroxidase (Prx), peroxiredoxin (PrxR),
respiratory burst oxidase homolog (Rboh; NADPH oxi-
dase), and thioredoxin (Trx). Almost all AOX genes were
induced by FA, and 25 of the 79 GST genes were signifi-
cantly upregulated by FA.

Expression profiles of transporter genes

In the rice genome, transporter families are grouped by
mode of transport and energy-coupling mechanism into
four types: ATP-dependent transporters, secondary
transporters, ion channels, and unclassified transporters
with unknown mechanisms of action. Among 1,286
transporter-related genes, 1,113 were present on our ar-
rays, and 64 were significantly upregulated with FA
treatment (Table 5, Additional file 9: Table S5). Nearly
all of the transporters responding to FA were ATP-
dependent and secondary transporters. Transporters with
changed expression were 17 of the 130 ATP-binding cas-
sette (ABC) transporters and three of the P-type ATPase
(P-ATPase) transporters. The major facilitator superfamily
(MES) is the largest family of secondary transporters in
the rice genome. Ferulic-acid treatment upregulated nine
MEFS genes and downregulated two. Transcripts for five
proton-dependent oligopeptide transporter (POT) genes
and five amino acid/auxin permease (AAAP) genes were
upregulated. In addition, four of 123 drug/metabolite
transporter (DMT) genes belonging to secondary trans-
porters were upregulated by FA treatment.

These observations were further supported by com-
parison of metabolism genes by use of MapMan. Genes
encoding ATP-binding cassette-type and AAAP trans-
porters were differentially regulated in the early (1 and
3 h) response to FA (Figure 2B). MapMan analysis
revealed that AAAP transporters were significantly
upregulated by FA treatment.

Expression profiles of phytohormone-related genes

Among 324 phytohormone-related genes, 297 were
present on our arrays, and 25 were significantly up-
regulated with FA treatment (Table 6, Additional file 10:
Table S6). One jasmonic acid (JA) biosynthesis gene,
OsAOS2 (0s03g0767000) and six JA signaling genes
(0s03g0180900, Os10g0392400, Os03g0402800, Os03g01
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Table 2 Gene ontology analysis of 972 up-regulated genes
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GO ID

GO term

Query item Background item FDR p-value

Regulation of biological process
regulation of metabolic process
GO:0080090

GO:0045449

GO:0060255

GO:0010556

GO:0010468

GO:0009889

GO:0051171

regulation of cellular process
GO:0007165

GO:0007242

Biological regulation
GO:0065008

Multi-organism process
GO:0051707

GO:0009617

Cellular process

cellular response to stimulus
GO:0070887

GO:0055085

Metabolic process

primary metabolic process
GO:0005975

GO:0005976

GO:0006022

GO:0006030

GO:0016052

GO:0006629

GO:0019538

GO:0006508

secondary metabolic process
GO:0006721

GO:0016101

GO:0009698

macromolecule metabolic process
GO:0019538

GO:0043412

GO:0006464

GO:0044036

GO:0016998

GO:0010467

biological process

regulation of primary metabolic process

regulation of transcription

regulation of macromolecule metabolic process

regulation of macromolecule biosynthetic process

regulation of gene expression

regulation of biosynthetic process

regulation of nitrogen compound metabolic

process

signal transduction

intracellular signaling cascade

regulation of biological quality

response to other organism

response to bacterium

cellular response to chemical stimulus

transmembrane transport

carbohydrate metabolic process
polysaccharide metabolic process
aminoglycan metabolic process
chitin metabolic process
carbohydrate catabolic process
lipid metabolic process
protein metabolic process

proteolysis

terpenoid metabolic process
diterpenoid metabolic process

phenylpropanoid metabolic process

protein metabolic process
macromolecule modification

protein modification process

cell wall macromolecule metabolic process

cell wall macromolecule catabolic process

gene expression

53
51
53
52
52
52

37
12

17
21
80
23

80
50
50

55

324
321
326
322
324
322
323

106
68

39

43
12

138
57
21
21
45
81

487
126

54
35

487
265
264
21
21
419

8.30E-30
3.00E-28
1.10E-29
4.40E-29
5.50E-29
4.40E-29
3.90E-28

6.30E-05
6.90E-06

440E-18

4.80E-07
3.80E-09

0.00013
1.10E-12

3.60E-29
1.10E-08
1.70E-05
1.70E-05
1.10E-16
1.20E-16
4.30E-44
1.30E-14

0.025
0.0036
2.10E-07

4.30E-44
3.60E-31
3.10E-31
6.10E-13
8.60E-07
3.50E-26
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Table 2 Gene ontology analysis of 972 up-regulated genes (Continued)

