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Abstract

Background: There is a lack of understanding the evolutionary forces driving niche segregation of closely related
organisms. In addition, pinpointing the genes driving ecological divergence is a key goal in molecular ecology.
Here, larval transcriptome sequences obtained by next-generation-sequencing are used to address these issues in a
morphologically cryptic sister species pair of non-biting midges (Chironomus riparius and C. piger).

Results: More than eight thousand orthologous open reading frames were screened for interspecific divergence
and intraspecific polymorphisms. Despite a small mean sequence divergence of 1.53% between the sister species,
25.19% of 18,115 observed amino acid substitutions were inferred by a statistics to be driven by positive selection.
Applying McDonald-Kreitman tests to 715 alignments of gene orthologues identified eleven (1.5%) genes driven by
positive selection.

Conclusions: Three candidate genes were identified as potentially responsible for the observed niche segregation
concerning nitrite concentration, habitat temperature and water conductivity. Additionally, signs of positive
selection in the hydrogen sulfide detoxification pathway were detected, providing a new plausible hypothesis for

Chironomus piger

the species’ ecological differentiation. Finally, a divergently selected, nuclear encoded mitochondrial ribosomal
protein may contribute to reproductive isolation due to cytonuclear coevolution.
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Background

A decade-long debate reasons to what extent Darwinian
selection or neutral processes are driving the molecular
evolution of genes and thus the ecological divergence of
species [1—4]. Selectionists argue that a large fraction of
those non-synonymous DNA base substitutions in cod-
ing genes going to fixation should be driven by positive
Darwinian selection [5]. Under a strict neutralist’s view,
most fixed amino acid substitutions have no effect on
fitness [6,7], because purifying selection constantly
removes alleles with strongly deleterious effects on fit-
ness while positive effects were thought to be extremely
rare. Later, the nearly neutral theory acknowledged that
also substitutions with slightly deleterious effects may
drift to fixation under realistic demographic scenarios
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[8,9]. While the neutral theory was the prevailing model
for several decades, the comparison of whole genome se-
quences has recently produced evidence for an import-
ant role of natural selection [3]. In particular, for
Drosophila species, natural selection has been shown to
shape both the coding and non-coding parts of the gen-
ome [10,11]. However, before being able to draw general
conclusions on the importance and mode of selection in
shaping ecological divergence, more studies of systemat-
ically diverse taxa with differing life histories, demogra-
phies and mating systems are clearly needed [3]. The
recent progress in sequencing technology [12,13] and re-
sultant ability to sequence whole transcriptomes or ge-
nomes even for non-model species now opens up this
opportunity [14]. Moreover, such approaches allow at
the same time pinpointing the genomic basis of eco-
logically relevant traits and their evolutionary history
[15-19]. This may be accomplished in two different
ways: Based on known ecological differences of the taxa
under scrutiny it is possible to assess the processes

© 2013 Schmidt et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:pfenninger@bio.uni-frankfurt.de
http://creativecommons.org/licenses/by/2.0

Schmidt et al. BMC Genomics 2013, 14:384
http://www.biomedcentral.com/1471-2164/14/384

driving the evolution of genes likely associated with the
relevant traits. This is an extension of the classical can-
didate gene or top down approach. In addition, scanning
coding genes for positive selection allows for a bottom
up approach, which Li et al. [20] called “reverse ecol-
ogy”. The principle of the latter is to identify loci whose
divergence was driven by positive selection and to infer
hypotheses about ecological differences from their bio-
logical function. In both cases, however, it remains chal-
lenging to functionally link the identified patterns with
observed phenotypic differences.

To contribute to this scientific debate, we have
conducted a comparative analysis of larval transcriptomes
among the dipteran midge sister species pair Chironomus
riparius Meigen 1804 (synonym C. thummi, respectively
C. thummi thummi) and Chironomus piger Strenzke 1959
(synonym C. thummi piger) [21]. As co-occurring, mor-
phologically cryptic sister species, they are particularly in-
teresting to perform comparative genomic analyses of
ecological niche differences for several reasons. First, due
to the shared evolutionary history, their general ecological
niche is usually similar, which makes them prime candi-
dates for interspecific competition and, to allow coexist-
ence in sympatry, niche segregation [22]. Second, fixed
genetic differences among them must have evolved during
or after divergence, thereby also reflecting the selective
forces leading to the observed ecological differences and/
or reproductive isolation. Third, their coding gene se-
quences will almost certainly be sufficiently similar to dis-
tinguish orthologous from paralogous loci [23]. Fourth,
the short evolutionary distance assures that the incidence
of multiple mutational hits at individual sites is negligible,
making it possible to infer which mutational changes have
occurred since speciation [24]. Fifth, as morphologically
cryptic species, identified differences likely not involve
anatomic differences, thereby reducing the complexity of
associating gene evolution with phenotypic differences.

