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Abstract

Background: Cotton fiber length is very important to the quality of textiles. Understanding the genetics and
physiology of cotton fiber elongation can provide valuable tools to the cotton industry by targeting genes or other
molecules responsible for fiber elongation. Ligon Lintless-1 (Li;) is a monogenic mutant in Upland cotton
(Gossypium hirsutum) which exhibits an early cessation of fiber elongation resulting in very short fibers (< 6 mm) at
maturity. This presents an excellent model system for studying the underlying molecular and cellular processes
involved with cotton fiber elongation. Previous reports have characterized Li; at early cell wall elongation and
during later secondary cell wall synthesis, however there has been very limited analysis of the transition period
between these developmental time points.

Results: Physical and morphological measurements of the Li; mutant fibers were conducted, including
measurement of the cellulose content during development. Affymetrix microarrays were used to analyze transcript
profiles at the critical developmental time points of 3 days post anthesis (DPA), the late elongation stage of 12 DPA
and the early secondary cell wall synthesis stage of 16 DPA. The results indicated severe disruption to key hormonal
and other pathways related to fiber development, especially pertaining to the transition stage from elongation to
secondary cell wall synthesis. Gene Ontology enrichment analysis identified several key pathways at the transition
stage that exhibited altered regulation. Genes involved in ethylene biosynthesis and primary cell wall
rearrangement were affected, and a primary cell wall-related cellulose synthase was transcriptionally repressed.
Linkage mapping using a population of 2,553 F, individuals identified SSR markers associated with the Li; genetic
locus on chromosome 22. Linkage mapping in combination with utilizing the diploid G. raimondii genome
sequences permitted additional analysis of the region containing the Li; gene.

Conclusions: The early termination of fiber elongation in the Li; mutant is likely controlled by an early upstream
regulatory factor resulting in the altered regulation of hundreds of downstream genes. Several elongation-related
genes that exhibited altered expression profiles in the Li; mutant were identified. Molecular markers closely
associated with the Li; locus were developed. Results presented here will lay the foundation for further
investigation of the genetic and molecular mechanisms of fiber elongation.
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Background

Cotton seed fibers are single-celled trichomes that initi-
ate from the ovule epidermal cells on or about the day
of anthesis (DOA) [1]. Approximately 25% of the ovule
epidermal cells differentiate into fiber cells during the
initiation stage of cotton fiber development and subse-
quently undergo a period of rapid elongation known as
the elongation stage [2,3]. The rate of fiber elongation
peaks at approximately 6 to 12 days post-anthesis (DPA)
and nears cessation around 22 DPA [4]. During peak
elongation fiber cells can increase in length at rates of 2
mm / day or more depending on environmental factors
and genotypes [5-7]. Beginning at 12—16 DPA and over-
lapping with the elongation phase is the secondary cell
wall (SCW) biosynthesis stage. During this stage cellu-
lose is synthesized and deposited between the primary
cell wall and the plasmalemma [8,9]. The period of over-
lap between the elongation stage and the initial stage of
SCW biosynthesis is referred as the transition period.
Elongation and SCW biosynthesis continue until the fi-
bers reach full length [25-30 mm in Upland cotton
(Gossypium hirsutum L.) cultivars] [10], after which the
cotton bolls open and the fibers desiccate under expos-
ure to the environment. The environmental and genetic
factors that influence the timing of these processes have
been shown to also influence the development of desir-
able fiber traits such as lint yield and fiber quality
[7,11-13].

Several naturally occurred cotton mutations affecting a
range of fiber phenotypes have been genetically and
functionally characterized in cotton. Examples include
the completely glabrous seeds (lintless and fiberless) ob-
served in MD17 [14], the fuzzless/lintless () mutant of
XZ-142 [15,16], and lines with seeds containing only lint
and no fuzz, such as the naked seed lines N; and 7,
[17]. Mutant lines exhibiting very short seed fibers in-
clude the Ligon Lintless-1 and -2 lines (Li; and Li,)
[18,19]. Recently, Cai et al. [20] analyzed a man-made
mutant Lix that showed similar phenotype to Li;. The
understanding that initiation, elongation, and secondary
cell wall synthesis are distinct developmental processes
often leads to the utilization of the applicable mutant to
study the specific process of interest. For example, fI
mutant seeds lacking any fiber emergence have served as
models for studying initiation processes where enrich-
ment of the homeodomain-leucine zipper transcription
factor (GhHD1) and GhMyb25 were identified as import-
ant for initiation [21,22]. Likewise, N;, with its lack of
fuzz fiber and sparsely-distributed lint fibers has been
used to characterize fiber elongation processes [17].

