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Abstract

Background: The Drosophila GAGA factor (GAF) participates in nucleosome remodeling to activate genes, acts as
an antirepressor and is associated with heterochromatin, contributing to gene repression. GAF functions are
intimately associated to chromatin-based epigenetic control, linking basic transcriptional regulation to heritable
long-term maintenance of gene expression. These diverse functions require GAF to interact with different partners
in different multiprotein complexes. The two isoforms of GAF depict highly conserved glutamine-rich C-terminal
domains (Q domain), which have been implicated in complex formation.

Results: Here we show that the Q domains exhibit prion-like properties. In an established yeast test system the two
GAF Q domains convey prion activities comparable to well known yeast prions. The Q domains stably maintain two
distinct conformational states imposing functional constraints on the fused yeast reporter protein. The prion-like
phenotype can be reversibly cured in the presence of guanidine HCl or by over-expression of the Hsp104
chaperone protein. Additionally, when fused to GFP, the Q domains form aggregates in yeast cells.

Conclusion: We conclude that prion-like behavior of the GAF Q domain suggests that this C-terminal structure
may perform stable conformational switches. Such a self-perpetuating change in the conformation could assist GAF
executing its diverse epigenetic functions of gene control in Drosophila.
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Background
The GAGA factor (GAF) of Drosophila is a ubiquitous
transcription factor that plays important roles in mul-
tiple processes ranging from regulation of gene expres-
sion to the structural organization of heterochromatin
and chromatin remodeling [1-5]. Genetically, GAF is
classified as a member of the Trithorax group proteins
(Trx@) counteracting the silencing of Polycomb group
proteins (PcG) by maintaining an epigenetically heritable
active state of gene expression [6]. However, the identi-
fied biochemical interactions with a variety of chromatin
remodeling complexes and mutant analyses indicate a
much broader role for GAF [7-9]. How such divergent
functions of GAF might be acquired and controlled still
remains elusive.

In Drosophila, multiple GAF isoforms are encoded from
a single gene termed Trithorax-like (Trl) [6,10,11]. All Trl
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splice forms characterized so far, contain two open read-
ing frames for a protein of 519 (GAF519) or 582 amino
acid (GAF582) residues, respectively [10-12]. Both GAF
isoforms contain 3 recognizable and evolutionarily highly
conserved domains, a POZ/BTB domain, a zinc finger
DNA binding domain and a glutamine-rich region re-
ferred to here as the GAF-Q or polyglutamine (polyQ)
domain [13,14]. The isoforms are highly identical in their
N-terminal part but they differ in the length of the
C-terminal glutamine-rich regions (Figure 1) [10,11]. The
POZ/BTB domain has been shown to function as a
protein-protein interaction domain and the DBD (DNA
binding domain) domain is important for sequence recog-
nition and DNA binding activity [14]. Although Q
domains found in different transcription factors were sug-
gested to be associated with transcriptional control
[13,15,16], in one study GAF-Q was shown to be dispens-
able for chromatin binding and transcriptional activation
[12,17]. However, other studies assign the transcriptional
activity to the C-terminal polyQ domain [18]. Interest-
ingly, in vitro studies have suggested that the GAF-Q
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Figure 1 Schematic diagram of GAGA factor (GAF) isoforms in Drosophila containing 519 amino acids (GAF519) and 582 amino acids
(GAF582). The two isoforms, GAF519 (A) and GAF582 (B), only differ in the glutamine rich stretch within the C terminal region of proteins. The
specific amino acid sequence of glutamine rich (Q) domains are shown below each isoform. In addition to Q domains, POZ/BTB domain and
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domain of GAF519 facilitates multimerization, which may
explain the multimeric distribution of GAF observed
in vivo [19]. Additionally, the GAF519 polyQ domain was
shown to be essential for the formation of long un-
branched amyloid fibers in vitro [17]. The amyloid fibers
formed by the GAF519 resemble fibers formed by Sup35,
the prion determinant of the yeast prion [PSI'] [20].

Like most yeast prions, Sup35 has a well characterized
glutamine or asparagine (Q/N) rich region, which is
known as the prion domain (Figure 2A) [20,21]. It en-
ables Sup35 to exist in distinct physical and functional
states that are interconvertible and heritable, i.e. a [psi ]
soluble, functional state and a [PSI'] aggregated, non-
functional state [20]. In [psi 7] cells, the Sup35 protein
acts as a translation termination factor that, together
with Sup45, recognizes stop codons and terminates
translation. In contrast, in [PSI'] cells the Sup35 is
unable to efficiently participate in translation termination
as most of Sup35 protein is sequestered in self-replicat-
ing prion multimers [20]. Interestingly, the existence of
chromatin associated proteins Swil and Cyc8 in distinct
physical and functional states, reminiscent of prion-like
behavior, was discovered in yeast [22,23]. The glutamine-
rich regions of Swil and Cyc8 were shown to be essential
for prion-like behavior of these proteins and modulation
of global gene expression patterns which are epigeneti-
cally inherited [22,23]. Although a large number of pro-
teins in eukaryotic proteins have long Q-rich tracts,
similar to those found in the prion domains of yeast

prions [24-26], only a few are characterized to have prop-
erties similar to prions [27,28].