GO:0009059 macromolecule biosynthetic process 56 569 1.30E-20

Establishment of localization

transport

GO:0006811 jon transport 13 66 540E-09
GO:0006812 cation transport 10 65 4.60E-06
GO:0030001 metal ion transport 10 36 1.30E-08
Response to stimulus

GO:0009719 response to endogenous stimulus 8 106 0.0075
GO:0009628 response to abiotic stimulus 7 41 9.70E-05
GO:0009607 response to biotic stimulus 13 39 4.10E-12
GO:0006950 response to stress 46 103 2.00E-47
GO:0006952 defense response 16 59 340E-13
G0:0006979 response to oxidative stress il 17 240E-14
GO:0042221 response to chemical stimulus 27 133 3.00E-18
GO:0010033 response to organic substance 8 106 0.0075

molecular function
Molecular transducer activity
GO:0004871 signal transducer activity 13 32 2.00E-13
Transporter activity

substrate-specific transporter activity

GO:0022891 substrate-specific transmembrane transporter 14 79 4.90E-09
GO:0015075 jon transmembrane transporter activity 9 68 5.20E-05
GO:0008324 cation transmembrane transporter activity 5 62 0.04

transmembrane transporter activity

G0O:0016820 hydrolase activity, acting on acid anhydrides, 5 17 9.30E-05
catalyzing transmembrane movement of substances
GO:0042626 ATPase activity, coupled to transmembrane 5 17 9.30E-05

movement of substances
active transmembrane transporter activity
GO:0015291 secondary active transmembrane transporter 7 24 2.20E-06
25 0.00064

w

GO:0015399 primary active transmembrane transporter activity
Antioxidant activity

GO:0004601 peroxidase activity 8 68 0.00036
Transcription regulator activity

GO:0003700 transcription factor activity 26 116 9.00E-19
Catalytic activity

oxidoreductase activity

GO:0004497 monooxygenase activity 21 47 240E-22
GO:0051213 dioxygenase activity 7 7 1.10E-11
GO:0015036 disulfide oxidoreductase activity 7 10 1.20E-09
transferase activity

GO:0016757 transferase activity, transferring glycosyl groups 24 31 1.00E-33
G0O:0016758 transferase activity, transferring hexosyl groups 19 30 3.70E-24
GO:0016772 transferase activity, transferring phosphorus- 54 426 5.10E-25

containing groups
G0O:0016773 phosphotransferase activity, alcohol group as 47 244 6.30E-30
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Table 2 Gene ontology analysis of 972 up-regulated genes (Continued)

GO:0004672 protein kinase activity 42 235 1.40E-25
GO:0016301 kinase activity 51 261 1.10E-32
hydrolase activity

G0O:0016798 hydrolase activity, acting on glycosyl bonds 25 87 6.40E-21
GO:0004553 hydrolase activity, hydrolyzing O-glycosy 24 85 6.50E-20
GO:0004568 chitinase activity 9 21 1.00E-09
Binding

carbohydrate binding

GO:0005529 sugar binding 6 10 9.10E-08
nucleic acid binding

ion binding

GO:0043169 cation binding 126 175 6.50E-166
GO:0046872 metal ion binding 11 173 1.60E-137
GO:0046914 transition metal ion binding 80 132 9.80E-97
G0:0008270 zinc ion binding 30 89 3.60E-27
GO:0005507 copper ion binding 6 19 9.00E-06
GO:0005509 calcium ion binding 20 39 7.80E-23

81100, 0Os03g0180800, and Os09g0439200) were up-
regulated by FA exposure; none were downregulated dur-
ing the same time of exposure. MapMan analysis revealed
that ethylene (ET) synthesis and signaling genes were sig-
nificantly upregulated by FA treatment (Figure 2C).

Expression profiles of signaling genes and TFs

Perception and transmission of stress signals are import-
ant aspects of the plant response to environment stress.
Protein kinases are crucial in these signaling pathways.
The activation of signal transduction pathways connects
the actions of protein kinases, TFs and the downstream
stress-responsive genes. In total, 51 protein kinase genes
were upregulated by FA, and 16 were downregulated
(Figure 3A, Additional file 11: Table S7). Nearly all of
the FA-responsive kinases were associated with the
receptor-like kinase (RLK) family. In total, 40 RLK family
genes were significantly upregulated and 15 were down-
regulated after short and long FA exposure. The leucine-
rich repeat VIII (LRR-VIII) and receptor-like cytoplasmic
kinases VII (RLCK-VII) subfamilies of the RLK family
were significantly upregulated with FA treatment.