In a near-isogenic state with the cotton line Texas
Marker-1 (TM-1), both the Li; and Li, mutants have
seed fibers that are extremely short (< 6 mm) compared
to wild type (WT) fibers that are typically greater than
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20 mm in length [19,23,24]. As a monogenic dominant
trait, the short-fiber phenotypes of Li; and Li, are identi-
cal in either a homozygous dominant or heterozygous
state. Unlike the Li; mutant which appears healthy and
morphologically identical to the homozygous recessive
wild-type plants with the exception of shorter seed fi-
bers, the Li; mutant exhibits pleiotropy in the form of
severely stunted and deformed plants in both the homo-
zygous dominant and heterozygous state [23].

Since the seed fibers of Li; and Li, fibers are shortened
lint and fuzz fibers, these cotton mutants represent ex-
cellent candidates to study the molecular mechanisms of
fiber elongation. Previously, our laboratory conducted
extensive analysis of the Li, mutant using microarray
technology, molecular mapping and metabolomic
analysis [25,26]. We developed microsatellite markers
associated with the Li, genetic locus, and identified tran-
scripts or genes and metabolites that were affected by
the Li, mutation. In order to gain more comprehensive
knowledge about cotton fiber development, and espe-
cially fiber elongation, we included the Li; mutant as a
subject of our investigation.

The Li; mutant has been used as a model to study
both primary and secondary cell wall processes [27-30].
However, previous microarray experiments with the Li;
mutant conducted during either very early elongation or
later SCW stage failed to identify significant numbers of
differentially expressed transcripts. For example, the
microarray experiments conducted by Bolten et al.[28]
using 24 DPA fibers only identified ~100 differentially
expressed transcripts, notable among them SuSy, Expan-
sins, and Myb transcription factors. However, apparent
phenotypic differences in the Li; as early as 3 DPA [31]
indicating that altered gene expression may exist at or
before this stage. Noting this, a microarray experiment
conducted by Liu et al. [27] analyzed the Li; mutant at
the initiation and elongation stages of 0, 3 and 6 DPA.
Their findings concurred with several earlier studies on
the relevance of auxin, gibberellins, brassinosteroid and
ethylene-related pathways in fiber development. Elong-
ation stage (6 DPA) fibers from Li; demonstrated a sig-
nificant alteration in transcript profiles, with 1,398 target
sequences showing altered expression in the mutant.
Despite this, a crucial gap remains in our understanding
of how the Li; mutation affects the transcript profile at
the transition period (later elongation stages and early
SCW stages). This paper is the first attempt to analyze
gene expression patterns in the Li; mutant using micro-
array technology at these critical developmental stages.
Here we provide a more complete picture of the mo-
lecular events directly controlling fiber elongation. Fur-
ther, it will better define the mutation in terms of its
effects on primary cell wall elongation and early second-
ary cell wall synthesis.
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Prior research has determined that the Li; gene is lo-
cated on chromosome 22 using both SSR [31] and RFLP
markers [32]. Karaca et al. [31] identified the SSR marker
MP4030 that was 12.83 ¢cM away from the Li; locus. Rong
et al. [32] provided the highest resolution to date, deter-
mining Li; was flanked by RFLP markers Gate4CAQ09 and
CoaulJ04 at 2.7 and 1.3 cM away, respectively, based on
151 F, progeny derived from an interspecific cross of G.
barbadense Pima S-7 x Li; mutant.

In order to conduct a comprehensive study of the Li;
mutant, we first created near-isogenic lines (NIL) in
DP5690 genetic background by implementing an exten-
sive backcross scheme. The use of DP5690, a modern
variety, exhibits stronger growth characteristics than
TM-1 in many climates and permits for additional ana-
lysis with the previously characterized Ligon Lintless-2
(Lis), which is also in the DP5690 background [25].
Using the two NILs as parents, we made a very large F,
population comprising 2,553 progeny which was used to
identify molecular markers closely associated with the
Li; locus. To understand the molecular events that con-
trol fiber elongation and identify regulatory elements in-
volved in this process, we obtained transcript profiles at
3 DPA (beginning of elongation), 12 DPA (late elong-
ation stage) and 16 DPA (early SCW) using Affymetrix
microarrays, and analyzed morphological characteristics
of fibers from the Li; NILs at different developmental
stages. The objectives of this research were to determine
the location of the Li; locus on the chromosome, and
identify genes that were differentially expressed during
the development of WT and mutant Li; fibers. This in-
formation will, in turn, be useful to identify the Li; gene,
and help to elucidate the molecular mechanisms of this
gene on fiber elongation.