Expansion of polyQ domains is known to contribute to
heritable alterations of protein conformation which is as-
sociated with prion proteins [20,21]. Hence, we tested
whether the Q domains of the GAF isoforms, GAF519
and GAF582, could act as prion-like domains using
established validation tools in the yeast Saccharomyces
cerevisiae. We replaced the N-term prion-forming do-
main of Sup35 with the GAF519 and GAF582 Q domains
(GAF-Q) and fused it to the C-terminal portion of the
Sup35 in order to test whether the chimeric proteins
were able to induce a prion-like state as demonstrated
for a variety of other potential prion forming domains
[29-32]. The resulting GAFQ-SupC fusion proteins were
able to rescue the lethality of a Sup35 deletion strain. Ex-
pression of GAFQ-SupC led to the appearance of a stably
maintained nonsense suppression phenotype in a small
proportion of cells, in a manner similar to the appear-
ance of [PSI'] in cells over-expressing Sup35. This prion-
like phenotype of the GAFQ-SupC expressing cells could
be reversibly cured in the same manner as the [PSI']
prion by growing the cells in the presence of guanidine
HCl (GuHCl) or by over-expression of the Hspl04
chaperone protein. Furthermore, when fused to GFP, the
GAF519 and GAF582 polyQ domains formed aggregates
in yeast cells. In corroboration, sedimentation analysis
using differential centrifugation revealed that GAFQ-
SupC fusions are aggregated in the same manner as the
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Figure 2 Drosophila GAF polyglutamine domains (519Q and 582Q) substitute for prion domain of Sup35p in yeast. (A) Full length Sup35
regions encoding N, M and C term modules are indicated where N and M are known prion domain. GAF519 and GAF582 sequences encoding Q
domains (519Q and 582Q) were fused to sequences encoding the C-terminal domain of Sup35p. The C-terminal of Sup35p alone (SupC) was used as
a control. (B) Schematic picture depicting GAFQ-SupC chimeric (57190-SupC and 582Q-SupC) constructs with HIS selectable marker tranfected in a
diploid [PSI'] yeast strain, which was deleted for one copy of endogenous SUP35 indicated by G418 selectable marker. After induction of sporulation in
transformants, the resulting haploids were selected on -His and G418 and analyzed for viability of individual spores. (C) The sup35A haploids with
519Q-SupC and 582Q-SupC fusions grow on YPD and -Ade media whereas SupCANM (SupC) containing haploid does not grow on -Ade and appear
as red. The growth on -Ade plates indicates a nonsense suppression prion-like phenotype similar to [PS/*]. Expression levels of GAFQ-SupC fusions
(519Q-SupC 57 kDa, 582Q-SupC 67 kDa, SupCANM 48 kDa) in individual haploids analyzed by Western blot with anti-Sup35 antibody recognizing only
the C-terminal of Sup35. Total extract from wild type (WT) yeast shows endogenous Sup35 protein. (D) The prion-like phenotype of GAFQ-SupC
expressing individual haploid cells is shown to be cured by 5 mM guanidine HCl (GuHCl), indicated by reversion of pink cells to red. (E) Streaking of
GuHC treated haploids show stability of non-sense suppression in two independent haploids of 519Q-SupC (2, 3) and 582Q-SupC (4, 5) taken from
(D) which appear pink on YPD as compared to red colored haploids containing SupCANM (1,6). Both 519Q-SupC (2, 3) and 582Q-SupC (4, 5) haploids
show curing after GUHCI and appear red as similar to SupCANM (1,6) haploids.

