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Abstract

distinctly modulates early pro-fibrotic cellular responses.

Background: The Fra-1/AP-1 transcription factor regulates the expression of genes controlling various processes
including migration, invasion, and survival as well as extracellular remodeling. We recently demonstrated that loss
of Fra-1 leads to exacerbated bleomycin-induced pulmonary fibrosis, accompanied by enhanced expression of
various inflammatory and fibrotic genes. To better understand the molecular mechanisms by which Fra-1 confers
protection during bleomycin-induced lung injury, genome-wide mRNA expression profiling was performed.

Results: We found that Fra-1 regulates gene expression programs that include: 1) several cytokines and
chemokines involved in inflammation, 2) several genes involved in the extracellular remodeling and cell adhesion,
and 3) several genes involved in programmed cell death.

Conclusion: Loss of Fra-1 leads to the enhanced expression of genes regulating inflammation and immune
responses and decreased the expression of genes involved in apoptosis, suggesting that this transcription factor

Background

Pulmonary fibrosis is a chronic, progressive, and usually
untreatable group of chronic disorders and appears to be
regulated by complex cellular processes [1]. In animal
models, a single intratracheal administration of bleo-
mycin induces an inflammatory response that is charac-
terized by leukocyte infiltration, apoptosis, fibroblast
proliferation, matrix metalloproteinase (MMP)/tissue in-
hibitor of metalloproteinase (TIMP) imbalance, and an
increase in interstitial collagen content [2,3] that can
culminate in the development of pulmonary lesions
similar to those observed in human interstitial pulmon-
ary fibrosis (IPF) [4]. However, the exact mechanisms
underlying pulmonary fibrosis remain unclear.

AP-1 is a dimeric transcription factor, mainly comprised
of the Jun (c-Jun, Jun-B, Jun-D), Fos (c-Fos, Fos-B, Fra-1,
Fra-2), and ATF (ATF1-4) families of b-ZIP transcription
factors. AP-1 binds to the TPA response element (TRE,
also known as the AP-1 site) and regulates target gene

* Correspondence: sreddy03@uic.edu

Division of Developmental Biology and Basic Research, Department of
Pediatrics, University of lllinois at Chicago, 830 S. Wood Street, Chicago,
IL 60612, USA

( BioMed Central

expression in response to various pro-oxidants and toxi-
cants. These gene products mediate (mitigate or promote)
oxidative stress and inflammatory responses, as well as cell
growth and tumorigenesis [5]. The promoters of many in-
flammatory response genes, especially those encoding cy-
tokines and chemokines, have functional AP-1 binding
sites [6]. Fra-1 regulates gene expression involved in vari-
ous processes such as cell growth and cell death and regu-
lates the expression of genes controlling tissue/cell
remodeling, such as MMP-1, MMP-2, and MMP-9,
mainly at the transcriptional level [7-11]. We have recently
shown that Fra-1-deficient (Fra-1~'“) mice are more
susceptible than wild-type (Fra-I""*) mice to bleomycin-
induced fibrosis [12], suggesting that this transcription
factor is involved in the regulation of complex genetic net-
works to maintain cellular homeostasis during bleomycin-
induced lung inflammation, injury, and repair processes.
Based on these results, we hypothesized that accelerated
inflammation and fibrosis observed in Fra-1*/* mice are
caused by enhanced inflammatory and fibrotic gene ex-
pression. To test this hypothesis and to better understand
the mechanisms by which the Fra-1 transcription factor
confers pulmonary protection, we have performed
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microarray analysis to examine the changes in gene ex-
pression in the lungs of Fra-1*/* mice after treatment with
bleomycin. In the present study, we have evaluated
changes in early inflammatory and pro-fibrotic gene ex-
pression after 5 days of bleomycin treatment. Our mRNA
expression profiling demonstrated increased expression of
genes involved in inflammation and immune responses
and decreased levels of apoptotic genes in Fra-1*'* mice,
suggesting that the Fra-1 transcription factor dampens the
development of late fibrotic injury by modulating the early
pro-fibrotic responses.

Results and discussion

Genes that encode cytokines, chemokines, and their
receptors

The set of genes that was differentially expressed
between PBS-treated Fra-1'"* and Fra-1*/* mice was
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studied in order to identify those genes for which a
genotypic difference in expression exists. We found that
the loss of Fra-1 led to an up-regulation of chemokine
(C-X-C motif) ligand 13 (Cxc/13, 1.7-fold) and interleu-
kin 1 alpha (Il1a, 1.7-fold) expression. Similarly, we
found a down-regulation of chemokine (C-C motif) lig-
and 5 (Ccl5, -1.6-fold) and chemokine (C-X-C motif) lig-
and 9 (Cxcl9, -2.7-fold) in Fra-1*® mice when
compared to Fra-1"* mice (Table 1). Next, we com-
pared the differentially up-regulated genes between
bleomycin-treated Fra-1*'* and Fra-1*/* mice (Table 2).
The genes that showed a -fold change of >1.7 were se-
lected for analysis. Interestingly, our data suggested that
the lack of Fra-1 leads to up-regulation of cytokines
and chemokines in response to bleomycin, including
interleukin-1 alpha (I/1a, 1.87-fold), interleukin-2 recep-
tor alpha chain (//2ra, 2.15-fold), interleukin 2 receptor,