The two Chironomus species show differential
swarming behaviour in the field, acting as a prezygotic
isolation mechanism [25]. While some studies indicate
that C. riparius and C. piger readily form viable and fully
fertile interspecific hybrids in the laboratory [26], others
estimate fertile hybrids in the wild to be effectively ab-
sent, due to fertility reductions caused by hybrid dysgen-
esis syndromes [27]. Indeed, no ongoing hybridisation in
the field could be found in an early chromosomal study
[28], which was corroborated by a field survey applying
microsatellites and mitochondrial markers [29]. Larvae
of both species are widely distributed in small streams,
ditches, ponds and puddles throughout the Holarctic
[28]. The species are often dominating the local
Chironomus larval community [30]. They frequently
occur together at the same sites, however, usually one
species prevails at a particular site [28,29]. As
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chironomids spend most of their lifetime as larvae and
usually even do not feed as imagines during their few
days in this stage [31], the larval stage is in general
regarded as the relevant life cycle stage for ecological
studies [32]. This is especially true for the two species
under scrutiny, C. piger and C. riparius, as they show
clear ecological differentiation as larvae [29] but nearly
none as imagines [25]. Field data indicate that C. piger
larvae are found preferentially in puddles and shallow
ditches with higher maximum water temperatures,
higher salinity, in particular higher nitrite and calcium
concentrations as compared to sites inhabited by
C. riparius [29]. The latter species often inhabits sedi-
ments with high organic content, indicating higher tol-
erance to anaerobic conditions [33], which was
confirmed in different experimental studies [34,35]. In
a recent experimental study C. piger coped better with
higher nitrite concentrations [36]. Contrary to expecta-
tions from field studies, C. riparius’ fitness tended to be
higher at both higher constant temperatures and larger
daily temperature ranges. However, the interaction of
both stressors favoured C. piger in warm, high nitrite
habitats, thus concurring to the field observations [36].
Based on this previous knowledge on ecological niche
differences, proteins with functions in cell respiration
as well as those concerning response to temperature
and solved ions, especially nitrite detoxification, are prom-
ising candidates for interspecific differences driven by
positive selection.

In this study, the following three questions were thus
addressed: i) Is positive Darwinian selection a major
evolutionary driving force for the divergence of the sis-
ter species? ii) Can genes with signs of positive selec-
tion be conclusively linked to known ecological
differences between the two sister species? iii) Can we
derive hypotheses on yet unrecognised ecological differ-
ences between the sister species from the observed pat-
tern of divergence?

Results

Sequencing, assembly and annotation

Sequencing the larval transcriptomes of the two midge
species with the Roche 454 technique resulted in
2,123,605 quality filtered reads in total (Table 1). Assem-
bly using the CLC Genomics Workbench yielded 42,524

Table 1 Summary statistics of transcriptome sequencing

C. piger C. riparius
Number of 454 reads 1,235,393 888,212
Number of contigs 42524 29917

Contig N50 length (bp) 805 914
Number of BLASTX hits < 1e° 11,326 9,187

Number of unigenes 6,323 5,705
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contigs for C. piger and 29,917 for C. riparius, respect-
ively (Table 1). Mean contig length was 621 bp for C.
piger and 732 bp for C. riparius. N50 length was 805 bp
for C. piger and 914 bp for C. riparius. Ninety-three per-
cent (C. piger) and 94% (C. riparius) of all reads could
be mapped against the obtained contigs.

Using the BLASTx algorithm, 11,326 contigs of C.
piger and 9,187 contigs of C. riparius matched entries in
the Swiss-Prot database with e-values below the thresh-
old of 1e™°. Merging hits with identical descriptions ir-
respective of the hits’ taxon assignment resulted in 6,323
unigenes in C. piger and 5,705 unigenes in C. riparius
with an overlap of 4,738 genes. Of all contigs with
BLASTx hits below 1e'° a total of 9,527 could be anno-
tated with GO terms (Additional file 1).

Alignment quality and sequence divergence

The programme ORFPredictor assigned open reading
frames (ORFs), matching the set requirements, for
41,489 contigs in C. piger (98%) and for 29,391 contigs
in C. riparius (98%), respectively. OrthoMCL built
12,685 groups of putative orthologues from translated
sequences of the two sets of ORFs from C. piger and C.
riparius. As 2,302 groups only contained sequences from
one or the other species, a total of 10,383 groups were
kept. For each group the best-fitting sequences of the
two species were then aligned and re-translated. Trim-
ming of those alignments ended in 8,031 final align-
ments with an average length of 402 bp. Of those, 1,711
alignments (21.3%) had no differences on the nucleotide
level. Besides that, there was an apparent peak around
1% sequence divergence between the species (Figure 1).
The mean sequence divergence was 1.53% on the nu-
cleotide level and 1.68% on the amino acid level, equal-
ling 18,115 amino acid substitutions in total.