We found 107 TFs significantly regulated by FA: 85
were significantly upregulated and 22 downregulated
after short and long exposure. Transcription factors
regulated by FA stress predominantly belong to the
APETALAZ2/ET response factor (AP2/ERF), MYB, WRKY
and Zinc-finger protein expressed in inflorescence meri-
stem (ZIM) families (Figure 3B, Additional file 12: Table
S8). From rice genome sequence data, 164, 129, 100 and
18 genes have been identified for the AP2/ERF, MYB,
WRKY and ZIM families, respectively. In our rice roots,

FA induced 14 AP2/ERF, 11 MYB, 17 WRKY and 6 ZIM
families.

Transporters, TFs, and protein kinases specifically altered
by FA and juglone

We compared transporters, TFs, and protein kinases
regulated by exposure to FA and to the ROS-generating
allelochemical juglone (Figure 4). Genes encoding AAAP
transporters responded relatively specifically to FA
(Additional file 13: Table S9). Comparison of the TFs
induced by juglone after short FA exposure revealed
that only half of the genes (48 of 84) reported in our
previous study [35] showed changed expression in this
study (Additional file 14: Table S10). The WRKY and
Myb TFs responded significantly to FA stress. Compari-
son of the protein kinase genes induced by juglone re-
vealed that the LRR-VIII and SD-2b families responded
significantly to FA stress (Additional file 15: Table S11).

Discussion

Autotoxicity is intraspecific allelopathy and plays an im-
portant role in plant growth inhibition and structuring
plant communities [1]. Here, we observed that treatment
with 50 ppm of the autotoxic chemical FA inhibited rice
root length by 50% (Figure 1). Plant growth as well as re-
sponse to stress is controlled by phytohormones [38]. Our
microarray assay revealed changed expression of ET and JA
biosynthesis and signaling genes in rice roots with FA treat-
ment (Table 6). Xu et al. [39] reported that the combination
of ET and JA synergistically induced the expression of
defense genes in plants. Hua and Meyerowitz [40] and
Staswick et al. [41] reported that JA and ET treatment
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Long exposure

inhibited plant root elongation. Our results suggest that
these two hormones may be involved in FA-induced inhib-
ition of root growth in rice. In addition, we found that FA
inhibited crown root, lateral root and root hair formation.
FA repressed the expression of two lateral-root genes (ARF-
16, 0s06g0196700; OsCel9C, Os05g0212300) and one root-

hair-related gene in rice roots (OsCSLD1, Os10g0578200)
(Table 3). Examination of the RiceXPro database revealed
that JA repressed the expression of these genes (ARF-16,
OsCel9C and OsCSLD1I) [42]. Therefore, our results suggest
that JA may involve in FA-induced morphogenic response
in roots by regulating these root architecture- related genes.
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Table 3 List of rice genes associated with crown root, lateral root, root hair formation after FA exposures

Gene RAB-DB TIGR Locus ID Short exposures Long exposures Description

name Locus ID Fold change ° Fold change ?

Crown root-related genes

OsCRL1 0s03g0149000 LOC_0s03g05500 -1.09 1.15 Protein of unknown function DUF260 domain
containing protein.

OsCRL4 050390666100 LOC_0s03g46330 —-1.21 -1.04 SEC7-like domain containing protein.

OsCRLS 0s07g0124700 LOC_0s07g03250 1.64 1.06 ANT (Ovule development protein
aintegumenta).

OsARL1 0s03g0149100 LOC_0s03g05510

WOX11 050790684900 LOC_0s07g48560 1.86 -1.39 Homeobox domain containing protein.

Lateral root-related genes

ARF-16 0s06g0196700 LOC_0s06g09660 —1.73* —143% Auxin response factor 1.

AUX/IAA-1 0s01g0178500 LOC_0s01g08320 1.88% -1.20 AUX/IAA protein family protein.

AUX/IAA-TT 050390633500 LOC_0s03g43400 1.07 -1.40 Auxin-responsive protein IAA17 (Indoleacetic
acid-induced protein 17) (Auxin response 3).

AUX/IAA-13 0s03g0742900 LOC_0s03g53150 1.22 -1.04 AUX/IAA protein family protein.

AUX/IAA-23 050690597000 LOC_0s06g39590 1.77% -1.07 Auxin-responsive protein IAA14 (Indoleacetic
acid-induced protein 14) (SOLITARY-ROOT
protein).

AUX/IAA-29 051290601400 LOC_0Os12g40900 1.16% -1.28 Auxin-responsive protein (Aux/IAA) (Fragment).

OsCel9C 050590212300 LOC_0s05g12150 —1.59* 143% Endo-beta-1,4-glucanase precursor (EC 3.2.1.4).

Root hair-related genes

OsEXPA30 051090535900 LOC_0Os10g39110

OsRHL1 050690184000 LOC_0s06g08500

OsCSLD1 0s10g0578200 LOC_0s10g42750 147 —1.94* Cellulose synthase-9.