Methods

Plant materials for microarray and quantitative PCR
(qPCR) experiments

Two near-isogenic lines of Li; Upland cottons (Gossypium
hirsutum L.) that were homozygous dominant (Li;Li;) and
homozygous recessive (li;li;) for the Li; locus were devel-
oped in a backcross program at Stoneville, MS in field and
greenhouse environments (Figure 1A). Texas marker-1
(TM-1) cotton plants containing the Li; gene were crossed
with the Upland cotton variety DP5690. F; progeny were
backcrossed for five generations (BCs) by single seed de-
cent (SSD) to DP5690 which served as the recurrent par-
ent in each backcross. At the end of BCs cycle, plants with
Li; phenotype were self-pollinated. The DP5690 recurrent
parent was a pure inbred line that was self-pollinated for
nine generations via SSD (Additional file 1). Progenies in
each backcross were selected based on the phenotype for
the Li; short-fiber mutation.
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For the microarray and qPCR experiments, a total of
100 homozygous (Li;Li;) Li; mutant and 100 WT (li;li;)
plants were planted in a field at the Southern Regional
Research Center, New Orleans, LA in the summers of
2011 and 2012. The soil type in New Orleans was
Aquent dredged over alluvium in an elevated location to
provide adequate drainage. Flowers were tagged and
sample collections were made before 10:00 am and im-
mediately placed on ice. All samples collected within
each developmental stage were tagged and collected on
the same day. Fruits were randomly grouped into 3 indi-
vidual replicates with 5-10 fruits per replicate. Fruits
were then dissected, frozen in liquid nitrogen and stored
at —80°C until further processing.

Mapping population

A WT DP5690 (li,li;) was used as the female in a cross
with its near-isogenic mutant line (Li;Li; homozygous
plant). Two thousand five hundred fifty-three F, plants
derived from approximately 20 F; plants were planted
along with their parents in a field in Stoneville, MS in
2012. The Li; trait of each F, progeny plant was evalu-
ated after boll maturation and opening (about 60 DPA).
Standard conventional field practices were applied dur-
ing the growing season. The soil type in Stoneville, MS
was Bosket very fine sandy loam.

Fiber length and cellulose content measurements

Fiber length was measured using the method described
by Schubert et al. [6]. Two replicate samples with 10
ovules each were measured. For mass determination, air-
dried fibers were gently removed from all ovules of each
sample, and weighted on an analytical balance. Cellulose
content from each fiber sample was measured using the
method described by Updegraff [33] with minor modifi-
cation. Dried fiber samples were cut into small pieces.
Ten mg of the blended fibers were placed in 5 mL
Reacti-Vials™ (Thermo Fisher Scientific, Waltham, MA).
Non-cellulosic materials in fibers were hydrolyzed with
acetic-nitric reagent. The remaining cellulose was hydro-
lyzed with sulfuric acid and measured by a colorimetric
assay with anthrone using Avicel PH-101 (FMC,
Rockland, ME) as a cellulose standard. The average cel-
lulose content for each fiber sample was obtained from
two biological and three technical replications.

Imaging analysis of fiber cross-sections

Fibers from 28 and 40 DPA were manually separated
from the seed. After bundling the fibers together, a new
razor blade was used to cut 2.5 — 3 mm of fiber from
the end to be sectioned. This ensured a majority of fi-
bers were cross-sectioned near the middle of the fiber.
The fiber samples were embedded, thin-section cut, and
photographed using the method previously described
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DPA 28

DPA 40

Li; mutant fibers (200x magnification).

Figure 1 Phenotype of the Li; mutant and its wild type. A) Comparison of phenotypes observed in wild type DP5690 and Li;/ Li; mutant
under field conditions after opening (top row) and of single individual seeds (bottom row). B) Measurements of fiber length, mass, density and
fiber cellulose content in the wild type (DP5690) and Li;/ Li; mutant. C) Cross-sectional images of fibers from 28 and 40 DPA wild type (WT) and
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[34]. The images were taken using a Nikon Cambridge
Quantimet 900 microscope at 200x magnification with a
Hitachi KP-DSO camera.

RNA isolation from cotton fibers

RNA was isolated as previously described [25]. Briefly, ma-
terial was obtained from developing ovules using a glass
bead shearing technique [35]. To separate the fibers from
the ovules the samples were shaken vigorously enough to
break fibers without damaging the ovules. Isolation of RNA