Detection of intraspecific genetic variation

Single nucleotide polymorphism (SNP) identification in
the species-specific mappings considered sequencing
quality scores of the used and surrounding nucleotides,
mapping depth and quantity of the rarer allele for qual-
ity control. SNP detection across the 42,524 contigs in
C. piger identified 72,096 high quality diallelic SNP posi-
tions. After discarding all SNPs outside the defined high
quality ORFs, 25,375 SNP sites remained. Of those,
13,434 (52.9%) were non-silent, and 11,941 (47.1%) were
silent. The 29,917 contigs in C. riparius yielded 33,826
SNP positions in total, 12,032 of which were within a
high quality ORF. At 6,720 SNP positions (55.9%) the
two alleles coded for different amino acids, while 5,312
SNP sites (44.2%) were silent. Classification of SNPs
according to the frequency of their rarer allele showed
the ratio of non-synonymous to synonymous SNPs to
decrease at higher allele frequency (Table 2).
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Measure of sequence evolution for the whole
transcriptome

The estimated average proportion of amino acid substi-
tutions fixed by positive selection, a, amounted to 0.251
for the 8,031 alignments included. This estimate is sig-
nificantly greater than zero with regard to the calculated
confidence interval (95% C. I.: 0.192, 0.308). The analysis
was repeated under exclusion of (1) low-frequency and
(2) low+moderate-frequency SNPs to correct for slightly
deleterious mutations. This procedure slightly elevated o
to (1) 0.265 (C. L: 0.206, 0.323) and (2) 0.324 (C. L:
0.264, 0.378), respectively.

McDonald-Kreitman tests

The McDonald-Kreitman test (MKT), a robust test for
positive selection using substitution and polymorphism
data, could be applied to 715 alignments showing non-
zero values in all four categories of nucleotide changes.
Of those alignments, 11 (1.5%) had a ratio of non-
synonymous substitutions (D) to synonymous substitu-
tions (D) significantly greater than the ratio of non-
synonymous polymorphisms (P,) to synonymous poly-
morphisms (Ps) with a FDR-corrected p-value < 0.05,
hence bore signs of positive selection between C. piger
and C. riparius. Due to lacking BLASTx annotations in
three of them, eight alignments with reliable signs of
positive selection and available annotations remained
(Table 3).

Branch-specific w
OrthoMCL built 19,800 groups of putative orthologous
sequences by means of the four sets of protein se-
quences from C. piger, C. riparius and the two mosqui-
toes A. aegypti and C. quinquefasciatus. As only groups
with at least one sequence per species were analysed fur-
ther, a total of 4,232 groups were kept. Trimming of the
re-translated alignments of the best-fitting sequences per
species resulted in 2,558 final alignments with an aver-
age length of 496 bp. Using the programme PAML, signs
of positive selection were found in 316 alignments (12%)
in C. piger and 336 alignments (13%) in C. riparius.
Among the eight annotated genes with signs of posi-
tive selection in the MKT, two had branch-specific o > 1
in one species and < 1 in the other, indicating direc-
tional selection. Here, plasma membrane calcium-
transporting ATPase 3 showed signs of positive selection
only in C. piger and mitochondrial sulfide:quinone oxi-
doreductase only in C. riparius. One protein (39S ribo-
somal protein L44, mitochondrial) showed o larger than
one in both species, indicating disruptive selection be-
tween the species. The rest were either incalculable in
one or both species due to missing sequence data in the
four-species alignments (4x) or had branch-specific @
smaller than one (1x).
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Figure 1 Distribution of uncorrected sequence divergence between transcribed genes of C. piger and C. riparius. Shown are the rates of
substitutions between the two chironomid species per alignment. Alignments with more than 10% sequence divergence were not taken
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Discussion

Comparative  sequence-based studies are highly
dependent on data quality. The stringent approach taken
here with orthology assignment of high quality contigs
and rigorous trimming of the resultant alignments is
therefore rather conservative, despite a considerable loss
of data. One source of errors that necessitated substan-
tial trimming of the data was homopolymer stretches
that pose well-known problems when sequencing with
the 454 Roche technology [12,37,38]. By only using SNPs

Table 2 Number and frequency distribution of SNPs in
the two sister species

Pn Ps Pn*/Ps*
Low frequency SNPs 2,421 1,341 0.46
Moderate frequency SNPs 4,069 3,326 0.31
Common SNPs 13,666 12,586 0.28

SNPs were classified by the frequency of their rarer allele as follows: low
frequency < 5%, moderate frequency 5-15%, and common 15-50%. Pn = non-
synonymous SNPs, Ps = synonymous SNPs, Pn*/Ps* = ratio of non-
synonymous to synonymous SNPs per non-synonymous and synonymous
sites, respectively.