OsEXPA17 0s06g0108600 LOC_0s06g01920

OsEXPBS 050490552200 LOC_0s04g46650 122 1.11 Beta-expansin 5.

OsAPY1 0s07g0682800 LOC_0s07g48430 1.35 -1.05 Apyrase.

@ The fold change in expression of each gene after FA treatment was calculated by the mean from 3 biological replicates and false discovery rate <0.1 is shown

with a asterisk.

In general, cell walls become lignified when cell expan-
sion decreases or when the cell is under stress [43]. Pre-
vious study indicated that lignification may be an
important step in root growth reduction in FA-stressed
soybean [21]. Our FA treatment upregulated genes in-
volved in the cell-wall macromolecule metabolic process
(GO:0044036, FDR 6.10E-13), particularly cell-wall re-
assembly. The expression of cell-wall-related genes, most
notably the expansins, was enriched by FA treatment.
Cosgrove found that expansins are a group of wall pro-
teins that induce wall stress relaxation and extension
[44]. Increased expansin gene activity may be involved in
stress relaxation in FA-treated roots.

Increased ROS levels are an important component of
the stress induced by allelochemicals [45]. Ferulic acid
modifies various oxidative reactions in vitro by acting as
a substrate, activator or inhibitor depending on the con-
centration [46,47]. Reactive oxygen species are toxic to
plant tissues and can trigger cell growth inhibition and
cell death. In addition, they may act as signal molecules

involved in triggering tolerance against various environ-
mental stresses. In this study, FA rapidly induced ROS
production in rice roots. Ferulic acid-induced lipid per-
oxidation of roots was positively confirmed by Schiff’s
reagent staining (Additional file 3: Figure S3). We found
a steady increase in LOX activity in response to FA
(Additional file 3: Figure S3). Thus, FA may increase
ROS accumulation, lipid peroxidation, and LOX activity
to affect cell integrity in rice roots and contribute to FA-
induced root growth inhibition.

Many studies have provided evidence that ROS
signaling is integrated with calcium signaling networks
in plants. Saijo et al. [48] and Martin and Busconi [49]
demonstrated rapid increase in cytoplasmic calcium
concentrations in plant cells in response to multiple
stress stimuli. The change in cytoplasmic calcium con-
centrations is critical for activating various defense re-
sponses [50]. We found that FA increased calcium levels
in rice roots. Thus, ROS and calcium may act as early
second messengers in the transcriptional activation of an
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Table 4 Ferulic acid-responsive transcripts related to ROS
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Short exposures Long exposures

Functional categories In genome On arrary Detected Increased® Decreased Increased Decreased
Reactive oxygen species (ROS) network 343 323 270 51 4 5 2
AOX (Alternative oxidases) genes 4 4 4 4% 0 0 0
APx (Ascorbate peroxidase) genes 11 11 8 0 0 0 0
Cat (Catalase) genes 3 3 3 0 0 0 0
DiOx (Alpha-dioxygenase) 1 1 1 0 0 0 0
Ferritin genes 2 2 2 0 0 0 0
GPx(Glutathione peroxidase) genes 5 5 5 1 0 0 0
GR (Glutathione reductase) genes 3 3 3 2 0 0 0
Grx (Glutaredoxins) genes 27 22 17 5 0 0 0
GST (Glutathione-S-transferases) genes 79 74 67 25*% 0 3 2
MDAR (monodehydroascorbate reductase) genes 15 14 8 2 0 0 0
Prx (Class Ill Peroxidase) genes 138 130 103 7* 4 2 0
PrxR(Peroxiredoxin) genes 8 8 7 2 0 0 0
Rboh (Respiratory burst oxidase homolog; NADPH 9 9 7 1 0 0 0
oxidase) genes

SOD (superoxide dismutase) genes 8 8 8 0 0 0 0
Trx (thioredoxin) genes 30 29 27 2 0 0 0

2 Functional categories of genes, total number of genes found within the rice genome, numbers of genes present on and detected on arrays, and numbers of
genes showing significant differences (FDR <0.1) in transcript abundance are shown in rows and columns labeled accordingly.
ROS families that are overrepresented in the response group are shown with asterisks (P < 0.05).

array of defense-related genes in rice roots under FA
stress.