Table 1 Differentially expressed genes in lung tissues of Fra-1*"* and Fra-1*’* mice
Affymetrix ID Symbol Gene title KOC vs. WTC (fold change)
Cytokine and chemokines
10487588 Ia Interleukin 1 alpha 17
10523359 Cxcl3 Chemokine (C-X-C motif) ligand 13 17
10389207 Ccl5 Chemokine (C-C motif) ligand 5 -16
10531407 Cxcl9 Chemokine (C-X-C motif) ligand 9 -2.7
Inflammation
10545569 Reg3g Regenerating islet-derived 3 gamma 7
10402390 Serpinalb Serine preptidase inhibitor, clade A, member 1B 461
10535559 Baiap2l1 BAl1-associated protein 2-like 1 39
10349648 Ctse Cathepsin E 361
10402409 Serpinale Serine peptidase inhibitor, clade A, member 1E 247
10563597 Saa3 Serum amyloid A 3 1.82
10362138 Vnn1 Vanin 1 1.72
10398117 Bdkrb2 Bradykinin receptor B2 1.69
10481627 Lcn2 Lipocalin 2 14
10372652 Lyz1 Lysozyme 1 1.31
10444824 H2-Q6 Histocompatibility 2, Q region locus 6 -1.66
10497356 Sirpb1a Signal-regulatory protein beta 1A -1.72
10574149 Nlrc5 NLR family, CARD domain containing 5 -1.78
10398069 Serpina3m Serine peptidase inhibitor, clade A, member 3 M -2.32
Cell adhesion molecule
10395553 Nrcam Neuron-glia-CAM-related cell adhesion molecule 1.95
10523717 Spp1 Secreted phosphoprotein 1 —-1.81
Transcription
10521537 Cyth Cytokine-like 1 202
10598409 Tcfe3 Transcription factor E3 1.78
10583312 Taf1d TATA box binding protein (Tbp)-associated factor, RNA -163
polymerase |, D
10399725 Sox11 SRY-box containing gene 11 -1.96
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Table 2 Differentially expressed genes induced by bleomycin in lung tissues of Fra-1** and Fra-
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mice

Affymetrix ID Symbol Gene title KOT vs. WTT (fold change)

Cytokine, chemokines, and their receptors
10531415 Cxcl10 C-X-C motif chemokine 10 254
10379535 Ccl8 Chemokine (C-C motif) ligand 8 227
10520452 116 Interleukin 6 2.23
10469278 I12ra Interleukin-2 receptor alpha chain 2.15
10487588 Na Interleukin-1 alpha 187
10430344 I12rb Interleukin 2 receptor, beta chain 1.69
10523128 Ppbp Chemokine (C-X-C motif) ligand 7 =217
10345752 12 Interleukin 1 receptor, type Il -2.27

Inflammation
10531126 lgj Immunoglobulin joining chain 17.25
10496555 Gbp1 Guanylate binding protein 1 7.88
10403069 Igh-6 Immunoglobulin heavy constant mu 743
10545569 Reg3g Regenerating islet-derived 3 gamma 461
10502801 H28 Histocompatibility 28 33
10364542 CFD Complement factor D 3.09
10563602 Saa4 Serum amyloid A 4 281
10576757 Fcer2a Fc receptor, IgE, low affinity II, alpha polypeptide 241
10466172 Ms4a1l Membrane-spanning 4-domains, subfamily A, member 1 2.39
10562169 Hamp Hepcidin antimicrobial peptide 238
10551025 Cd7% CD79A antigen 211
10531987 Gbp4 Guanylate binding protein 4 2.1
10437224 Mx2 Myxovirus (influenza virus) resistance 2 2.1
10441233 Mx1 Interferon-induced GTP-binding protein Mx1 1.96
10500677 cD2 CD2 antigen 1.85
10450675 H2-T24 Histocompatibility 2, T region locus 24 1.81
10451287 Isg15 ISG15 ubiquitin-like modifier 181
10531994 Mpa?2l Guanylate binding protein 6 1.79
10398121 Bdkrb1 Bradykinin receptor, beta 1 1.76
10399710 Rsad?2 Radical S-adenosyl methionine domain containing 2 1.75
10435982 Btla B and T lymphocyte associated 1.74
10468898 Lax1 Lymphocyte transmembrane adaptor 1 1.71
10547894 CD4 CD4 antigen 17
10444821 H2-Q8 Histocompatibility 2, Q region locus 8 1.69
10444236 H2-DMb2 Histocompatibility 2, class Il, locus Mb2 1.67
10372652 Lyz1 Lysozyme 1 1.66
10574098 Nirc5 NOD-like receptor C5 1.66
10601385 TIr3 Toll-like receptor 13 -1.66
10560242 C5arl Complement component 5a receptor 1 -1.72
10541614 Clecad C-type lectin domain family 4, member d -1.78
10347335 Slc11al Solute carrier family 11, member 1 -1.85
10416837 Irg1 Immunoresponsive gene 1 -2.08
10493831 S100a8 S100 calcium binding protein A8 -2.63
10349648 Ctse Cathepsin E —2.77
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Table 2 Differentially expressed genes induced by bleomycin in lung tissues of Fra-1** and Fra-1*’* mice (Continued)