with the rarer allele observed at least twice, a misidenti-
fication of SNPs due to sequencing errors should not
have posed considerable problems as the overall sequen-
cing error rate (including both, indels and base substitu-
tions) is only 1.07% for 454 GS FLX [39]. With a mean
coverage of 176 observed at the SNP positions used, this
equals p = 0.02. Considering that only a small portion of
those 454 sequencing mistakes are base replacement er-
rors [39], the effective error rate is even lower. Further-
more, included errors will most certainly contribute
proportionally more to non-synonymous than to syn-
onymous SNPs due to the high ratio of non-synonymous
to synonymous positions. The resulting overestimation of
the ratio of non-synonymous to synonymous SNPs would
therefore rather lead to a lowered, conservative signal of
the impact of adaptive evolution in the MKT and the cal-
culation of a.

It is, however, important to be aware of other imma-
nent limitations of Next-Generation-Sequencing-gener-
ated transcriptomic data for population genetic analyses.
Transcriptomic sequences might miss alleles due to al-
lele specific gene expression [40]. This phenomenon is



Table 3 Alignments with significant MKT values and their correlating w values

Cluster BLASTx annotation (Dn/Ds)/ w interspecific w w GO terms Biological Process Hypothesised relation
(Pn/Ps) C. piger C. riparius to observed niche
- P19 - 1P differences
rp4125 Plasma membrane calcium- 9.24 0.12 9.75 0.08 metabolic process, calcium ion Tolerance of C. piger to
transporting ATPase 3 transmembrane transport, blood increased CaCOs levels due
coagulation, ATP biosynthetic to effective removal of
process, platelet activation Ca-ions from cells.
rp4927 Dolichyl-diphosphooligosaccharide— 9.86 0.24 X X protein N-linked glycosylation None
protein glycosyltransferase via asparagine
subunit STT3A
rp6124 Signal recognition particle 9.31 0.20 X # intracellular protein transport, GTP None
receptor subunit alpha catabolic process, SRP-dependent
cotranslational protein targeting to
membrane, axonogenesis, regulation
of protein secretion
rp6180 1-acyl-sn-glycerol-3-phosphate 9.21 049 1.00E-04 1.00E-04 metabolic process, phospholipid None
acyltransferase gamma biosynthetic process
rp6592 Sulfide:quinone oxidoreductase, 9.68 0.28 1.00E-04 20.37 oxidation-reduction process Presence of C. riparius in
mitochondrial anoxic, organic sediments
with increased H,S content
due to effective detoxification.
rp7097 NADH-cytochrome b5 11.62 0.11 X X oxidation-reduction process, Tolerance of C. piger to
reductase 2 lipid biosynthetic process, sterol increased nitrite levels due
biosynthetic process to effective transformation
of methhaemoglobin to
haemoglobin.
rp8023 39S ribosomal protein L44, 1844 1.10 3.77 1.12 RNA processing Reciprocal reproductive
mitochondrial isolation due to cytonuclear
incompatibilities.
rp8328 Calreticulin 10.62 045 X X protein folding, brain morphogenesis, Tolerance of C. piger to

central nervous system development,
peripheral nervous system
development, startle response,
olfactory behavior, locomotion
involved in locomotory behavior

increased habitat
temperatures.

Shown are values for all alignments with a significant MKT value (FDR-corrected p-value < 0.05) and a significant BLASTx hit (1e7'°) against the SwissProt database. w > 1, indicating positive selection, printed in bold.

x = incalculable due to missing data for the four-species alignments, # = infinite value.

(Dn/Ds)/(Pn/Ps) > 1 is an indicator of positive selection. Interspecific w values are calculated with KaKs_Calculator using the same alignments as MKT; species-specific w values are calculated with codeml using
four-species alignments.
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wide-spread [41,42] and may result in an underestima-
tion of intraspecific variation. However, as allele specific
gene expression is due to differential DNA methylation,
this may not present a substantial problem here, as
Dipterans have lost the main methylation enzymes in
their evolutionary history [43]. Other limitations for
the use of our data are due to the experimental design.
The pooling of individuals, although a common and
recommended strategy for non-model organism studies
aiming to identify as many alleles as possible [44], did
not allow scoring individual genotypes, which in turn
precluded calculations of allele frequencies. For this
study, 60 individuals per species were sequenced at a
mean mapping depth of 9.9 nucleotides per position for
C. piger and 9.5 for C. riparius across all loci. As we
have used a minimum coverage of 10 reads per position
in each species for SNP detection, we have discovered
only segregating alleles with a frequency over 0.25 with
a probability of > 90%.