was conducted using the Sigma Spectrum™ Plant Total
RNA Kit (Sigma-Aldrich, St. Louis, MO) with on-column
DNasel digestion according to the manufacturer’s instruc-
tions. RNA quantity was determined by using a Nanodrop
2000 spectrophotometer (NanoDrop Technologies Inc.,
Wilmington, DE). A RNA integrity number (RIN) was de-
termined for each sample using an Agilent Bioanalyzer
2100 and the RNA 6000 Nano Kit Chip (Agilent Technolo-
gies Inc., Santa Clara, CA). Only samples with RIN values
of 7.0 or higher were used for further analysis.
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Microarray hybridizations and data analysis
The minimum information about microarray experiments
(MIAME) guidelines were followed for all microarray ex-
periments conducted in this study [36]. The microarray
chips used for this study were the commercially available
Affymetrix GeneChip® Cotton Genome Microarray
(Affymetrix Inc., Santa Clara, CA), comprising 239,777
probe sets representing 21,854 cotton transcripts from a
variety of EST databases. Labeling of the RNA was
conducted using the Affymetrix GeneChip® 3" IVT Ex-
press Kit and hybridizations were conducted according to
the manufacturer’s protocols. Hybridizations were con-
ducted on 3, 12, and 16 DPA samples with two biological
replicates from each developmental stage. Data nor-
malization and the determination of statistically relevant
deviations in expression patterns were performed as de-
scribed [37]. To assist in analysis of biological processes
represented in the data, Gene-Ontology Enrichment Ana-
lysis (GOEA) was performed using the agriGO Singular
Enrichment Analysis tool [38]. The statistical test method
used was the Fisher’s Exact test (significance level 0.05).
Annotation of the probe sets was accomplished with
Blast2Go [39], and analysis of the cellulose synthase
probes was conducted by translating all 6 reading frames
of the probe sets and subjecting them to blastp analysis.
To investigate the activity of known cell elongation and
cell wall-related genes, the microarray probe sets were
compared with published lists of genes [27,40]. Each probe
set reference sequence was aligned to the G. raimondii ref-
erence genome [41] with blastn and the best hit with e
value of 1x107° or smaller was used to establish an anno-
tation. The G. raimondii gene annotations specify an
arabidopsis homolog for each gene, which was used to
classify the functions of each Affymetrix probe set.
Seventy-four probe sets were classified as elongation genes
based on an earlier report [27]. To classify probe sets as
primary or secondary cell wall genes, co-expression with
arabidopsis microarray data with known primary or sec-
ondary cell wall cellulose synthase genes [40] was obtained
from ATTEDII [42]. This strategy produced lists of 81 pri-
mary cell wall and 43 secondary cell wall gene probe sets.

Reverse transcription and quantitative PCR

The cDNA reactions were performed using the iScript™
c¢DNA Synthesis kit (Bio-Rad Laboratories, Hercules, CA)
per the manufacturer’s instructions. The reaction without
reverse transcriptase served as negative control for testing
genomic DNA contamination of the RNA samples. This
reaction was then used as template in a qPCR reaction to
verify that no amplification occurred. After cDNA synthe-
sis, the qPCR reaction was conducted using iTag™ SYBR®
Green Supermix (Bio-Rad Laboratories) in a Bio-Rad
CEFX96 real time PCR detection system. PCR conditions
and the protocols for determining primer efficiencies were
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as previously described [25]. Ubiquitin-conjugated protein
(UCP) (Genebank AI730710) was used as the endogenous
reference gene. Primer sequences are listed in Additional
file 2.

SSR marker analysis and genetic mapping

Young leaves were collected from each individual F, plant
and parents, and stored at -80°C. Total DNA was
extracted from frozen leaves according to Fang et al. [43].
The Li; gene was previously determined to reside on
chromosome 22 (Chr. 22) [31,32]. To rapidly identify mo-
lecular markers closely linked to the Li; locus, all simple
sequence repeat (SSR) markers that were mapped on both
Chr.22 and its homeologous Chr. 4 based on the high
density consensus genetic map [44] were selected for ana-
lysis. RFLP markers reported by Rong et al. [32] were not
screened due to unavailability of probes, and technical dif-
ficulties for RFLP marker analysis. The SSR markers
mapped on Chr. 5 and its homeologous Chr.19 were also
included because of a known translocation between Chr. 4
and Chr. 5 [45,46]. All together, a total of 921 SSR markers
mapped in these four chromosomes were screened for
polymorphism between DNA bulks. For the WT bulk,
DNA of 10 F, plants with WT phenotype were pooled at
equal ratio and diluted to 50ng/puL. The mutant type bulk
consisted of DNA from 10 F, plants with short seed fiber.
Four DNA bulks were made, two for each type. The poly-
morphic markers were then analyzed using 96 F, progeny
to identify markers closely associated with the Li; locus.
Only SSR markers that revealed less than 10 recombin-
ation events were analyzed among the total 2,553 F, pro-
geny plants.

The PCR amplification conditions and marker data acqui-
sition were according to Fang et al. [43]. All SSR primer
sequences can be obtained from Cotton Marker database
(www.cottonmarker.org). Segregation data for the Li; trait
and SSR markers were mapped using program JoinMap4.0
[47] with logarithm of odds score =25.