Cell adhesion molecule

10433172 Glycam1 Glycosylation dependent cell adhesion molecule 1 1.98
10500677 cD2 CD2 antigen 1.85
10450675 H2-T24 Histocompatibility 2, T region locus 24 1.81
10547894 CD4 CD4 antigen 1.7
10444821 H2-Q8 Histocompatibility 2, Q region locus 8 1.69
10444236 H2-DMb2 Histocompatibility 2, class Il, locus Mb2 1.67
10562720 Siglece Sialic acid binding Ig-like lectin E -1.78
10557862 [tgam Integrin alpha M —2.04
Transcription
10404389 Irf4 Interferon regulatory factor 4 (TF) 2.06
10585276 Pou2af1 POU class 2 associating factor 1 2.09
10562812 Spib Spi-B transcription factor (Spi-1/PU.1 related) (TF) 1.83
10360406 Ifi205 interferon activated gene 205 165
10390691 Nr1d1 Nuclear receptor subfamily 1, group D, member 1 (TF) 1.7
10460585 Fosl Fos-like antigen 1 —-1.85

beta chain (I[2rb, 1.69-fold), interleukin 6 (116, 2.23-fold),
chemokine (C-C motif) ligand 8 (Ccl8, 2.27-fold), and
C-X-C motif chemokine 10 (Cxcl10, 2.54-fold), whereas
Fra-1*"* mice showed an up-regulation of interleukin 1
receptor, type II (/l1r2, 2.27-fold). These results suggest
that Fra-1 signaling controls the expression of some of
the genes that are involved in fibrosis. For instance, ex-
pression of interleukin 6, a cytokine that promotes
greater inflammation and fibrosis [13], was significantly
higher in bleomycin-treated Fra-1*/* mice (2.23-fold)
than in Fra-1*""* mice (Table 2). Also, we noted that Fra-
I** mice showed an increased expression of Il1r2 (Il1r2,
2.27-fold) in response to bleomycin as compared to
Fra-1*"® mice. Interleukin 1 (//I), a principal pro-
inflammatory cytokine that includes two ligands (//1a
and I/1f) and two cell surface receptors namely 1lIrI
and [l1r2. Several reports suggest that binding of I/1 to
Il1r1 ultimately leads to the activation of several genes,
including those encoding cyclooxygenase, nitricoxide
synthase, cell adhesion molecules and cytokines and
chemokines [14,15]. More importantly, in mouse mo-
dels, exogenous administration of recombinant /IS
induced high degree of bleomycin-induced fibrosis, and
specific blockade of [/1rI markedly reduced bleomycin-
induced inflammation [16,17]. Due to the lack of a
cytoplasmic-signaling domain for 1/1r2, this receptor
mainly acts as a decoy receptor to prevent //I-mediated
biological responses [18]. Many anti-inflammatory medi-
ators enhance the expression and release of I/1r2 to in-
duce anti-Il1 pathway [19-21]. The increased I/1r2
expression in Fra-1"* but not in Fra-1*'* mice suggests
that Fra-1 controls bleomycin-induced inflammation by
augmenting the expression of anti-inflammatory genes.

In the bleomycin-induced fibrosis model, extensive
neovascularization has often been observed to follow the
airways and sites of injury [22]. Presence/absence of ERL
motif in CXC chemokines dictates their angiogenic
property [23]. The amount of Cxcl10 chemokine in the
lungs has been directly correlated with the degree of fi-
brosis [24]. Administration of Cxcll0 to bleomycin-
treated mice attenuates pulmonary fibrosis in part due
to reduced angiogenesis [25]. However, we found that
bleomycin-induced Fra-1** mice showed a 2.54-fold in-
crease in Cxcll0 when compared to Fra-I""" mice
(Table 2).

We then analyzed genes that are uniquely expressed in
either Fra-1"* (see Additional file 1: Table S1) or
Fra-1%'® mice (see Additional file 2: Table S2) after bleo-
mycin treatment. The Fra-I1*’* mice showed an up-
regulation of chemokine (C-C motif) ligand 19 (Ccl19,
2.07-fold), macrophage-derived chemokine (Ccl22, 2.42-
fold), chemokine (C motif) ligand 1 (Xcl1, 2.15-fold),
chemokine (C-X-C motif) ligand 11 (Cxcl11, 2.53-fold),
chemokine (C-C motif) receptor 4 (Ccr4, 1.75-fold), che-
mokine (C-C motif) receptor 8 (Ccr8, 2.13-fold) and
chemokine (C-C motif) receptor 9 (Ccr9, 2.63-fold) (see
Additional file 2: Table S2), whereas Fra-1"* mice
showed an up-regulation of chemokine (C-X-C motif)
receptor 2 (Cxcr2, 2.83-fold), interleukin 1 family, mem-
ber 9 (I/1f9, 2.43-fold), chemokine (C-X-C motif) ligand
2 (Cxcl2, 3.78-fold), colony stimulating factor 2 receptor,
alpha, low-affinity (Csf2ra, 2.02-fold) and interleukin 1
receptor-like 2 (Il1ri2, 1.85-fold) (see Additional file 1:
Table S1). Of particular interest is the Cc/22 chemokine,
which has been recognized as a Th2 chemokine, and
its involvement in the pathophysiology of pulmonary
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fibrosis has been documented. Belperio et al. have dem-
onstrated that Cc/22 and its receptor, Ccr4, are
overexpressed in a mouse model of belomycin-induced
fibrosis [26]. Ccl22 and Ccr4 levels are also increased in
patients with IPF, and their expression has been detected
on epithelium and macrophages, respectively [27].
Neutralization of Cc/22 and Ccr4 has been shown to lead
to a significant reduction in lung inflammation during
bleomycin-induced fibrosis [26,28]. Interestingly, our re-
sults here showed that the expression of Cc/22 and Ccr4
was significantly increased (2.42- and 1.75-fold, respect-
ively) in bleomycin-treated Fra-1*/* mice when com-
pared to Fra-1"* mice.