Interspecific patterns for the whole transcriptome

The mean interspecific nucleotide sequence divergence
of 1.53% on the cDNA level, the mean silent site rate in
coding regions (dS) of 0.06 and the fact that 1,711 align-
ments (21.3%) showed no differences at all, together il-
lustrate the relatively close phylogenetic relationship
between the sister species C. piger and C. riparius. Ac-
cordant calculations between two reproductively isolated
‘biotypes’ of the cryptic whitefly species Bemisia tabaci
revealed a mean divergence of 0.83% [45], while 1.5%
divergence were found between the two closely related
Drosophila species D. simulans and D. sechellia [46]
and 2.5% divergence between two very young sympatric
crater lake cichlid fishes [47]. A recent study across
transcriptomes of the copepod Tigriopus californicus
even revealed higher median divergence on the
interpopulation level [2.71%, 17]. On the other hand, the
conservative alignment strategy taken here, with exclu-
sion of seemingly too heterogeneous parts, may have led
to a slight underestimation of the overall sequence diver-
gence, as suggested by the 2.14% of coding sequence di-
vergence in the vwvz/7B globin gene cluster of C. piger
and C. riparius [48].

Since estimations of the species divergence time of
C. piger and C. riparius based on large amounts of se-
quence data are lacking to date, the overall synonymous
substitution rate of the ORFs was used for a rough mo-
lecular clock calculation. Drosophilids are the best-
analysed dipteran system concerning molecular clock
analyses with rates of synonymous substitution per syn-
onymous site per million years of 0.016 [49], 0.015 [50],
and 0.011 [51]. Transferring these brachyceran rates to
the nematocerans C. piger and C. riparius resulted in
an estimation of the species splitting event about 1.3 to
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1.8 million years ago, which translates to a multiple
number of generations since divergence in this multi-
voltine species. This time frame clearly illustrates the
existing potential for evolutionary processes to shape
the species’ genomes.

Number of genes identified

The number of genes found in the larval transcriptomes
of C. piger (6,322) and C. riparius (5,705) is roughly a
third to half the number of genes found in the genomes of
the nematocerans Anopheles gambiae [n = 13,683, 52],
Aedes aegypti [n = 15,419, 53], Culex quinquefasciatus
[n = 18,883, 54] and the dipteran Drosophila melanogaster
[n = 13,379, 55]. The discrepancy is explained by the fact
that certainly not all genes are expressed in the L4 stage of
the midges and only a single stressor (heat) was applied.
For example, Drosophila larval stages were shown to ex-
press only 4,900 to 7,000 different mRNAs at once [56].
Moreover, using non-normalised cDNA libraries likely
resulted in missing genes with low expression levels.

Global patterns of gene evolution

The a statistics showed approximately a quarter (25.1%)
of the 18,115 amino acid substitutions to be driven by
positive selection. This finding is close to the average of
30.1% found by Eyre-Walker in a meta-study of 25 inter-
species comparisons [5]. In another meta-study Fay
reported that 47% of 38 analysed species showed signs
of positive selection, often affecting ca. 40% of all non-
synonymous substitutions [57]. Among other factors, the
level of adaptive evolution was shown in the former
study to positively correlate with effective population
size [5]. Bayesian coalescence analysis of published mito-
chondrial COI sequences estimated the effective mito-
chondrial population size to be quite high with 1.8 x 10”
(c.f. 1.7 x 10° — 8.0 x 107) for C. piger and 3.1 x 10° (c.f.
1.3 x 10° — 1.4 x 107) for C. riparius, respectively [29].
An average Fgr of 0.027 for C. piger and 0.046 for C.
riparius indicates little among population differentiation
in both species [29]. Drift within both species thus
seems to be a minor driving force here, a circumstance
rendering natural selection particularly effective [58].

Inference of positive selection from polymorphism data
For the detection of positive selection on the level of in-
dividual genes, most reliable results can be gained from
the MK test, which is more robust to demographic
biases than, e.g. the popular dN/dS method [59,60].
However, the MK approach necessitated a more than
80% reduction of the data set, due to the high sequence
similarity between the sister species. Of the remaining
715 genes used to calculate MK statistics, 11 (1.5%)
showed significant signs of positive selection.



Schmidt et al. BMC Genomics 2013, 14:384
http://www.biomedcentral.com/1471-2164/14/384

This proportion of 1.5% of positively selected candi-
date genes inferred with the MKT appears rather moder-
ate. This is especially so, since the genes expressed in
the final larval stage of chironomids should be particu-
larly prone to increased diversifying selection compared
to the rest of the genome, because this is the phase in
the life of the midges during which the competition (e.g.
for space and food) is potentially most severe among
species [61]. A recent genomic comparison of congen-
eric shallow and deep sea urchins indeed confirms that
in particular genes expressed in the ecologically diver-
gent life cycle stage show increased signatures of positive
selection [15]. The chironomid L4 transcriptomes may
thus perhaps even overestimate the impact of adaptive
evolution on the entire coding genome. On the other
hand, the MKT is rather conservative and positive selec-
tion having occurred early in divergence may have lost
its signature [62].