Functional analysis of the Li; region

To obtain sequences in the region determined to contain
the Li; mutant gene, the identified SSR marker sequences
were aligned to the diploid G. raimondii D5 genome [41].
We also blasted other SSR marker sequences from the Li;
interval of Chr. 22 based on the high density consensus
map [44]. This permitted comparison of the gene annota-
tions for this interval with the annotations provided by
Affymetrix to identify candidate genes. qPCR on select
genes was conducted as described above.

Sequencing introns to develop additional polymorphic
markers

To identify additional polymorphisms that could facilitate
finer mapping of the Li; locus, we sequenced introns from
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the annotated genes in the 17 Mb interval between the
markers TMB2500 and DPL0489 according to the refer-
ence G. raimondii genome sequences. Our rational to se-
quence introns was that introns tend to have higher
sequence variations than exons. We designed primers that
flanked 23 introns but were anchored in protein coding
sequences. Three genes that resided in this interval and
showed differential expression between WT and mutant
were included. Amplicons were generated from total gen-
omic DNAs of the parental lines and two F, individuals
(one WT type and one mutant type) and were Sanger
sequenced.

Results

Fiber structure analysis

Early literature indicated that the Li; mutant in a TM-1
genetic background demonstrated a reduced rate of
crystalline cellulose deposition during primary cell wall
synthesis and an increased rate during SCW synthesis,
resulting in a “thickened” appearance of the cell wall in
the mutant [18,30]. However, it remains unclear if this
effect is due primarily to the mutation causing inhibition
of fiber elongation processes or due to the mutation af-
fecting SCW synthesis processes such as cellulose depos-
ition, or both. To better characterize phenotypic changes
in the mutant during late elongation and secondary cell
wall deposition, changes in fiber length, mass, density,
and cellulose content over developmental times were
measured. Grown in standard field conditions in New
Orleans, LA, the homozygous Li; mutant demonstrated
a characteristic short fiber phenotype and other previ-
ously characterized pleiotropic characteristics (Figure 1A
and Additional file 3). Heterozygous individuals derived
from DP5690 x Li;Li; crosses demonstrated a dosage ef-
fect resulting in an intermediate plant size (Additional
file 3). Measurements of fiber physical properties indi-
cated that Li; mutants had a dramatic difference in both
length and fiber dry weight (mg/seed) at the develop-
mental stages measured (Figure 1B) as compared to the
WT. Elongation ceased or remained static in the Li; mu-
tant by 12 DPA, however fiber dry weight continued to
increase during SCW synthesis and through to maturity,
likely due to the continued deposition of cellulose. Cal-
culating fiber density further illustrated the continued
increase in biomass observed over the developmental
stages and a much higher density in comparison to the
WT. However, the overall cellulose content per unit mass
was similar between WT and the Li; mutant in 12, 16, 28
DPA and mature fibers. Image analysis indicated the Li,
mutant fibers at 28 DPA, (the youngest stage that was
technically obtainable), were in general “thicker” than WT
fibers (Figure 1C), which corroborated our observations
on the increasing mass of the fibers. Combined, these re-
sults suggested that while thickening of the secondary cell
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wall occurred through developmental stages, it was not
due to a relative increase in overall cellulose content or
rate of production per fiber cell in the Li; mutant. Rather,
due to early cessation of fiber elongation, the stunted fiber
did not distribute the cellulose along its longitudinal axis,
thus resulting in a thickened appearance, and an increased
mass per unit length.

Microarray analysis

All three developmental time points analyzed demon-
strated alterations in gene expression in the Li; mutant. At
3 DPA the effects of the mutation were relatively limited,
showing only a total of 223 genes up-regulated and 191
genes down-regulated (>2-fold change; < Bonferroni-
corrected p-value threshold 2.07194E-06). Of importance,
250 of these probe sets were unique to 3 DPA and were
not differentially expressed at 12 or 16 DPA (Figure 2A).
At 12 DPA and 16 DPA, 1,384 and 1,435 genes were dif-
ferentially expressed, respectively. To analyze which devel-
opmental processes were affected in the Li; mutant, target
sequences previously identified as elongation, primary cell
wall synthesis, or secondary cell wall synthesis were tabu-
lated in each of the experimental categories. Figure 2B il-
lustrates that more than a quarter of primary cell wall
genes were down-regulated in the Li; mutant at 12 DPA,
as were a third of secondary cell wall biosynthesis genes at
16 DPA. Very few cell wall-related probe sets were up or
down-regulated at 3 DPA (Additional file 4). This analysis
revealed that while the Li; mutation affected transcrip-
tional activity at all stages of development, a major effect
was the inhibition of primary cell wall-related factors in
addition to a limited effect on secondary cell wall-related
processes.