Conjugated forms of xenobiotics can be recognized by
specific membrane-associated transporters in the final de-
toxification phase [32]. Our GO analysis notably revealed
the term “primary active transmembrane transporter
activity”. We found 64 membrane-transporter—like se-
quences induced by FA, including 17 putative ABC, nine
MES, and five AAAP transporters. In plants, ABC and
MES transporters represent different multidrug efflux
protein superfamilies associated with resistance to xenobi-
otics [32]. The ABC transporters facilitate the movement
of glutathionylated toxins and other substrates across
biological membranes [51]. We found 17 and three ABC
transporter genes upregulated by short and long FA
exposure, respectively. Thus, expression of ABC trans-
porters, which work in conjunction with other detoxifying
systems, was found primarily with early stages of FA
stress. The AAAPs are efficient transporters of proline
and betaine [52] that accumulate in higher plants under
stress conditions such as drought, salinity, extreme
temperatures, UV radiation, and heavy metals [53,54].
Previous reports have demonstrated a positive relation-
ship between proline and betaine accumulation and
plant stress tolerance [55,56]. Our observed induction
of AAAPs by FA indicates their possible involvement in
plant tolerance to autotoxin stress.

Protein kinases are important signaling molecules in
the plant response to environment stress. Multiple plant
RLK members are involved in the stress response [57-59].
Among 40 RLK genes we found upregulated with FA
treatment, LRR-VIII and RLCK-VII subfamilies were iden-
tified as significantly participating in transcriptional regu-
lation (Additional file 11: Table S7). The involvement of
LRR-VIII and RLCK-VII in stress responses was previously
reported [58]. Thus, differential expression of a number of
transmembrane receptor kinases with FA exposure sug-
gests that multiple receptors belonging to different fam-
ilies may have unique regulatory mechanisms.

Responses to abiotic stresses require the production of
important regulatory proteins such as TFs to mediate
the expression of downstream stress-responsive genes.
We found that the major TFs, AP2/ERF, MYB, WRKY,
and ZIM, were overrepresented in the response to FA.
The AP2/EREF, MYB, and WRKY TFs have been isolated
from different plants and are important candidates for
the stress tolerance response; in rice, the overexpression
of AP2/ERF, MYB, and WRKY conferred significant tol-
erance to abiotic stresses [60-63]. Transcription factors
of ZIM have been intensively investigated because of the
role of these proteins as key regulators of the jasmonate
hormonal response in Arabidopsis and rice [64]. Here, we
found that FA upregulated six ZIM genes. Overexpression
of ZIM-3 (0Os03g0180800), a stress-inducible gene, was
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Table 5 Ferulic acid-responsive transcripts related to transporter
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Short exposures

Long exposures

Family name In genome On array Detected Increase® Decrease Increase Decrease
ATP-dependent

ATP-binding Cassette (ABC) Superfamily 130 115 80 17% 1 3 0
P-type ATPase (P-ATPase) Superfamily 45 42 37 3 0 0 0
lon channels

Ammonia Transporter Channel (Amt) Family 12 8 7 0 2 0 0
Annexin (Annexin) Family 9 6 6 1 0 1 0
Glutamate-gated lon Channel (GIC) Family of Neurotransmitter 21 12 10 1 0 1 0
Major Intrinsic Protein (MIP) Family 37 33 24 0 0 0 1
Secondary transporter

Amino Acid/Auxin Permease (AAAP) Family 63 52 41 5 0 0 0
Auxin Efflux Carrier (AEC) Family 19 16 11 2 1 0 0
Amino Acid-Polyamine-Organocation (APC) Family 27 22 20 1 0 0 0
Aromatic Acid Exporter (ArAE) Family 14 13 6 1 0 1 0
Arsenite-Antimonite (ArsB) Efflux Family 3 3 3 1 0 0 0
Ca2+:Cation Antiporter (CaCA) Family 16 15 13 1 0 0 0
Chloride Carrier/Channel (CIC) Family 9 9 8 0 1 0 0
Divalent Anion:Na + Symporter (DASS) Family 7 7 5 1 0 0 0
Drug/Metabolite Transporter (DMT) Superfamily 123 106 86 4 1 0 1
K+ Transporter (Trk) Family 7 7 2 1 0 0 0
Mitochondrial Carrier (MC) Family 61 59 55 2 0 0 0
Major Facilitator Superfamily (MFS) 151 133 103 9 2 1 1
Multidrug/Oligosaccharidyl-lipid/Polysaccharide (MOP) 57 44 34 5 1 0 0
Flippase Superfamily

Monovalent Cation:Proton Antiporter-2 (CPA2) Family 20 18 4 1 0 1 0
Proton-dependent Oligopeptide Transporter (POT) Family 86 74 50 5 0 0 0
Telurite-resistance/Dicarboxylate Transporter (TDT) Family 9 8 4 0 1 1 0
Sulfate Permease (SulP) Family 14 14 13 1 0 0 0
Zinc (Zn?*)-Iron (Fe”*) Permease (ZIP) Family 18 16 12 2 0 0 0

@ Functional categories of genes, total number of genes found within the rice genome, numbers of genes present on and detected on arrays, and numbers of
genes showing significant differences (FDR <0.1) in transcript abundance are shown in rows and columns labeled accordingly. Transporter families that are
overrepresented in the response group are shown with asterisks (P < 0.05).