Ecological implications of positively selected genes
Although a sign of positive selection alone is only the
first step in defining the genetic basis of ecological dif-
ferentiation, such analyses are able to deliver promising
potential candidate genes [63]. Among the eleven genes
with significant signs of positive selection in the MKT,
eight could be functionally annotated. Five of these
genes suggest a correlation either to observed or so far
unrecognised ecological differences between C. piger and
C. riparius or to the evolution of reproductive isolation.

One of them, calreticulin, is a chaperone involved in
protein folding and rejection of misfolded proteins in
the endoplasmic reticulum [64]. It might thus be linked
to the different maximum temperatures in the respective
habitats of C. riparius and C. piger [29], as increased
temperature destabilises and degrades proteins [65].

The NADH-cytochrome b5 reductase 2 is also known
as methemoglobin reductase, which describes its main
function, the reduction of methaemoglobin to haemoglo-
bin [66]. One of the main environmental agents causing
the formation of detrimental methaemoglobin are ni-
trate/nitrite [67], thus matching the observed and ex-
perimentally confirmed differential adaptation of the
chironomid sister species to environmental nitrite con-
centrations [29,36]. An increased efficiency due to positive
selection in converting methaemoglobine would certainly
explain the higher nitrite tolerance of C. piger and thus
identify a genomic basis for the observed niche difference.
Because chironomids possess more than 40 different
globins [68,69] which can make up as much as 90% of
the last instar’s total hemolymph protein [48,70], this
might be of particular importance. Unfortunately, the
methemoglobin reductase was not found in the dataset of
all four taxa used in the branch-specific test, which pre-
cludes the inference of the direction of selection.
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The branch-specific o for plasma membrane calcium-
transporting ATPase 3 (PMCA3) revealed positive selec-
tion on the C. piger branch (0 = 9.75), as opposed to a
neutral evolution of this gene in C. riparius (w = 0.08).
PMCA3 is responsible for the removal of calcium out of
the cell [71]. Interestingly, Pfenninger and Nowak [29]
demonstrated conductivity in general and CaCOj3 con-
centrations in particular to be significantly correlated to
the relative abundance of C. piger and C. riparius, with
the latter preferring lower concentrations, thus lending
ecological plausibility to PMCA3 as a candidate gene for
positive selection.

Besides proposing candidate genes for the known eco-
logical differences between C. riparius and C. piger, the re-
verse ecology approach of studying whole transcriptomes
also yields novel gene candidates with plausible relevance
to the ecology and evolution of the sister taxa:

Sulfide:quinone oxidoreductase is involved in hydro-
gen sulfide detoxification [72]. Hydrogen sulfide is pro-
duced by microorganisms under anaerobic conditions,
being highly toxic to most metazoans. The prevalence of
C. riparius in anaerobic habitats like sewage sludge [34]
might therefore at least partly be based on higher hydro-
gen sulfide tolerance. In accordance with this hypothesis
is the high o detected on the C. riparius branch (20.37)
for sulfide:quinone oxidoreductase in contrast to the C.
piger branch (le®), suggesting adaptation to increased
H,S levels in sediments of eutrophic water.

The nuclear encoded 39S ribosomal protein L44 inter-
acts closely with mitochondrially encoded rRNA mole-
cules [73], thus providing the basis for cytonuclear
coevolution, in which structural changes in one partner
(usually the faster evolving mitochondrial genome) pro-
vide the stage for selection-driven compensatory changes
in the interaction partner [74]. Intriguingly, the branch
specific analysis shows positive selection along the
branches of both species. If the resulting changes in pro-
tein structure led to incompatibilities with the mito-
chondrial rRNA of the respective other species in the
formation of mitochondrial ribosomes, they may at least
partially explain the observed reproductive isolation in
the wild [75]. Cytonuclear incompatibilities indeed have
been shown to confer reproductive isolation among
other insects species [76].

Conclusions

In accordance with recent meta-studies [5,57] on the
genome-wide prevalence of positive selection in insects,
the data presented here argue that such Darwinian pro-
cesses are likely to have played an important role in the
divergence of Chironomus piger and C. riparius. Several
gene loci showing signatures of directional or disruptive
positive selection can explain observed ecological char-
acteristics of niche divergence. In addition, the reverse
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ecology approach pointed towards a new hypothesis with
respect to the higher anaerobic tolerance of C. riparius.
The signs of positive selection on a sulfide:quinone oxi-
doreductase gene in this species suggest the possibility
that this adaptation depends at least partly on a higher
H,S-tolerance.