(6]
519Q-SupC E
()
i D W W s G < 55kDa
=
582Q-SupC 'g

— e

(E)

2
After GuHCI

YPD

[PSI'] prion. These aggregates were cured by growing
the cells in the presence of GuHCL. Finally, meiotic segre-
gation analysis through tetrad dissection also revealed
that the prion-like phenotype of GAF582SupC segre-
gated in a non-Mendelian fashion. Importantly, prion-
like behavior exhibited by meiotic progeny was also

cured when grown in the presence of GuHCl. Such
prion-like behavior of GAF polyQ domains in yeast sug-
gest that polyQ domains in GAF may render a conform-
ational switch which may help GAF perform its versatile
functions in maintaining different epigenetic states of
gene expression.
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Results and discussion

The GAF isoforms GAF519 and GAF582 share the same
N terminal domain but have distinct glutamine (Q)-rich C
termini of different lengths. The C terminal 80 amino
acids of the GAF519 contains 39% Q residues whereas the
C terminal 178 amino acids of the GAF582 comprises of
41% of Q residues in multiple repeats (Figure 1). The well
characterized genetic assays based on the [PSI'] reporter
system [33] for evaluation of prions in yeast were
employed to examine if GAF519 and GAF582 polyQ do-
mains (GAFQ) can act as prion-like domains. A colony
color assay based on [psi 7] and [PSI'] states of Sup35 can
be employed to reproducibly monitor the prion-like be-
havior of Q-rich regions [20]. The non-prion, functional
part of Sup35p ie. SupC needed for translation termin-
ation has been used with fusions of Q-rich yeast protein
regions to detect prion-like behavior [29,31,34]. In the
case of the [psi 7] state, cells that carry a premature stop
codon in their ADEI gene (mutant designated adel-14)
do not make functional Adel and accumulate a metabolite
making the colonies appear red on complete medium. In
contrast, the [PSI'] cells are characterized by a read-
through of the premature stop codon (nonsense suppres-
sion) in adel-14. Functional Adel is produced as most of
Sup35 protein is sequestered in self-replicating prion ag-
gregates and is unable to participate in translation termin-
ation. [PSI'] cells therefore produce white colonies and
can grow on adenine-deficient medium [33].

We generated DNA constructs replacing the prion do-
main of Sup35 with either GAF519 or GAF582 Q domains
(GAF-Q) to monitor if GAF-Q can substitute for the
Sup35 prion domain (Figure 2A). The non-prion, func-
tional part of Sup35p (Sup35C) was fused with GAF519
and GAF582 Q-rich regions (GAF-Q) and the resultant
fusion constructs were named as 519Q-SupC and 582Q-
SupC (GAFQ-SupC) (Figure 2A). The GAFQ-SupC fusions
and SupC alone (Figure 2A) under a constitutive promoter
were transfected in a diploid [PSI'] yeast strain GT81 [35]
in which we introduced a deletion of one copy of en-
dogenous SUP35 (Figure 2B). In strain GT81, the [PSI']
suppressible marker is adel-14 with a UGA premature
stop codon. [PSI'] cells produce white colonies on
complete media (YPD) and grow without adenine supple-
mentation. In contrast [psi ] cells do not form colonies on
adenine-deficient medium (-Ade) and are red on YPD
[35]. The GAFQ-SupC containing diploid cells heterozy-
gous for Sup35 were induced for sporulation (Figure 2B)
and resulting sup35A haploids were specifically monitored
for viability by selecting on media supplemented with
G418 and lacking histidine (-His), indicators for the
Sup35 deletion and plasmids carrying GAFQ-SupC fu-
sions, respectively (Figure 2B). Further, the sup35A
haploids were confirmed by detecting expression of en-
dogenous Sup35 using antibody raised against the N-

Page 4 of 11

terminal (region containing prion domain) of Sup35
(Additional file 1: Figure S1). The haploids confirmed for
deletion of Sup35 were also probed for expression of fu-
sion proteins with an antibody raised against the C
terminus of Sup35 (Figure 2C), which detected signals at
57 kDa and 67 kDa, the expected sizes of the 519Q-SupC
and 582Q-SupC fusions, respectively (Figure 2C). The
growth of sup35A haploids on YPD indicated that lethality
based on the absence of Sup35 was rescued by both
519Q-SupC and 582Q-SupC fusions (Figure 2C). Import-
antly, the haploids expressing 519Q-SupC and 582Q-
SupC fusions produced white colonies on YPD and were
viable on -Ade medium (Figure 2C). This is indicative of a
nonsense suppression prion-like phenotype caused by the
read-through of a nonsense codon in adel-14 marker
(Figure 2C), similar to [PSI'] cells. In contrast, sup35A
haploids expressing SupCANM (SupC alone; Figure 2A)
produced red colored colonies and did not grow on
medium lacking adenine (Figure 2C). This clearly illus-
trates that polyQ domains of GAF519 and GAF582 may
substitute the prion domain of Sup35 and exhibit behavior
similar to the Sup35 prion domain.