Next, we analyzed genes that are uniquely down-
regulated in bleomycin-treated Fra-I1** mice (see
Additional file 2: Table S2), which included chemokine (C-
C motif) receptor-like 2 (Ccri2, -1.75-fold), bone morpho-
genetic protein 2 (Bmp2, -1.78-fold), and bone morpho-
genetic protein 3 (Bmp3, -1.78-fold). Similarly, Fra-1""*
also showed uniquely down-regulated genes, including
chemokine (C-X-C motif) receptor 5 (Cxcr5, -2.38-fold),
chemokine (C-C motif) ligand 21A (Ccl21a, -1.72-fold),
chemokine (C-C motif) ligand 27a (Ccl27a, -1.75-fold) and
ciliary neurotrophic factor receptor (Cntfi; -1.75-fold) (see
Additional file 1: Table S1). Taken together, the results of
the present study have revealed that genetic disruption of
Fra-1 differentially regulates a number of cytokines and
chemokines in response to bleomycin, indicating a poten-
tial role for Fra-1 in cytokine and chemokine signaling dur-
ing bleomycin-induced acute lung injury.

Genes encoding proteins that are involved in the
inflammatory response

In Fra-1*"® mice treated with vehicle, we found up-
regulation of some genes involved in the inflammatory
response (Table 1) when compared to their Fra-1"*
counterparts. These genes included regenerating islet-
derived 3 gamma (Reg3g 7.00-fold), cathepsin E (ctse,
3.61-fold), serine peptidase inhibitor, clade A, member
1B (Serpinalb, 4.61-fold) and serum amyloid A3 (saa3,
1.82-fold). On the other hand, the lack of Fra-1 led to
the down-regulation of the expression of a few genes, in-
cluding serine peptidase inhibitor, clade A, member 3 M
(Serpina3m, -2.32-fold) and NLR family, CARD domain
containing 5 (Nlrc5, -1.78-fold). Matrix metalloproteases
(MMPs) play key roles in tissue repair and remodelling;
but recent studies indicate a prominent role for the lyso-
somal proteinases, such as cathepsins, in the extracellu-
lar remodelling [29,30]. BAL fluid and extracellular
space contain secreted cathepsins and their activities are
controlled by endogenous inhibitors of cathepsins
[31,32]. Likewise, serine peptidases are implicated in
various biological processes such as wound healing and
they also contribute to the development of pulmonary
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fibrosis and acute lung injury [33,34]. Endogenous serine
peptidase inhibitors regulate the activities of serine pep-
tidases. Imbalance in the activities of proteinases/pepti-
dases and endogenous proteinases/peptidases inhibitors
may contribute to deregulated protein degradation and
resulting in the initiation of lung injury [35]. Serum
amyloid A is an acute phase protein, induced by several
inflammatory mediators and its serum level is elevated
in various conditions like COPD [36], bronchial carcin-
oma [37], and cardiovascular disease [38]. Thus, it is
likely that Fra-1 distinctly regulates proteinases/pepti-
dases and their inhibitor’s expression to maintain lung
homeostasis.

When we compared the gene expression patterns of
Fra-1""* mice and their Fra-1'/" littermates following
bleomycin treatment, it was evident that there were
many more up-regulated genes than down-regulated
genes involved in inflammation in the lungs of Fra-1/%
mice when compared to their Fra-1"*counterparts
(Table 2). We identified differential expression of genes
that belong to the immunoglobulin family, specifically
immunoglobulin joining chain (Igj, 17.25-fold) and im-
munoglobulin heavy constant mu (Igh-6, 7.43-fold) in
Fra-1*"® mice treated with bleomycin (Table 2). It has
previously been shown that immunoglobulin concentra-
tions are increased in immune disorders, such as
rheumatoid arthritis [39], inflammatory bowel disease
[40], and some respiratory disorders including asthma
[41], cystic fibrosis [42], and idiopathic pulmonary fibro-
sis [43]. The up-regulation of immunoglobulin genes
was also accompanied by an up-regulation of several
genes involved in antigen presentation and antigen
binding. This was true for some of the major histocom-
patibility genes, including histocompatibility 28 (H28,
3.3-fold), histocompatibility 2, class II, locus Mb2 (H2-
DMb2, 1.67-fold), histocompatibility 2, T region locus 24
(H2-T24, 1.81-fold), and histocompatibility 2, Q region
locus 8 (H2-Q8, 1.69-fold) (Table 2). Complement com-
ponents such as complement factor D (CFD, 3.09-fold),
and antigens such as CD79A antigen (Cd79a, 2.11-fold),
CD2 antigen (CD2, 1.85-fold), and CD4 antigen (CD4,
1.70-fold) were differentially up-regulated in Fra-1%*
mice (Table 2). The expression of other inflammatory
genes, including regenerating islet-derived 3 gamma
(Reg3g, 4.61-fold) and serum amyloid A 4 (Saa4, 2.81-
fold), was also differentially up-regulated in Fra-1**
mice treated with bleomycin (Table 2). The Reg3g and
Saa4 genes have now been consistently associated with
pulmonary fibrosis and chronic inflammation [36,44].
On the other hand, we also noticed down-regulation of
some genes in Fra-1*'* mice, such as solute carrier
family 11, member 1 (Slcllal, -1.85-fold), S100 cal-
cium binding protein A8 (S100a8, -2.63-fold), and
cathepsin E (Ctse, -2.77-fold) (Table 2), when compared
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to Fra-1"* mice. Again, we analyzed genes that are
uniquely expressed in either Fra-1"'* (see Additional file
2: Table S2) or Fra-1*"* (see Additional file 1: Table S1)
mice in response to bleomycin. The results showed that
major histocompatibility molecules such as histocompati-
bility 2, Q region locus 6 (H2-Q6, 2.35-fold), MHC class I
like protein GS10 (H2-gs10, 2.12-fold), and complement
components such as complement component 4B (C4b,
1.78-fold) were uniquely up-regulated in Fra-1*/* mice
treated with bleomycin (see Additional file 2: Table S2). In
contrast, we found down-regulation of immunoglobulin
heavy constant mu (Igh-6, -8.33-fold), histocompatibility
2, O region beta locus (H2-Ob, -3.12-fold), Cd226 antigen
(Cd226, -1.75-fold), and complement receptor 2 (Cr2, -2
22-fold) in Fra-1*"* mice after bleomycin treatment. Our
previous study demonstrated that Fra-1** mice showed
increased levels of inflammation after bleomycin treatment
[12]. Thus, our present data suggest that deregulation of
the expression of immune response genes in Fra-1*/* mice
is the likely cause of the increased lung inflammation in
Fra-1*"* mice.