Obviously, the above hypotheses, based solely on bio-
informatic analysis of transcriptome sequences, need
further investigations, in particular ecological experi-
ments and functional protein assays, to functionally link
the proposed candidate genes to the observed traits. In
addition, there are likely several, if not many other fixed
functional differences among the sister species, which
affect protein structure and gene expression and thereby
determine their respective niches. The presented study is
therefore but a first step to fully understand the genomic
basis of the ecological differences between C. piger and
C. riparius. However, since many of the known eco-
logical differences are plausibly mirrored by patterns of
sequence evolution, the taken approach appears to be a
valuable starting point to dig deeper into the genomic
details of niche segregation.

Methods

The Chironomus riparius and C. piger specimen used in
this study were taken from laboratory cultures originally
collected in 2009 from the field in south-western
Germany as described in Nemec et al. [36]. The species
were kept in relatively large (> 400 individuals) popula-
tions for about 3-4 generations prior to the present
study. In a previous study, populations of this size kept
for more than 10 generations under identical conditions
showed no significant reduction of genetic diversity due
to drift [77]. Freshly hatched larvae were reared at 20°C
and 27°C in climate chambers with 16 hours lighting per
day and fed ad libitum on commercial flake food for
aquarium fish. The two different conditions were chosen
because the resulting data was planned to be used for a
study on differential gene expression and play a minor
role here. On attaining larval stage four (L4), 30 larvae
per treatment and species were shock-frozen at —-80°C.

RNA isolation, library preparation and sequencing

RNA isolation with Qiagen RNeasy Mini Kit (Qiagen)
from the 30 whole larvae per treatment and species was
followed by DNase digestion and purification of mRNA
with Invitrogen Dynabeads (Invitrogen). Subsequently,
four cDNA libraries, barcoded with multiplex identifier
adaptors, were created using the cDNA Rapid Library
Preparation Method Manual (Roche). Libraries were not
normalized since this data was intended for use in a fur-
ther gene expression study. After titration, each library
was sequenced on half a titanium plate on a Roche 454
GS FLX system (Roche) according to the manufacturers’
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instructions. All sequences were deposited in the NCBI
Sequence Read Archive (accession numbers SRR834934,
SRR835079, SRR834592, SRR834593). Sequences were
processed to remove adaptors, low quality sequence
parts (at least an average quality score of 20 for the last
ten bp), and sequences below 50 bp prior to assembly.

Assembly and annotation

Filtered reads were pooled per species and assembled de
novo using the CLC Genomics Workbench 4.9 (CLC Bio,
Aarhus, Denmark) with default settings (word size = 20,
bubble size = 50). After assembly all reads were mapped
back against the contig sequences for quality control and
identification of variable sites (see below).

All obtained contigs were compared to the Swiss-Prot
database using the BLASTx algorithm [78] with a cut-off
E-value of < 1e'°. Functional annotation was performed
using the terminology provided by the Gene Ontology
(GO) Consortium [79] in the category Biological Process
(BP). This category “refers to a biological objective to
which the gene or gene product contributes” [79] and
therefore allows most informative linkage to ecological
differences. The Swiss-Prot accession number of the best
local alignment was used to annotate the respective gene
with the associated GO terms. The Uniprot GO annota-
tion file (v2.0) was obtained from the download section
of geneontology.org.

Obtaining high quality alignments of orthologous
sequences of C. piger and C. riparius

Protein sequences were obtained by predicting open
reading frames (ORFs) with the Python program
ORFPredictor (unpublished software by L. Wissler, avail-
able upon request by the authors). ORFPredictor uses
the best local alignment from the BLASTx searches de-
scribed above and searches the respective ORF from that
starting point. For all contigs without BLAST hit,
ORFPredictor outputs the longest contiguous closed
ORF above the set minimum of 30 amino acids. Every-
thing but the ORF sequences was discarded for down-
stream analyses. To obtain alignments of orthologous
genes, the protein sequences were clustered using
orthoMCL 2.0 [80] with standard settings. To remove
paralogs, the sequences of all clusters with at least one
sequence of each species were aligned using T-Coffee
8.99 [81]. For each cluster only the sequence of each
species with the highest similarity to the sequence of the
other species was used for further analyses. Pair-wise
alignments were created using MUSCLE 3.8.31 [82] with
standard settings. Those final protein alignments were
(re)converted to the respective nucleotide alignments
using PAL2NAL 13.0 [83], drawing on the respective nu-
cleotide sequences after ORF-prediction. The nucleotide
alignments were trimmed to the same length in both
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species. Visual inspection of the alignments showed the
ends to frequently contain frame shifts, mainly due to
differences in homopolymer length in 454 Chironomus
sequences. Consequently, the nucleotide alignments
were further trimmed by 15 bp at each end. As an add-
itional quality control step, all alignments with a pair-
wise p-distance > 0.1 between the two Chironomus spe-
cies were excluded. This highly conservative filtering to
remove residual poor alignments was chosen as it has
been shown that even the intergenic regions of C. piger
and C. riparius show an overall sequence identity of
90.8% [48].