Because all yeast prions characterized so far exhibit the
ability to exist in two functionally distinct states that are
heritable and interconvertible at low frequency [20] we
next monitored the metastable behavior of GAFQ-SupC
containing sup35A haploids. The existence of GAFQ-
SupC in two different functional states could be visualized
by the colony color assay by repeatedly streaking individ-
ual haploids on YPD plates and monitoring the appear-
ance of red and white colored colonies. GAFQ-SupC
expressing fusions in sup35A haploids led to the appear-
ance of colonies which were metastable, resulting in the
appearance of some red colonies after several generations,
similar to the metastability of some [PSI'] prion pheno-
types [20,33,36]. Reversible curing of prion phenotype is
an important genetic criterion for analysis of prion pro-
teins in yeast. The known yeast prions [URE3], [PSI'],
[PIN'], [SWI'] and [OCT'] are cured by growth in the
presence of guanidine HCI (GuHCI), which is suggested to
inhibit heat shock protein 104 (Hspl104) [37,38]. The
reversible curing of the prion-like phenotype of GAFQ-
SupC expressing cells was demonstrated by the conver-
sion of colonies from a white color on YPD to a red color
on YPD plates supplemented with 5 mM guanidine HCI
(GuHCI) (Figure 2D, E). Similar to the reversible curing of
the [PSI'] phenotype [20], the GAFQ-SupC nonsense sup-
pression phenotype (visible as white colonies) was cured
by growth in the presence of GuHCI, resulting in the ap-
pearance of red colored colonies mimicking the [psi 7]
phenotype (Figure 2D), which remained stably cured when
grown in the absence of GuHCI (Figure 2E). The colony
color assay as well as reversible curing by GuHCI clearly
illustrates that the GAF-Q domains have the ability to
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confer upon Sup35C a capacity to exist in distinct physical
and functional states that are interconvertible and heritable.

A small percentage of GAFQ-Sup35C expressing cells
that exhibited nonsense suppressor phenotype were re-
verted back to the non-supressor state with each subse-
quent passage on rich medium. This phenomena was more
pronounced at later passages (i.e. >32) where each haploid
stably exhibiting nonsense suppression phenotype showed
high frequency of metastable behavior ie. appearance
of many red colonies in the progeny after streaking
(Figure 3A-D). However, this red and white colored colony
phenotype was again subsequently maintained stable, gen-
eration after generation, upon re-streaking individual col-
onies picked up from the progeny. Importantly, the white
colored colonies from the progeny exhibited nonsense sup-
pression [PSI'] like phenotype (Figure 3E) as they could
grow on -Ade medium (Figure 3F), which was reversible
by growth in the presence of GuHCI (Figure 3E, F).

The curing of [PSI'] nonsense suppression phenotype
may be achieved through inactivation of Hspl04 by
GuHCl treatment [37,38] or by Hsp104 mutation or by
over-expression of Hspl04 [39]. Indeed the nonsense
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suppression prion-like phenotype caused by the GAFQ-
Sup35C fusions was also cured by over-expression of
Hsp104. When compared to control (vector alone) cells,
Hsp104 over-expressing cells appeared red on rich medium
(YPD) and were unable to grow on -Ade medium, indica-
tive of a curing of 519Q-SupC and 582Q-SupC nonsense
suppression phenotype (Figure 4).

We determined if we could visually detect different ag-
gregative states of GAF-Q fusion proteins using previously
employed fluorescent microscopy techniques for yeast
prion characterization (35, 36). We fused the GAF519 and
GAF582 Q domains to green fluorescent protein (GFP)
under an inducible promoter (Additional file 2: Figure
S2A). The prion-forming domain of Sup35 (NM region of
Sup35) fused to GFP (NM-GFP), shown to form punctate
aggregates in [PSI'] cells [28,40], was used as a positive
control. The GAFQ-GFP and NM-GFP constructs were
transformed in four different yeast strains. These vary in
strength of the prion phenotype due to presence or ab-
sence of either one of [PSI'] and [PIN'] or both prions.
GEFP is normally soluble in yeast, but as expected the fu-
sion to the NM domain conferred for GFP a capacity to
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Figure 3 GAFQ-SupC (519Q-SupC and 582Q-SupC) chimeric proteins exhibit prion-like behavior similar to [PSI*] phenotype of Sup35p.
(A-D) Analysis of metastable behavior of GAFQ-SupC haploids is shown. Individual haploids containing 519Q-SupC (A) and 582Q-SupC (B) are
shown with metastable behavior indicated by the presence of red and pink colored colonies as compared to controls; SupC-expressing cells (C)
where only red colonies appeared and OT55 strain which show stable [PS/] (D). The presence of pink colored colonies, due to nonsense
suppression of the adel-14 reporter, was stably maintained upon restreaking, similar to the appearance of [PS/*]. (E) Individual pink/white colonies
picked from (A) and (B) were grown on YPD and replica plated on YPD plus 5 mM GuHCI which resulted in curing of nonsense suppression
phenotype indicated by white colonies turning to red (E) and inability of GUHCI cured cells to grow on -Ade media (F) where SupCANM acts as
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fusions. (A) 5190Q-SupC and (B) 582Q-SupC nonsense suppression phenotype is shown to be cured by over-expression of Hsp104, as a control
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experiment, the cells over-expressing Hsp104 lose the ability to grow on -Ade plates as compared to vector control (bottom).
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exist in distinct states: a few large aggregates or a soluble
protein (Figure 5A-E; Additional file 2: Figure S2B). As de-
scribed for previously characterized prion determining re-
gions of yeast proteins [22,23,28,29,34,40-43], both the
519Q and 582Q also conferred upon GFP a capacity to
exist in distinct states and showed aggregation pattern
similar to NM-GFP (Figure 5A-C and Additional file 2:
Figure S2B). Like NM-GEFP, the aggregation of the GAF-
GFP fusions was dependent on the presence of [PIN'], the
prion form of the RNQI protein of yeast required for
Sup35 aggregation and prion formation [28]. Inducible ex-
pression of both 519Q-GFP and 582Q-GFP showed