Table 6 Ferulic acid-responsive transcripts related to phytohormones

Short exposures

Long exposures

Functional categories In genome On arrary Detected Increased ? Decreased Increased Decreased
Ethylene Total 29 27 22 3 0 0 0
Biosynthesis 13 11 10 3 0 0 0
Signaling 16 16 12 0 0 0 0
JA Total 38 34 34 7* 0 0 0
Biosynthesis 27 24 16 1 0 0 0
Signaling 11 10 10 6 0 0 0

@ Functional categories of genes, total number of genes found within the rice genome, numbers of genes present on and detected on arrays, and numbers of

genes showing significant differences (FDR <0.1) in transcript abundance are shown in rows and columns labeled accordingly.
Phytohormone families that are overrepresented in the response group are shown with asterisks.
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found to significantly increase tolerance to salt and de-
hydration stresses [64]. The observed induction of AP2/
EREF, MYB, WRKY, and ZIM TFs during FA treatment
indicates their possible involvement in plant resistance
to autotoxin stress.

Reactive oxygen species are secondary messengers for
the activation of specific TFs. We found that FA induced
ROS production. Therefore, we compared the set of our
FA-regulated TFs to those regulated by exposure to
juglone, an ROS-generating allelochemical [35]. Our re-
sults suggest that WRKY and Myb TFs and LRR-VIII
and SD-2b kinases might regulate downstream genes
under FA stress but not general allelochemical stress

(Figure 4). Moreover, 64 transporters were upregulated
by FA, but only 31 transporters were upregulated by
juglone. The number of upregulated genes encoding
transporters was more under FA than juglone stress. Es-
pecially, the AAAP transporter family was regulated sig-
nificantly by FA stress but not by juglone (Figure 4). The
AAAPs are efficient transporters of osmoprotectants
such as proline, glycinebetaine and gamma-aminobutyric
acid [52] that accumulate in higher plants under stress
conditions. This observation could be related to detoxifi-
cation of the autotoxin in rice roots. The AAAP trans-
porters may play an important role in the FA-triggered
autotoxicity mechanism.
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Conclusions

FA may have a significant effect on inhibiting rice root
elongation through ET and JA gene regulation. Detoxifi-
cation enzymes such as cytochrome, GST, and ROS
scavengers are involved in protecting against FA toxicity.
Moreover, proteins involved in regulatory functions and
signal transduction, including TFs, calcium-regulated pro-
teins, and various protein kinases, play important roles in
the response to FA stress (Figure 5). Future studies with
rice mutants or overexpressors with altered expression of
the genes identified in this work will be helpful to eluci-
date their biological significance and clarify new pathways
involved in toxicity and tolerance to FA.

Methods

Plant materials

Rice plants (O. sativa L. cv. TN-67) were grown as pre-
viously described [65]. Rice seedlings were exposed to
FA (25 to 200 ppm) for 1 to 24 h. Control plants were
treated with water in parallel for the indicated times.

Analysis of growth

Rice seeds were surface-disinfected with 2.5% (v/v) so-
dium hypochlorite (Katayama, Osaka, Japan) for 15 min,
then thoroughly washed in distilled water. Seeds were
placed in 9-cm Petri dishes containing 20 ml distilled
water and left at 37°C in the dark. After 2 d of incuba-
tion, uniformly germinated seeds were transferred to
Petri dishes with filter paper discs (Advantec, Tokyo)
moistened with 10 ml distilled water. Each Petri dish
contained 15 germinated seeds grown at 27°C in the
dark for 3 d. Once the roots reached 0.2 cm in length,
they were used for experiments of exposure to FA (Sigma,
St. Louis, MO, USA) under sterile conditions in the same
Petri dish. Ferulic acid was added at final concentrations
of 0 to 200 ppm for varying treatment durations. Root

length was measured after 3 d of incubation at 26°C in
darkness. Mean root length was obtained from 15 individ-
ual seedlings from at least 3 separate experiments. To de-
termine the number of crown root and lateral roots, the
number of all emerged lateral roots on seminal roots was
counted by the naked eye. Root samples of 6-day-old rice
seedlings were treated with FA for 3 days. The values of
crown root and lateral root number represent the mean of
15 seedlings. The value of lateral root length represents
the mean of 200 lateral roots. For root hair measurement,
after 24-h FA treatment, the number and length of root
hairs on the root hair zone immediately behind the root
tip (3—4 mm behind the root tip) of seminal roots were
determined by microscopy (Leica MZ125) (Leica Micro-
systems, Heerbrugg, Switzerland). To determine num-
ber of root hairs, the number of root hairs from one
side of the root hair zone of seminal roots was counted.
To determine the length of root hairs, the length of the
20 longest root hairs from the root hair zone of seminal
roots was measured.