Counting polymorphic and divergent sites

Substitution counts were obtained from the output of
KaKs_Calculator 1.2 [84], SNP detection was performed
using the accordant tool in the CLC Genomics Work-
bench and the respective mappings of the aligned
contigs. Only SNPs with a minimum mapping depth of
ten, two alleles and at least two occurrences of the rarer
allele were considered. Any SNP with a quality score
below 20 and any with more than three surrounding
bases with quality scores below 15 was ignored. SNPs
then got classified as silent/ non-silent using self-
written scripts. SNP-counts for both species were added
up per gene.

Measurement of sequence evolution for the whole
transcriptome

Evidence for the transcriptome-wide prevailing mode of
selection between two species can be gained by estimat-
ing o, the average proportion of interspecific amino-acid
substitutions which are driven by adaptive evolution
[85,86]. The calculation was performed using the
method described by Smith and Eyre-Walker [86] and
implemented in the DoFE software package 3.0 [87].
The analysis was based on the counts for non-
synonymous and synonymous substitutions, non-silent
and silent polymorphisms and non-synonymous and
synonymous positions per gene of the 8,031 two-species
alignments. The confidence interval for a was obtained
by 1,000 bootstraps with randomly selected genes. As
slightly deleterious mutations contribute more to poly-
morphisms than to divergence, the SNPs were then clas-
sified by the frequency of their rarer allele into low
frequency SNPs (< 5%), moderate frequency SNPs (5-
15%), and common SNPs (15-50%) following Fay et al.
[88]. Afterwards, the calculation of o was repeated under
exclusion of low frequency SNPs and low+moderate fre-
quency SNPs, respectively.

McDonald-Kreitman tests
The McDonald-Kreitman test [89] identifies patterns of
sequence evolution by comparing synonymous/non-
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synonymous divergence versus silent/non-silent poly-
morphisms. It is very robust to different demographic
factors [59,60] and does not suffer from inherent prob-
lems of w analyses concerning nonlinear correlations of
two randomly distributed variables [90]. The MKT itself
depends on the assumption that D, /Dy > P,/P indicates
an excess of adaptive amino acid substitutions and thus,
positive selection. No input value must be zero. The dis-
tribution across the four classes is then tested for inde-
pendence on a 2 x 2 contingency table using an
appropriate statistic (x> test with false discovery rate
(FDR) correction for this study).

Inferring the direction of positive selection
To distinguish whether positive selection acted directionally
on the branch leading to the one or the other species for
the genes identified by MKT, a likelihood approach depend-
ing on phylogenetic alignments was used. Protein se-
quences from the phylogenetically closest genome
sequenced organisms Aedes aegypti (PEPTIDES-Aaegl.1.2)
and Culex quinquefasciatus (PEPTIDES-CpipJ1.2) were
downloaded from VectorBase (vectorbase.org). The pre-
dicted ORFs for C. piger and C. riparius specified above
were also used for the subsequent analyses. Clusters
obtained by OrthoMCL as described above were split into
two groups, according to phylogenetic relatedness: C.
riparius and C. piger as non-biting midges and A. aegypti
and C. quinquefasciatus as biting midges. Pair-wise
MUSCLE alignments of these sub-clusters were then
merged with the same program and re-translated as de-
scribed above, additionally using the nucleotide sequences
of C. quinquefasciatus (TRANSCRIPTS-CpipJ1.2) and A.
aegypti (TRANSCRIPTS-Aaegl.1.2) from VectorBase.
Trimming was performed as described in the upper part.
Tests on positive selection were performed by applying
the codeml algorithm from the PAML program package
4.4 [91,92] to the four-species alignments. Some models
in codeml allow discrete w values for different taxa in
one analysis, providing valuable information about the
species’ contribution to divergent evolution. Calculation
of global » values using the one ratio model was
followed by calculation of branch-specific o using the
free ratio model. As the free ratio model is very
parameter-rich and therefore prone to biases, only align-
ments with significantly better likelihood scores (X% p =
0.05) for the more sophisticated free ratio model were
considered for subsequent summary. Alignments with
dS > 1 on the chironomid branches were discarded.

Additional file

Additional file 1: GO annotation of transcripts. Representation of the
GO terms from the category Biological Process across the Blastx annotated
transcripts. Percentages are based on the number of genes successfully
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annotated per species. Shown are all GO terms associated to at least
1.5% of all transcripts.
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