aggregation (Figure 5A, B) in 12-15% cells. We also used
Q-rich region of Drosophila zeste protein (30% Q residues
from amino acid 152-432) [44] fused to GFP to monitor
if any Q-rich region may lead to aggregation of GFP inde-
pendent of [PSI'] or [PIN']. The inducible expression of
zeste-GFP (Z-GFP) in any of the yeast strains mentioned
above showed no aggregation (Figure 5D and data not
shown), which is similar to the pattern exhibited by GFP
alone (Figure 5E and Additional file 2: Figure S2B). This
reveals that aggregation patterns observed for GAFQ-GFP,
similar to NM-GFP (Figure 5A-C and Additional file 2:
Figure S2B), is specific, further substantiating that GAF-Q
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aggregates similar to (C) NM-GFP i.e. prion-forming domain of Sup35 (NM region of SUP35) fused to GFP, which was used as a positive control.
(D) Z-GFP, which contains GFP fused to polyglutamine domain of Drosophila Zeste protein, acts as a negative control together with yeast cells
containing GFP alone (E), which does not show any aggregation. (F) Sedimentation analysis of 519Q-SupC, 582Q-SupC expressing cells which
exhibit stable non-sense suppression phenotype. Total extracts from GuHCI treated (after GuHCI) or non-treated (before GUHCI) cells expressing
519Q-SupC, 582Q-SupC, SUupCANM and stable [PS/*] strain were subject to 50 K x g ultacentrifugation for 15 minutes. Total (T), supernatant (S)
and pellet (P) fractions were resolved by SDS-PAGE and Western blot was performed using anti-SUP35 serum. Extracts from SupCANM and [PS/+]
strains were used as controls. As with [PS/+], both 519Q-SupC, 582Q-SupC exhibit sedimentation in pellet before GUHCI treatement and
519Q-SupC, 582Q-SupC became soluble in supernatant (S) fraction after GUHCI treatement. SupCANM lacking prion domain remains soluble
regardless of GUHCI treatment. (G) Non-mendelian inheritance of 582Q+. A diploid (2n) made by mating 582q + MATa strain with 582Q- MATa
displayed 582Q + phenotype. Tetrad dissection of diploid (2n) shows 4 meiotic progeny (1n) which stably exhibit non-sense suppression visible by
growth on -ADE and all this progeny was curable when grown on YPD containing 5 mM GuHCl.

\

domains exhibit prion-like behavior in yeast. We also
employed differential centrifugation assay to explore the
possibility of aggregation of 519Q-SupC and 582Q-SupC
fusions that exhibited non-sense suppression phenotype
in sup35A haploids. Total cell extracts from 519Q-SupC
and 582Q-SupC expressing cells (white/pink cells), pre-
pared under non-denatured conditions, were fractionated
by high speed centrifugation. Supernatant (S) and pellet
(P) fractions were probed with anti-Sup35 antibody
(Figure 5F). Unlike SupC alone (SupCANM), both 519Q-
SupC and 582Q-SupC were present in insoluble (pellet)
fraction primarily (Figure 5F), which is similar to the be-
havior of Sup35 protein in a [PSI'] strain (Figure 5F).
Moreover, 519Q-SupC was always equally present in both
supernatant and pellet fractions. However, GuHCI treated
populations of same cells revealed 519Q-SupC and 582Q-
SupC in soluble (S) fraction (Figure 5F), which is also
similar to the Sup35 protein behavior from [PSI'] cells
which were treated with GuHCI (Figure 5F). These results
concur with our observations with GAFq-GFP fusions
(Figure 5A-E) and corroborate with the notion that 519Q