Detection of ROS and calcium levels in rice roots

Root samples of 6-day-old rice seedlings were labeled
with 10 pM CM-H,DCE-DA (Molecular Probes, Eugene,
OR, USA) or Oregon Green 488 BAPTA-1 (Molecular
Probes) for 30 min to determine ROS or calcium levels,
respectively, then treated with 50 ppm FA for 1-3 h.
Fluorescence images were visualized under a confocal
microscope (EZ-C1; Nikon, Tokyo, Japan) with the 488-
nm laser line of an Ar laser (2 mW optical fiber output;
500-530 nm). Exposure times were equal for all samples.

Purification of total RNA

Total RNA was extracted from rice plants grown as de-
scribed above [35] and treated with 50 ppm FA for 1-
24 h. Roots were separated from shoots, and total RNA
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Figure 5 Molecular mode of action of the allelochemical FA in cellular processes and response/regulatory pathways.

was isolated from root tissues with use of the RNeasy
Plant Mini kit (QIAGEN, Hilden, Germany). The RNA
was further treated with DNase (QIAGEN) to eliminated
DNA contamination. The concentrations of total RNA
samples were measured with use of NanoDrop ND2000
(NanoDrop Technologies, Wilmington, DE, USA). The
purity of RNA samples was determined by OD,gg/280
and ODygp/230- RNA samples of more than 2 pg/ul con-
centration and high purity (ODagg/280 > 2, ODag0/230 > 2)
were used for microarray assay and RT-PCR.

Microarray preparation and analysis

Six-day-old rice seedlings were exposed to 50 ppm FA for
short (1 and 3 h) or long (24 h) durations, then RNA was
isolated from root tips to examine rapid changes in global
patterns of gene expression. We pooled RNA from the
two short exposures to maximize gene discovery. RNA
from water-treated (control) and FA-treated roots was
used with the Agilent Rice Oligo microarray (4 x 44 K,
custom-made; Agilent Technologies, Palo Alto, CA, USA)
for RNA labeling and microarray hybridizations involved
3 biological replicate samples.

For the microarray assay, 0.5 pg total RNA was ampli-
fied by use of the Fluorescent Linear Amplification Kit
(Agilent) and labeled with Cy3-CTP (control samples) or
Cy5-CTP (FA-treated) (CyDye, PerkinElmer, Norwalk,
CT, USA) during the in vitro transcription process. In
total, 0.825 pg Cy-labeled cRNA was fragmented to a
mean size of about 50-100 nt by incubation with
fragmentation buffer (Agilent) at 60°C for 30 min. The
fragmented-labeled cRNA was then pooled and hybrid-
ized to the Rice Oligo DNA Microarray 44 K RAP-DB
(G2519F#15241; Agilent) at 60°C for 17 h. After a wash-
ing and blow-drying with a nitrogen gun, microarrays
were scanned with use of an Agilent microarray scanner
at 535 nm for Cy3 and 625 nm for Cy5. Scanned images
were analyzed with use of Feature Extraction v9.5.3
(Agilent), with LOWESS normalization.

Signal intensities were extracted with use of Feature
Extraction v9.5.3. For statistical analysis, we excluded
genes with signal intensities <100 in all experiments.
Significant differences from 0 were identified by use of ¢
test with GeneSpringGX11 (Agilent). The Benjamini-
Hochberg false discovery rate (FDR) method was used to
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obtain P-values that were corrected for multiple testing.
The fold change in expression of each gene after FA
treatment was calculated by the mean from 3 bio-
logical replicates. Genes upregulated by FA treatment
by more than two-fold (cutoff by FDR<0.1) were
extracted. Each probe was considered an individual
gene and annotated according to the Rice Annotation
Project Data Base (RAP-DB; http://rapdb.dna.affrc.go.
jp/; Rice Annotation Project 2007, 2008). The dye
swap was not included. Three biological replicates
were performed with 3 independent microarray slides
for both short- and long-term FA treatments. Total
RNA control samples were labeled with Cy3, and
total RNA experimental samples (FA treatment) were
labeled with Cy5.