Gene Ontology Enrichment Analysis (GOEA) [38] of
differentially expressed genes at 3 DPA indicated that no
significant enrichment pertaining to a biological or mo-
lecular processes occurred at this stage in the Li;. GOEA
analysis indicated that a large number of genes involved in
known biological processes were detectable at 12 DPA,
and many of these categories are known to be elongation-
related processes, eg, xyloglucan endotransglucosylase
[48], beta-galactosidase [49], shaggy-related kinase (bin2)
[50], and auxin response genes [51] (Table 1). Importantly,
there was essentially no enrichment of probes specific for
any biological or molecular processes that showed altered
regulation at 16 DPA only.

A significant number of processes that were common
to 12 DPA and 16 DPA, but not to 3 DPA showed altered
expression in the mutant (Additional file 5). GOEA analysis
of this category of genes indicated a large decrease in probe
sets categorized in nucleosome assembly (GO:0006334)
and lipid transport (GO:0006869). There was an increase in
mitochondrial electron transport (GO:0006120), which
includes NADH-dehydrogenase genes and NADH-
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A Down-regulated

B Primary Cell Wall
12 DPA

Up-regulated

Secondary Cell Wall
16 DPA

W Down
mUp
B NC

Figure 2 Results of the microarray analysis comparing Li; and its WT NIL in DP5690 background. A) The distribution and number of
probe sets from the microarray showing altered regulated by >2 fold in Li;. B) Pie diagram illustrating the relative percentages of probe sets
showing altered regulation in the Li; mutant that were identified as primary cell wall related in 12 DPA fiber samples and secondary cell wall

related in 16 DPA fibers.

plastoquinon oxidoreductase subunits, both members of
Complex I of the electron transport chain, known to be
high producers of reactive oxygen species (ROS) [52].

Fiber development-related genes show altered expres-
sion patterns in the Li; fibers (Table 2, more comprehen-
sive list in Additional file 6). A large number of auxin,
ethylene, and gibberellins responsive transcription factors
were differentially expressed, as were cytoskeleton compo-
nents such as tubulin and profilin. Five probe sets identify-
ing 1-Aminocyclopropane-1-Carboxylic Acid Oxidase
genes, responsible for ethylene biosynthesis, were differen-
tially expressed. Ghi.798.1, identified as GKACO3, demon-
strated significant up-regulation in the mutant, as did an
uncharacterized ACO homologue (GhiAffx.16665). How-
ever, GHACO4 (Ghi.8025) and another uncharacterized
ACO homologue (Ghi.6502) were down-regulated in the
mutant, suggesting divergent roles in fiber elongation pro-
cesses. Another key enzyme in ethylene biosynthesis, 1-
Aminocyclopropane-1-carboxylate synthase (ACC) [53,54],
was down-regulated in the mutant at 12 DPA. Ghi.5451
shares 100% homology with ACC Synthase 3 and 6 (GhACS
3/6) (Table 2).

Twelve probe sets representing an unknown number of
AP2/ERF (ethylene response factor) domain-containing tran-
scription factors were significantly differentially expressed,
with the majority demonstrating down-regulation (e.g.
Ghi.7874) (Table 2 and Additional file 6). Eight probe sets

measuring levels of the pathogenesis-related 10 (PR10)
proteins, a family of defense and stress-related genes regu-
lated by jasmonic acid, ethylene and other effectors [71]
exhibited expression patterns 8 to 96 fold higher in the Li;
mutant. Sucrose Synthase 1 (Susl) was highly up-regulated
(56-fold) at 3 DPA in the Li; mutant, then not differen-
tially expressed at 12 DPA and 16 DPA.

Transcription analysis of cellulose synthase activity

Cellulose synthases and cell wall re-arranging proteins
have been a subject of interest as they relate to fiber elong-
ation. More specifically, defining the role of specific cellu-
lose syntheses in so far as their specificity for either
primary or secondary cell wall processes is relevant to un-
derstanding elongation. Previous research has speculated,
and some data has suggested, that altered cellulose depos-
ition determined the Li; phenotype [18,30]. In light of this,
it was of value to further analyze cellulose synthase ex-
pression levels in the Li; mutant. Probe sets annotated as
cellulose synthase (Ces) genes or cellulose synthase-like
(Csl) were identified by Blast2Go annotation, Affymetrix-
provided annotation terms, and by blastx analysis of the
microarray probe sets. Quantitative PCR analysis was
conducted on selected Ces genes. Of the 38 probe sets an-
notated as Ces or Csl, only 1 probe set, GhiAffx.58712
demonstrated reproducible >2 fold altered gene expression
in the Li; mutant at the developmental stages analyzed
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Table 1 Gene ontology analysis results of target sequences that are up or down regulated in the Li; mutant at 12 DPA

or 16 DPA

Category Gene ontology

categorization*

Representative annotations of probed sequences (Li1/Wt expression ratio)

Unique to 12 Response to hormone stimulus GO:0009725 (0.00023)
DPA

eg. indole-3-acetic acid-amido synthetase (0.48), xyloglucan endotransglucosylase (2.2), shaggy-related kinase
(2.1), auxin-responsive protein (.34) and auxin response (0.42).