Genes that encode extracellular matrix and cell adhesion
molecules
The unique gene expression pattern in Fra-1** mice
(see Additional file 1: Table S1) treated with bleomycin
suggested an increase in the expression of genes that en-
code extracellular matrix, such as collagen, type IV,
alpha 1 (Col4al, 1.96-fold), collagen, type IV, alpha 2
(Col4a2, 1.76-fold), collagen, type VI, alpha 1 (Col6al,
1.70-fold), collagen, type VI, alpha 2 (Col6a2, 1.85-fold),
collagen, type VI, alpha 3 (Col6a3, 1.98-fold), collagen,
type XV, alpha 1 (Coli5al, 1.79-fold), a disintegrin-
like and metallopeptidase (reprolysin type) with
thrombospondin type 1 motif, 1 (Adamtsl, 1.94-fold),
and a disintegrin-like and metallopeptidase (reprolysin
type) with thrombospondin type 1 motif, 2 (Adamts2,
2.07-fold). In contrast, Fra-1*’® mice showed increased
expression levels of laminin, alpha 1 (Lamal, 1.75-fold).
Among the various collagens, types I and III collagens
are the most widely distributed in both airways and par-
enchymal structures [45]. To maintain normal structural
properties of lung, the controlled distribution of these
proteins is vital and their inappropriate accumulation in
fibrotic lungs has been reported [46,47]. In contrast, the
physiologic functions and abnormal deposition patterns
of other collagens in the lung fibrosis are poorly under-
stood. Our recent study showed an increased expression
of the TGF-B1 and type-1-collagen genes in response to
bleomycin at the end of 14 and 31 days of bleomycin
treatment and demonstrated the presence of increased
fibrosis in Fra-1%'® mice [12]. However, we did not ob-
serve any differences in the expression levels of type I
collagen or type III collagen, nor did we observe altered
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TGE-P1 gene expression in either genotype at the end of
5 days bleomycin treatment. It has been reported that
excessive synthesis and deposition of ECM proteins is a
general tissue response to an unresolved chronic inflam-
mation [48]. Hence, we speculate that the persistence of
increased inflammation in Fra-1*'* mice is driven by the
loss of Fra-1, while higher levels of fibrotic gene expres-
sion in the fibrotic stage (14 days) may contribute to the
excessive deposition of ECM and disease severity seen in
Fra-1*"* mice. This point needs to be addressed in order
to better understand the mechanisms underlying the in-
creased fibrosis in Fra-1*'* mice.

We found that a few genes known to be involved in gen-
eral cell adhesion are affected by bleomycin treatment in
Fra-1*'* mice (Table 2). Glycosylation-dependent cell ad-
hesion molecule 1 (Glycami, 1.98-fold), cd2 antigen (Cd2,
1.85-fold), sialic acid binding Ig-like lectin E (Siglece, -1.78-
fold), and integrin alpha M (ltgam, -2.04-fold) were differ-
entially expressed in Fra-1*"* mice treated with bleomycin
when compared to Fra-1"* mice. In general, the expres-
sion of intercellular adhesion molecules is increased by in-
flammatory signals, which facilitates lymphocytes for
higher adhesion and permeation into inflamed tissues. It
has been shown that the glycaml molecule is strongly
expressed in inflammatory processes in order to modulate
leukocyte trafficking [49]. Sialic acids present on the sur-
face of all mammalian cells and play important roles in
physiological and pathological processes, and their expres-
sion has been reported to decrease during immune cell ac-
tivation [50]. Consistent with these findings, we also noted
an up-regulation in the expression of glycamI and a loss of
siglece in Fra-1*'® mice when compared to Fra-1"" mice.