FA-responsive genes were annotated according to the
RAP-DB and TIGR Rice Genome Annotation Resource
(http://rice.plantbiology.msu.edu/) [66] and were classified
into functional categories by AgriGO gene ontology (GO)
functional enrichment analysis [67]. For signaling, tran-
scription factor (TF), and peroxidase functions, the lists of
rice genes encoding protein kinases (1,467 genes), TFs
(1,930 genes), the main ROS (343 genes), cell-wall-related
genes (639 genes), and transporters (1,286 genes) were
obtained from the Rice Kinase Database (http://rkd.
ucdavis.edu) [68], the Database of Rice Transcription Fac-
tors (DRTF; http://drtf.cbi.pku.edu.cn/) [69], the peroxid-
ase database (http://peroxibase.toulouse.inra.fr/) [70], Cell
Wall Navigator (CWN; http://bioinfo.ucr.edu/projects/
Cellwall/index.pl) [71], and TransportDB (http://www.
membranetransport.org) [72], respectively. Fisher’s exact
test (P <0.05) [73] was used to assess the significance of
overrepresented ROS, cell-wall, transporters, protein ki-
nases and TFs in the list of regulated genes in the gen-
ome. The microarray data described in this study have
been deposited in the Gene Expression Omnibus and
are accessible with the series accession number [GEO:
GSE34899]  (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE34899) [74].

MapMan display

The averaged signals for a given treatment were expressed
relative to those for control samples, converted to a log2
scale and displayed by use of MapMan v3.5.1 [75]. O.
sativa mapping files were imported into MapMan. Rice
genes represented on the Rice Oligo DNA Microarray
were organized by BINS and sub-BINS for display on the
schematic map of the transport overview. Gene expression
was analysed by the Wilcoxon Rank Sum test with
uncorrected p value.

Semi-quantitative RT-PCR
Total RNA was isolated from root tissues treated with
50 ppm FA for 3, 12, or 24 h by use of the RNeasy Plant
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Mini kit (QIAGEN) and purified with the RNase-Free
DNase Set (QIAGEN). Primer sequences are in Sup-
porting Information (Additional file 16: Table S12). The
number of PCR cycles in the experiments was adjusted
to the optimal conditions. The data was shown on the
basis of at least three biological replicates. Amplicons
were analyzed by 1% agarose gel electrophoresis, and
PCR products were sequenced.

Histochemical analyses and in-gel enzyme analyses
Histochemical detection of lipid peroxidation involved
use of Schiff’s reagent [76]. In brief, freshly harvested
rice roots were stained with Schiff’s reagent for 60 min,
which detects aldehydes originating from lipid peroxides.
Then roots were rinsed with potassium sulphite solution
(0.5% [w/v] KyS,05 prepared in 005 M HCI) and
maintained in the solution. The isozymes of lipoxygenase
(LOX) were separated on discontinuous polyacrylamide
gels (stacking gel 4.5%, separating gel 10%) under non-
denaturing and non-reducing conditions. Proteins were
electrophoretically separated at 4°C and 80 V in the stack-
ing gel, then 120 V in the separating gel. Isozymes of LOX
were visualized as described [77].

Additional files

Additional file 1: Figure S1. Detection of superoxide accumulation in
rice roots during ferulic acid (FA) stress with nitroblue tetrazolium (NBT)
staining. Rice seedling roots were treated with 50 ppm FA for 1-3 h.

Additional file 2: Figure S2. Reactive oxygen species (ROS) production
and calcium accumulation in rice roots during FA stress. (A) Root samples
were labeled with 10 uM CM-H,DCF-DA for 30 min and treated with

50 ppm FA for 1-3 h. (B) Root samples were labeled with 10 uM Oregon
Green 488 BAPTA-1, a calcium indicator, for 30 min and treated with

50 ppm FA for 1-3 h. The signals were quantified by use of ImageJ
program producing histograms of signal intensity. The signal of the first
sample on the panel was defined as 1.0 (arbitrary units), and other
abundances were expressed relative to that value. Intensity values in
each panel are color coded to represent the relative fold change in
expression.

Additional file 3: Figure S3. Lipid peroxidation in rice roots and time
course of the response of lipoxygenase (LOX) activity with ferulic acid
(FA) treatment in rice roots. (A) FA-induced lipid peroxidation. Roots were
stained with Schiff's reagent. (B) Rice roots were treated with 50 ppm FA
for 3-24 h. Native polyacrylamide gel electrophoresis of root extracts
containing 200 ug protein.

Additional file 4: Table S1. Genes with expression responding to
50 ppm ferulic acid.

Additional file 5: Table S2. Gene ontology analysis of 972 genes
upregulated with 50 ppm ferulic acid.

Additional file 6: Figure S4. Verification of microarray data by RT-PCR.
The number of PCR cycles in the experiments was adjusted to the
optimal conditions. The data was shown on the basis of at least three
biological replicates.

Additional file 7: Table S3. Expression profiles of cell wall-related
genes induced by 50 ppm ferulic acid.

Additional file 8: Table S4. Expression profiles of ROS-related genes
induced by ferulic acid stress.
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