Response to cytokinin stimulus GO:0009735 (0.00014)

eg. ap2 erf domain-containing transcription factor (2.1), homeobox protein knotted-1-like 3-like (2.1)

Transmembrane receptor protein tyr kinase signaling pathway GO:0007169 (1.9e-06)

e.g. strubbelig-receptor family 7 protein (0.45), Irr receptor-like serine threonine-protein kinase (0.35),

Protein amino acid phosphorylation GO:0006468 (1.5e-05)

e.g. cyclin-dependent kinase f-4-like (0.48), shaggy-related protein kinase eta-like (2.07), serine threonine-
protein kinase aurora-1 (43), feronia receptor-like kinase (0.43)

Hydrolase activity, hydrolyzing O-glycosyl compounds GO:0004553 (3e-07)

e.g. cobra-like 4 protein (3.74), beta galactosidase 1 (0.46), xyloglucan endotransglucosylase hydrolase (0.44),
acidic chitinase (3.32), xyloglucan endotransglucosylase hydrolase protein 2 (2.33), beta-xylosidase alpha-|

-arabinofuranosidase 2-like (0.43)

Xyloglucanxyloglucosyl transferase activity GO:0016762 (0.00016)

e.g. xyloglucan endotransglucosylase hydrolase (0.41), xyloglucan endotransglucosylase hydrolase protein 2
(2.33), probable xyloglucan endotransglucosylase hydrolase protein 32-like (2.56)

Protein kinase activity GO:0004672 (0.00075)

serine threonine-protein kinase (3.12), probable receptor-like serine threonine-protein kinase at5g57670-like

(11.02)

Unique to 16 Cellular nitrogen compound metabolic process GO:0034641 (1.1e-05)

DPA

glutamine synthetase (2.05), phenylalanine ammonia-lyase (0.26), asparagine synthetase (2.06), serine

threonine protein kinase 2 (3.23)

*e-value in parenthesis.

(Figure 3). Probe set GhiAffx.58712 sequence was derived
from one of 28 EST’s homologous to sequence accession
[GenBank:GQ200733]. In the WT the target sequence ex-
pression levels were relatively high at 8 DPA and 12 DPA,
then decreased at 16 DPA indicating potential function as
a primary cell wall-related Ces (Figure 3F). Importantly,
the Li; mutant showed decreased expression levels relative
to WT at the elongation stages analyzed. GhiAffx.58712.1
was identified as GhCesA6 [GenBank:ACS88358], which
shares 86% protein sequence identity with A. thaliana CesA6
[GenBank:NP_201279], which is known to be important in
primary cell wall synthesis [72]. Other sequences analyzed;
Ghi1151 (GhCesAl), Ghi6061 (GhCesA2), Ghi5191
(GhCesA3), Ghi.8518 (GhCesA5) and Ghi.3562.1 (Cellulose
synthase-like E1, CSLE1) did not demonstrate altered expres-
sion in the Li; mutant (Table 2 and Figure 3A-E).

Corroboration of microarray data

Sequences targeted by the microarray were selected for
quantitative PCR analysis to corroborate the results
obtained in the microarray (Table 3). The selected se-
quences included genes that were up-regulated, down-

regulated, and demonstrated no change in the Li; mutant.
The 24 samples analyzed (8 probe sets, 3 developmental
stages) by qPCR demonstrated results consistent with the
microarray analysis. The probe sets targeting cellulose
synthase-like protein e6-like demonstrated little alteration
in gene expression in the Li; mutant according to the
microarray data, and similar results were obtained with
qPCR analysis. One of the eight probe sets targeting
pathogenesis-related protein 10 family (Ghi6485)
exhibited a dramatic increase in expression, showing 127
fold and 191 fold increase in 12 DPA and 16 DPA, respect-
ively. Expansin al0O, a cell wall structural protein, was
down-regulated at 12 and 16 DPA in microarray and
qPCR, as were most expansins (Additional file 6).
Expansin-like bl was the only expansin up-regulated at 12
DPA, however the qPCR data for this gene was not en-
tirely consistent with microarray data for 16 DPA. Beta-
galactosidase, which hydrolyses -glycosidic bonds and is
thought to be important for primary cell wall rearrange-
ment, was down-regulated as measured by qPCR and
microarray in all stages of development in the mutant.
TubulinA4 was expressed at extremely high levels (data
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Table 2 Select elongation-related probe sets showing altered regulation in the Li; mutant*
Genes up-regulated in the Li; mutant relative to its near isogenic wild type line
Probe ID Annotation 3DPA 12DPA 16DPA Heterologous functions Ref.
Ghi.798.1. 1-aminocyclopropane-1- 245 1095 5.08 GhACO3, ethylene biosynthesis, elongation related [55]
S1_s_at carboxylate oxidase
GhiAffx.16665.1.  1-aminocyclopropane-1- 148  2.87 2.54 no homology known
S1_s_at carboxylate oxidase