We then analyzed the genes that are uniquely expres-
sed in Fra-1*"* (see Additional file 2: Table S2) or
Fra-1*"* mice (see Additional file 1: Table S1). Fra-1/%
mice showed unique expression of genes that included
major histocompatibility molecules such as histocom-
patibility 2, Q region locus 6 (H2-Q6, 2.35-fold), histo-
compatibility 2, T region locus 22 (H2-T22, 1.81-fold),
histocompatibility 2, K1 region (H2-K1, 1.7-fold), lam-
inin alpha 1 (Lama 1, 1.75-fold), and heparanase (Hpse,
1.98-fold). Fra-1""* mice showed unique expression of
mesothelin (Msln, 2.16-fold), neuron-glia-CAM-related
cell adhesion molecule (Nrcam, 2.1-fold), and a disin-
tegrin and metallopeptidase domain 12 (Adam 12, 2.1-
fold). Heparanase is an endoglucuronidase that cleaves
heparan sulfate (HS) chains, resulting in HS fragments of
10 to 20 sugar units [51]. Overexpression of heparanase
has been reported in numerous tumors, where it regulates
angiogenesis and metastasis [52]. Furthermore, the ADAM
gene family is associated with proteolytic, cell-cell, and
cell-matrix interaction-promoting activities. Several inves-
tigations have shown a functional role for ADAMS in
collagen deposition in cells and in lungs in which the
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ADAM gene was knocked down, thus revealing the func-
tional dysregulation of this gene family in the lung fibrosis
[53-55]. Thus, an alteration in the expression of cell adhe-
sion molecules may represent another potential mecha-
nism by which more fibrosis can occur in Fra-1*'* mice.
Fra-1-regulated genes involved in programmed cell death
The process of programmed cell death is known to play a
major role in maintaining many biological processes, and
inappropriate apoptosis can lead to disease conditions,
either because cells experience an inappropriately pro-
longed survival or they die prematurely [56,57]. Studies
using genetic models have demonstrated both cooperative
and antagonistic roles of AP-1 family of proteins in modu-
lating cell death in response to a variety of pro-apoptotic
stimuli. For example, c-/un”~ mouse embryonic fibroblasts
(MEFs) and liver cells show increased levels of oxidative
stress and apoptosis [58]. Likewise, c-Fos also participates
in both pro- and anti-apoptotic activities. For example, c-
Fos”~ MEFs undergo apoptosis when cultured in vitro and
also display an increased susceptibility to UV-induced cell
death [59]. Overexpression of Fra-1 also inhibits prolifera-
tion, induces apoptosis, and reduces the tumorigenicity of
c6 glioma cells [60]. Consistent with a role for Fra-1 in
apoptosis, we recently found that mouse embryonic fibro-
blasts lacking Fra-1 show an increased resistance to
oxidant-induced cell death [61]. Fra-1 appears to uniquely
up-regulate some genes modulating apoptosis in Fra-1"*
mice (see Additional file 1: Table S1), including paternally
expressed 3 (Peg3, 2.55-fold), the tumor necrosis factor re-
ceptor superfamily, member 10b (Twufrsf10b, 2.03-fold),
AXL receptor tyrosine kinase (Ax/, 1.73-fold), Eph recep-
tor A2 (Epha2, 1.7-fold), zinc finger matrin type 3 (Zmat
3, 1.76-fold), solute carrier family 40 (iron-regulated trans-
porter, member 1) (Slc40al, 1.70-fold), and EGL nine
homolog 3 (Egln3, 1.81-fold). Similarly, Fra-1*/* mice
showed (see Additional file 2: Table S2) up-regulation of
glutamate-cysteine ligase, catalytic subunit (GCLC, 1.70-
fold) and down-regulation of lectin, galactose binding, sol-
uble 12 (Lgals 12, -1.78-fold), Eph receptor A7 (Epha 7, -1
.72-fold), and arachidonate 12-lipoxygenase (AloxI2, -
1.69-fold). It has been reported that kaempferol exerts an
anti-oxidative and anti-apoptotic effects in HEI-OC1 cells
treated with cisplatin through enhancing GCLC expres-
sion [62]. Consistent with this observation, we found that
GCLC was induced in Fra-1*'* mice. Our gene expression
results from Fra-1** mice are therefore in good agree-
ment with the observation that inappropriate apoptosis
can lead to exaggerated lung fibrosis.

Validation of microarray data

Amongst several genes that were significantly affected
by bleomycin, we randomly selected 17 genes according
to the microarray results to confirm their differential
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expression by qRT-PCR. We confirmed that bleomycin
treatment significantly induced the expression of I/ia,
Irf4, Reg3g, and Ccr4 and reduced the expression of
§100a8 in Fra-1*"* mice when compared to similarly
treated Fra-1""* mice (Table 3). These results confirmed
the expression patterns of the microarrays. Next, we an-
alyzed the genes that were uniquely expressed in both
genotypes. The results revealed that Fbln2 expression
was significantly higher in Fra-1""* mice treated with
bleomycin than in the vehicle-treated control group
(Table 4); however, there was no difference observed in
Fra-1** mice. Similarly, Fra-1*’* mice treated with
bleomycin also showed significantly increased expression
of Hpse, Gclc, Runx3, Xcll, and Cxclll when compared
to the vehicle-treated group, but no differences were ob-
served with their wild-type counterparts. These results
further confirmed the expression patterns of the
microarrays. According to the qRT-PCR results, there
was a tendency for increased expression of Ccr8 and
Ccl22 in the Fra-1** mice treated with bleomycin as
compared to the vehicle-treated mice, but the differ-
ences were not significant. Similarly, wild-type mice
treated with bleomycin showed greater expression of
Coldal and TnfrsflOb than did the vehicle controls.
While these qRT-PCR results agree in general direction
with the trends measured by microarray, the results did
not reach statistical significance. Comparison of micro-
array and qRT-PCR results revealed discordance in 2 of
the 17 genes selected. In the case of Marco, microarray
analysis revealed no change in Marco expression in Fra-
I*"* mice but a significant increase in bleomycin-treated
(3.08 + 0.11) Fra-1"* mice when compared to vehicle-
treated mice, as assayed by qRT-PCR. In the second
case, the microarray results showed no change in the ex-
pression of Snai2 in Fra-1""" mice, but the real-time RT-
PCR results indicated a significant decrease (0.37+ 0.15)
in expression in these mice. The discordance in these
two genes may be explained by the lower sensitivity of
the microarrays.