and 582Q domains exhibit prion-like behavior and exist in
distinct physical states. Finally, dominant behavior of
prion-like GAFQ-SupC (referred as GAFg+) was demon-
strated by mating 582¢ + MATa (pink/white) haploid with
a 582g- MATa haploid, i.e. 582¢- represents a red colony
indicating non-prion form of 582q (Figure 5G). The re-
sultant diploid MATa/a (2n) not only displayed 582g +
phenotype (white/pink) but also when sporulated pro-
duced haploid (1n) progeny. These exhibited prion like
behavior displaying meiotic inheritance of 582¢q + pheno-
type in a dominant, non-Mendelian manner. All 4 haploid
(In) products of meiosis showed stable non-sense sup-
pression phenotype by their growth on -ADE plates,
which was curable when grown in the presence of GuHCI
(Figure 5@G).

By making use of well-characterized genetic assays
determining prion-like characteristics of glutamine-rich
domains in different proteins, we have identified the Q
domains of both the GAF isoforms as prion-like domains.
The fusion proteins in which GAF-Q domains were intro-
duced in place of the Sup35p prion domain could support
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distinct physical and functional prion states that recapitu-
lated the translation termination defect associated with
[PSI']. Importantly, the nonsense suppression prion-like
state exhibited by the GAFQ-SupC fusion was cured by
growth in the presence of GuHCL Similar to the [PSI']
prion state of Sup35p, the nonsense suppression pheno-
type by GAFQ-SupC could also be cured by the over-
expression of Hsp104. The GAF-Q domains fused to GFP
also formed visible aggregates resembling those of GFP la-
beled Sup35p in [PSI'], which also depended on [PIN']
[28]. Many sequences with high Q content (as high as that
of yeast prions) including human polyglutamine expansion
disease proteins, form visible aggregates when over-ex-
pressed in yeast as GFP fusions [31,45]. However, only a
limited number of Q/N rich sequences are bone fide prion
domains capable of propagating these aggregates over
multiple cell generations even when expressed at low
levels [22,23,27,29,34,40]. Construction of a synthetic
prion revealed that pathogenically expanded stretch of 62
Qs (Q62) fused to Sup35C or GFP could mimic prion-like
behavior, however, 22Q did not show such characteristics
[31]. The prion-like behavior of 519Q similar to Sup35 is
of significance because it contains only a short Q stretch
as compared to Q62. Importantly, computational assess-
ment of GAF519 and GAF582 using prion aggregation
prediction algorithm reveals that both proteins have pro-
pensity to make prions [46].

As compared to other eukaryotes analyzed, a surpris-
ingly large number of proteins in Drosophila have ex-
tended Q-rich tracts, remarkably similar to those found in
the prion-forming domains of yeast proteins [24-26]. In
in vitro studies and in transient assays in cell culture fu-
sions of the Q domains with the Gal4 DNA binding do-
main activate by stabilizing the transcriptional complex
[47]. However, in transgenic flies chromatin binding and
transcriptional activation activity by GAF was found to be
independent of Q domains, leaving open the designation
of the exact molecular function [12,17]. So far, the com-
bined results suggest that the Q domains are mostly in-
volved in the formation of larger GAF complexes. The
associated prion-like activity might thus provide an ability
to GAF to attain distinct conformational states that may
be heritable. The high conservation of the C terminal Q-
rich domain of GAF in insects, suggests that there is a
strong evolutionary preference to maintain such associ-
ated structure and function.

Conclusions

The analysis of GAFQ-SupC fusions in yeast provides an
interesting analogy between GAF-Q and the Sup35 prion
domain, consistent with the previous findings, revealing
that the GAF-Q domain is essential for the formation
amyloid fibers in vitro [17]. Our results also support the
previous findings that oligomerization of GAF found in
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Drosophila cells may be facilitated by the long Q stretches
in GAF [19]. We emphasize that GAF may not be a bone
fide prion but Q domains in GAF may induce conform-
ational switch reminiscent of prion-like behavior. In yeast,
prions are not pathogenic but rather act as an epigenetic
regulator of cell physiology and several epigenetically her-
itable traits are found to depend on a prion mechanism
[20]. Evidence for regulation of gene expression patterns
by propagation of Swil and Cy8 proteins as prions has
provided a novel link between chromatin remodeling pro-
teins and prion formation [22,23] and it has revealed an
additional mechanism for controlling global gene tran-
scription that is based on an inherited self-perpetuating
change in the conformation. Our results indicate that the
possibility of such an intricate link between chromatin as-
sociated proteins, prion formation and epigenetic inhe-
ritance of gene expression might also apply in higher
eukaryotes. Intriguingly, a large majority of the identified
Drosophila proteins with Q-rich domains are essential
developmental proteins including chromatin regulating
proteins from PcG and TrxG involved in epigenetic inher-
itance [20,26]. It could be envisaged that GAF-Q domains
provide an inherent plasticity which may lead to a con-
formational switch in GAF in a changing environment.
Such a Q domain dependent conformation switch in GAF
may be regulated by some specific post-translational mod-
ifications of GAF and facilitated by molecular chaperones.
This could result in modulated gene expression patterns
that may contribute to phenotypic variation. We suggest
that GAF-Q domain may act as prion-like domain in
Drosophila and support the notion that oligomeriztaion of
GAF and other PcG/TrxG proteins, which is known to be
crucial for the function of these proteins, may be facili-
tated by such prion-like domains [20].