Analysis of selected microarray genes at different time
points after bleomycin treatment

To identify the time course of gene induction by bleo-
mycin, we analyzed samples at different time points for
selected genes. All the genes that were used for micro-
array validation were also used for our analysis of tem-
poral patterns of gene expression (Figure 1). The results
revealed that most of the genes continued to show no
significant differences between Fra-1** and Fra-1*'* at
7 and 14 days after bleomycin treatment. However, some
of the genes were predominantly up-regulated (Xc/I and
S§100a8) or down-regulated (Cxcl/11 and Ccl22) in
Fra-1*"* mice only at 7 days following bleomycin treat-
ment, when compared to the vehicle-treated control and
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Table 3 Validation of differentially expressed genes induced by bleomycin in lung tissues from both Fra-1*/* and

1AIA

Fra- mice
Affymetrix ID Symbol Gene title Micro array qRT-PCR
KOT vs. WTT KOT vs. WTT
Fold change Fold change
10487588 Na Interleukin 1 alpha 1.87 340 + 1.68%
10404389 Irf4 Interferon regulatory factor 4 (TF) 2.06 3.29 + 1.08*
10597420 Ccrd C-C chemokine receptor type 4 1.78 168 + 0.18*
10545569 Reg3g Regenerating islet-derived 3 gamma 461 6.89 + 0.86*
10493831 S100a8 S100 calcium binding protein A8 -2.63 -3.57+1.70%

Data are presented as mean + SD (n=3-4). *P<0.05, WTT vs KOT after bleomycin treatment.

Fra-1*/* mice. We were further interested in the delayed
response of some of the genes involved in lung fibrosis
that did not exhibit significant differences in microarray
results at 5 days (Figure 2). The results revealed a signifi-
cant difference in the induction of C-C chemokines such
as Ccl2, Ccl3, and Ccl8 between Fra-1""* and Fra-1°'"
mice: Fra-1*'* mice showed significantly elevated ex-
pression at 7 days following bleomycin treatment when
compared to wild-type mice. Interestingly, excessive pro-
duction of Ccl2, Ccl3, and Ccl8 has been shown to aid
the development of pulmonary fibrosis [63,64]. In
addition to the up-regulation of Cc/2, Ccl3, and Ccl8, we
observed a marked down-regulation of /10 and /33 in
bleomycin-treated Fra-1*/* mice. Previous studies have
reported that in vivo IL-10 gene delivery before [65] and
after bleomycin [66] administration suppresses the de-
velopment of pulmonary fibrosis. Finally, fibroblast
transdifferentiation has been shown to contribute to the
pathology of pulmonary fibrosis. Therefore, we analyzed
the expression of a-SMA, a marker for myofibroblasts.
The results revealed that Fra-1°/" mice treated with

bleomycin had a significantly higher expression of o-
SMA than did vehicle-treated control or Fra-1*"* mice
at 14 days. This result further supports the enhanced
susceptibility of Fra-1-null mice to bleomycin-induced
lung fibrosis.

Conclusion

The factors that contribute to the pathogenesis of pul-
monary fibrosis include persistent inflammation, gener-
ation of pro-inflammatory, pro-fibrotic and angiogenic
mediators, alveolar epithelial cell injury, fibroblast
differentiation, and poor apoptotic activity of the
myofibroblasts. These deregulated cellular processes
eventually lead to excessive deposition of extracellular
collagen and pathological fibrosis [48,67,68]. The present
mRNA expression profiling analysis has revealed an im-
portant role for Fra-1 in regulating components of com-
plex regulatory networks controlling the lung injury and
fibrosis. We found that Fra-1*'* mice displayed some of
the factors that contribute to pulmonary fibrosis, such as
increased expression of pro-inflammatory genes and

Table 4 Validation of uniquely expressed genes induced by bleomycin in lung tissues from both Fra-1** and Fra-1*’* mice

Affymetrix ID  Symbol Gene title Micro array qRT-PCR

WTT vs. WTC KOT vs. KOC  WTT vs. WTC KOT vs. KOC

Fold change Fold change Fold change Fold change
10540085 Fbin2 Fibulin 2 2.28 ND 235+ 027% ND
10531737 Hpse Heparanase ND 1.98 ND 1.57 + 0.10*
10587266 Gcle Glutamate-cysteine ligase, catalytic subunit ND 1.70 ND 1.58 + 0.27*
10509030 Runx3  Run related transcription factor 3 ND 202 ND 1.30 + 0.14*
10359697 Xch Chemokine (C motif) ligand 1 ND 2.15 ND 257 +0.48*
10531420 Cxcl11 Chemokine (C-X-C motif) ligand 11 ND 253 ND 472 £ 2.33*
10590242 Ccar8  Chemokine (C-C motif) receptor 8 ND 213 ND 158 + 0.00"°
10574213 Ccl22  Macrophage-derived chemokine ND 242 ND 173 + 0.54™
10576973 Col4al  Collagen, type IV, alpha 1 1.96 ND 183 + 108" ND
10416230 Tnfrsf10b  Tumor necrosis factor receptor superfamily, member 10b 203 ND 230 + 1.09"° ND
10357261 Marco  Macrophage receptor with collagenous structure ND 203 308 011 223 +021%
10433776 Snai2 Snail homolog 2 (Drosophila) ND -1.92 223+ -3.50 £ 1.95%

Data are presented as mean + SD (n=3-4). *P<0.05, PBS vs bleomycin of same genotype. "> means non significant. T Result did not agree with microarray result.
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Figure 1 Validation of the differences in mRNA expression between Fra-

1 +/+ IA/A

and Fra- mice for selected microarray genes at

different time points after bleomycin treatment. Lung mRNA abundance was determined by quantitative real-time RT-PCR. The graphs

represent the fold change over vehicle treated Fra-1"*
mice in each group. p<0.05, PBS vs bleomycin; 1p<0.05, Fra-1%4 vs Fra-1

controls after normalization with the expression of GAPDH. Results are mean + SD for 3-4
+/+

mice.

decreased expression of genes involving in apoptotic
process during bleomycin treatment. Thus, we propose
that strategies enhancing Fra-1 functions may represent
a promising approach to mitigate pulmonary fibrosis.