Methods

Yeast strains and plasmids used

The genotype and source of different yeast strains used in
this study are described in Additional file 3: Table S1. The
sup35A strain, Y133, was generated by transforming strain
GT81 [35] with PCR-generated copies of the kanmx cas-
sette amplified from plasmid pFA6a-KanMX6 [48] with
primers containing regions homologous to the SUP35
locus (CCATTGTACTGTAACAAAAAGCGGTTTCTT
CATGACTTGCTCGGcggatccecgggttaattaa and GCATT
TACTTATGTTTGCAAGAAATTTACTCGGCgaattcgag-
ctegtttaaac, regions homologous to SUP3S locus indicated
in capital letters).

A plasmid containing the functional domain of Sup35,
Sup35C, was cloned using primers CCGGCCGCGGA
TGGTTTGGTGGTAAAGATCACG (forward primer, Sac
II site underlined) and CCGGGAGCTCTTACTCGGC
AATTTTAACAATTTTACC (reverse primer, Sac I site
underlined) into plasmid p2HG [49], creating plasmid
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p2H-SupC. The GAF519 and GAF582 regions in the open
reading frames (ORF) encoding Q-rich domains were
PCR amplified using specific primer pairs which amplified
248 bp and 473 bp products corresponding to positions
1309-1557 in GAF519 ORF and 1270-1743 GAF582
ORF, respectively. Following primer pairs for GAF
519-Q (Forward- CGCGGATCCTGATGCAAGGTGTG
CT, Reverse- TATTATCCGCGGCTGCGGCTGCGGC
TGTT) and GAF582-Q (Forward- AAGAAGGATCCA
TGGATGCCCAGCAA and Reverse-TATTATCCGCGG
GAGAGTCTGTTGTGTTTG) were used where Bam H I
in the forward and Sac II in the reverse primers are
underlined. The PCR amplified products were cloned in
frame (using Bam H I and Sac II sites) with C terminal
part of Sup35 lacking the N-terminal prion-forming re-
gion of Sup35 in plasmid p2H-SupC with His" selectable
marker to generate p2H-GAFQ-SupC. The p2H-GAFQ-
SupC plasmids (and control plasmid p2H-SupC) were
transfected in the [PSI'] sup35A diploid yeast strain Y133
and transformants were selected at —His plates. Individual
diploids were spotted on medium lacking His and repli-
cated plated on plates with YPD and -Ade to monitor
prion phenotype. In addition, GAF519-Q and GAF582-Q
PCR products with Bam H I and Sac II restriction sites,
described above, were also cloned in frame with GFP at
the C terminus under a copper inducible promoter in the
pCUP-GFP plasmid [40]. URA was used as selection
marker to generate pCUP-GAFQ-GFP for visualizing
GAFQ-GFP fusions using confocal microscopy. The plas-
mid pCUP-SUP35NM-GFP [40] expressing the prion do-
main of Sup35 fused to GFP was used as a positive
control.

Induction of sporulation and isolation of haploids:

The SUP35/sup35A diploid strain Y133, transformed with
plasmids p2H-GAF519Q-SupC, p2H-GAF582Q-SupC or
p2H-SupC was induced to sporulate and random haploid
spores were isolated per standard yeast methods [50]. Sin-
gle colonies were isolated and transferred onto YPD mas-
ter plates which were then replica plated on media with
G418 and also plates lacking His to confirm sup35A as
well as the presence of p2H-GAF519Q-SupC, p2H-
GAF582Q-SupC or p2H-SupC plasmids. In addition, same
constructs of GAFQ-SupC fusions and SupC alone but
with Ura as selectable marker were also used to replicate
results seen with His plasmids. The mating type of individ-
ual haploids was determined following standard protocols
[50] and haploids with deletions of endogenous SUP35
was validated by western blotting with antibody which
recognize only the N-terminal portion of Sup35 (gift from
S.Lindquist). The expression of GAFQ-SupC fusion pro-
teins was confirmed with an antibody which specifically
recognizes the C terminus of Sup35 (gift from D. Bedwell).
Individual haploids expressing GAF582SupC with His
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(MATa) and Ura (MATa) markers were used for mating
to generate MATa/a diploid which were selected on —
His —Ura plates. Sporulation was induced in these diploids
using and tetrad dissection was performed using standard
methods [50].

Western blotting

After overnight growth of cells in 5 ml selective medium,
4 ml culture was transferred to 20 ml fresh medium and
incubated at 30°C for 3 hours. Cells were harvested by
centrifuging at 4000 rpm for 10 minutes and resuspended
in 200 ul of 0.1 M NaOH and incubated at room
temperature for 10 minutes. Finally cells were centrifuged
at maximum speed for 1 minute, resuspended in SDS gel
loading buffer and heated at 95°C for 5-10 min prior to
SDS-PAGE analysis.

Curing of GAFQ-SupC nonsense suppression phenotype
Individual yeast haploids expressing GAFQ-SupC fusions
in the sup35A background that exhibit nonsense suppres-
sion phenotype by growth on medium lacking Ade were
replica plated on YPD alone and YPD supplemented with
5 mM guanidine HCL Cells on YPD and YPD plus guan-
idine HCI were grown for 2 days and kept at 4°C for 2
additional days before comparing their colors. The Ade +
cells were also cured by over-expressing Hspl04 by
transforming cells with a pGPD-HSP104 plasmid (a high
copy plasmid with constituative Hsp104 expression and
Ura selectable marker). Transformants were confirmed to
have lost Ade + phenotype by growth on medium lacking
Ade and color assay was performed by growth on YPD
plates compared to vector control cells. Cells cured by
over-expressing Hsp104 were analyzed by western blot for
expression of Hsp104 and compared to control cells.

Visualizing GFP-expressing yeast cells

GAFQ-GEFP fusions under copper inducible promoters de-
scribed above were transformed into 74-D694 [51] strains
(OT60, OT56, OT55 and GT17) described in Additional
file 3: Table S1. The NM-GFP fusion under a copper indu-
cible promoter was used as a positive control to visualize
aggregation patterns in these strains [40]. Transformed
cells were grown on -Ura plates for 3 days at 30°C. At least
14 individual colonies for each construct were plated on-
to -Ura master plate which was replica plated onto YPD,
YPG, and —Ade plates to monitor color pigmentation, pe-
tite phenotype and growth on -Ade, respectively. A single
colony of each strain and construct combination was
grown overnight in 5 ml -Ura medium as a pre-culture.
The overnight culture (100-300 ul) was diluted into fresh
5 ml -Ura medium with 150 pM CuSO, to induce expres-
sion of GFP constructs for 12—16 hours. Cells were fixed
by directly adding formaldehyde in the culture (final con-
centration 3.7%) and incubated for additional 20 minutes
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at room temperature. Cells were harvested by centrifuging
at 5000 rpm for 5 minutes 10 ml PBS. The PBS washed
cells were spun down and finally resuspended in buffer
containing K;HPO, (86.6 mM), KH,PO, (134 mM) and
sorbitol (300 mM) and GFP was visualized using a Leica
SP2 confocal microscope.

Centrifugation analysis

Total cell lysates were prepared from GuHCI treated and
non-treated log phase yeast cells, expressing GAFQ-SupC
fusions, SupCANM, and OT55 [PSI'] strain as described
[40]. Lysates prepared in non-denaturing condition were
fractionated into supernatant and pellet fractions as de-
scribed [40] and resolved on 10% SDS-PAGE followed by
an immunoblot using anti-Sup35 antibody which only
recognize C terminus of Sup35.

Additional files

Additional file 1: Figure S1. The sup35A deletion in all the haploids
analyzed in Figure 2 was confirmed by Western blot analysis of total
lysate from each haploid probed with anti-Sup35 antibody, which
recognizes only the N-terminal of SUP35. Lane 5 shows total lysate from
diploid yeast as a positive antibody control.

Additional file 2: Figure S2. Visualization of protein aggregates with
GFP fused to GAF-Q domains (GAFQ-GFP). (A) Schematic illustration of
GAF519 and GAF582 Q domains (GAF-Q) fused to GFP under a promoter
inducible with copper (CUPTp). The prion-forming domain of Sup35

(NM region of SUP35) fused to GFP was used as a positive control.

(B) The constructs shown in (A) were transformed in four different yeast
strains which vary in strength of prion phenotype due to presence or
absence of either one of [PS/*] and [PIN'] or both prions. Both 519Q-GFP
and 582Q-GFP fusions showed aggregation pattern similar to NM-GFP as
their aggregation seem to depend on the presence of [PIN'], the prion
form of the RNQ1 protein of yeast required for Sup35 aggregation and
prion formation.

Additional file 3: Table S1. Strains of S. cerevisiae used in this study.
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