Methods

Mice

Conventional deletion of Fra-1 is embryonic lethal due to
extra-embryonic tissue defects [69]. The mice bearing Fra-
1 “floxed” allele [69] (hereafter referred as Fra-1FF mice)
were obtained from Erwin F. Wagner (Spanish National
Cancer Research Centre, Madrid, Spain). These mice are
maintained on a mixed (C57BL6/129) background. Meox2
(Sox2)-Cre transgenic mice (C57BL6/129), in which Cre
expression specifically restricted in embryo but not in
extra-embryonic tissues, were obtained from the Jackson
Labs. Meox2 Cre mice were crossed to Fra-1¥/F mice [70],

in order to obtain Fra-17F-Meox2-Cre mice as described

earlier [12]. Fra-1F/F mice with and without Cre are here-
after referred to as Fra-1*/* and Fra-1"* genotypes,
respectively.

Bleomycin treatment

Bleomycin (0.075U) (APP Pharmaceuticals, LLC,
Schaumburg, IL, USA) diluted in 30 pL of PBS was
intratracheally administered to mice (n=3) (10-14 weeks
old) as described previously [71]. Mice treated with
PBS (n=3) served as controls. All experiments were
conducted under a protocol approved by the institu-
tional animal care use committee of the University of
lllinois at Chicago. At the end of 5 days treatment,
the left lungs were frozen immediately in RNAlater
(Ambion) for subsequent microarray and qRT-PCR
analysis.
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RNA isolation and labeling

Total RNA was isolated from Fra-1"* and Fra-1*/* mice
administered with PBS and bleomycin using Qiagen
RNeasy micro kit (Cat no. 74004). RNA concentration and
purity was determined before gene expression profiling
using the Affymetrix MoGene 1.0ST v1 Array (gene array)
(Affymetrix, Inc., Santa Clara, California). The microarray
labeling, hybridization and processing was performed at
the University of Illinois Research Resource Center
according to the manufacturer’s protocol. Microarray data
have been deposited in the National Center for Biotech-
nology Information Gene Expression Omnibus database
(Accession number: GSE43695).

Microarray data analysis

The raw probe signal intensities were quantile normalized
over all samples, summarized with the robust multi-array
average (RMA) algorithm [72] and log2 transformed with
a median polish, using the Affymetrix Power Tools. We
considered a transcript cluster (gene-level) to be reliably
expressed in a sample if the Affymetrix implemented
DABG (detection above ground) p-value was less than
0.05. We used local-pooled-error (LPE) estimates and ro-
bust statistical tests [73] for evaluating significance of each
gene’s differential expression in a comparison (e.g., wild-
type vs. wild-type with bleomycin treatment). The LPE es-
timation was shown to be powerful and effective in case of
a small number of replicate arrays [73]. False discovery
rate (FDR) was controlled at 1% using the LPE library for
the R Statistical Package [74].

Pathway analysis

We searched for any enriched pathways and biological
processes among the differential genes in each compari-
son relative to the genes covered on the gene expression
profiling platform using the NIH/DAVID (The Database
for Annotation, Visualization and Integrated Discovery)
[75]. Particularly, the following databases were interro-
gated: KEGG (Kyoto Encyclopedia of Genes and Ge-
nomes) [76] and GO (Gene Ontology) [77]. A minimum
of 5 genes and the Benjamini corrected p-value less than
0.01 were used to call significantly enriched pathways or
biological processes. There are distinct temporal phases
during bleomycin-induced lung injury and fibrosis.
To dissect the differential gene expression during
bleomycin-induced initial lung injury, we have analyzed
the gene expression profiles in Fra-1"* and Fra-1*/%
mice given PBS or bleomycin. We then compared the
gene expression profiles in various categories: (1) differ-
entially expressed genes in the lung tissue of Fra-1°/"
mice vs. Fra-1"* mice (Table 1), (2) differentially
expressed genes induced by bleomycin in the lung tissue
of Fra-1""* vs. Fra-1** (Table 2), (3) unique gene ex-
pression induced by bleomycin in the lung tissue of Fra-
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1" mice (see Additional file 1: Table S1), and (4)
unique gene expression induced by bleomycin in the
lung tissue of Fra-1*'* mice (see Additional file 2: Table
S2). The resulting gene lists were divided into several
categories based on functional analysis in order to dis-
sect Fra-1-dependent and -independent transcriptional
programs.

Validation of microarray analysis

Total RNA (1 pg) was reverse transcribed using qScript
c¢cDNA super mix (Quanta Biosciences, Inc. Cat no.
95048-100). qRT-PCR was performed using fluorogenic
SYBR Green and detection system (Applied Biosystems).
PCR was performed using primers listed in (Additional
file 3: Table S3). For Gcle, Marco and a-SMA, TagMan
gene expression assays were purchased from Applied
Biosystems (Foster City, CA). The cycle threshold (CT)
values for each gene were normalized to that of GAPDH,
and the relative value for PBS treated Fra-1""* was set as
one arbitrary unit (AU). Values are shown as mean *
SD, with n=3-4 for each experimental condition. Stu-
dent’s T test was used and p < 0.05 was considered
significant.

Additional files

Additional file 1: Table S1. Several unique genes expression induced
by bleomycin in lung tissues of Fra-1"* mice.

Additional file 2: Table S2. Several unique genes expression induced
by bleomycin in lung tissues of Fra-1%* mice.

Additional file 3: Table S3. Sequences of sybr green mouse primers
used for gRT-PCR.
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