homolog 4-like
Ghi.8264.1. brassinosteroid-regulated 081 4.1 6.99 homology to xyloglucan endotransglcosylase (AT4G14130.1), [56]
S1_s_at protein brul expression correlates with elongation inhibition
Ghi.5860.1. fasciclin-like 110 56.47 0.16 EST from fiber, homology to G. hirs. fasciclin-like arabinogalactan [57]
S1_s_at arabinogalactan protein protein 3 (FLA3). AtFLA3 overexpression leads to defective

elongation in stamen.

GhiAffx.36662.1. r2r3-myb transcription 160 4.25 6.40 At4g37260, MYB73. Highly responsive to ethylene, ABA. [58,59]
S1_s_at Downregulated in fl mutant elonagtion phase.
GhiAffx.60562.1. ethylene-responsive 079 0.31 0.26 wril-1 mutants demonstrate defective elongation of hypocotyl. [60]
S1_at transcription factor wril
Ghi2039.2. sucrose synthase sus1 35.38 1.60 1.38 GhSusT isoform C, targeted to cell wall during secondary cell wall [61]
S1_s_at synthesis.
Ghi.7911.1. xyloglucan 042 9.24 8.22 TCH4, dwarf A. thaliana mutants have reduced expression, [62]
S1_x_at endotransglucosylase elongation related.

hydrolase
GhiAffx.10621.1. pollen ole e 1 allergen and 121 32.53 067 Uncharacterized EST

Al_s_at extensin family protein

Genes down-regulated in the Li; mutant relative to its near isogenic wild type line

Ghi.8025.1. 1-aminocyclopropane-1- 137 0.36 0.32
S1_s_at carboxylate oxidase
Ghi.6502.1. 1-aminocyclopropane-1- 113 063 0.14
S1_at carboxylate oxidase
Ghi.5451.1. 1-aminocyclopropane-1- 078 0.47 0.88
S1_at carboxylate synthase
GhiAffx.12577.1. gibberellin 20-oxidase 095 0.34 0.15
S1_at
Ghi.8087.1. myb-like transcription 132 0.18 0.16
S1_s_at factor 3
Ghi.10822.1. xyloglucan 110  0.41 0.52
S1_at endotransglucosylase

hydrolase
GraAffx.28354.1. rho gtpase activation 052 0.48 0.78
S1_s_at protein

ACO4, ethylene biosynthesis, induced in ovule culture by fatty acid
synthesis, increasing ethylene production and root elongation.

gibberellin synthesis, stimulated by Auxin treatment in A. thaliana,
which also causes hypocotyl cell elongation. Increased expression
in transgenic cotton causes increased fiber length.

GhMYB3, contains gibberellin responsive GLABROUS1, which
promotes trichome formation in A. thaliana.

GhXTH2, high homology to coding region of GhXTHT which [69]
produces longer fibers when over-expressed in transgenic cotton.

[55,63]

EST, significant homology to ACO proteins, but not identical to
ACO1-4

Highest homology with GhACS 3/6

[64-66]

[67,68]

High homology to ROP1, tip-localized GTPase responsible for cell [70]
elongation and polarity.

*Bold and underlined indicates significant at the Bonferroni-corrected 0.05 probability level for microarray data.

not shown) although differential regulation between WT
and the Li; mutant was not significant.

Mapping the Li; locus region with SSR markers

Of the 2,553 F2 progeny, 1,604 showed the Li; mutant
phenotype, and 949 were WT. This segregation deviated
significantly from a single dominant-gene model (y° = 605)
presumably due to the failure of many homozygous mu-
tants (which had deformed stems and leaves with stunted
plants) to germinate or survive as suggested by Rong et al.
[32] and Liu et al. [73]. Of the 921 SSR markers screened,
12 (1.3%) were polymorphic between two DNA bulks. Of

them, 7, 3, 1, and 1 were previously mapped on Chr.22,
Chr.19, Chr.4 and Chr.5, respectively based on the high
density consensus map [44]. Analysis of these 12 markers
among 96 F2 progeny indentified only 5 markers that were
associated with the Li; locus, and mapped on Chr.22.
These 5 markers were further evaluated in the whole 2553
F, progeny plants. A map was constructed around the Li,
region (Figure 4). The marker TMB2500 was 0.8 cM away
from the Li; locus.

A total of 13 kb sequences from the introns of 23 genes
residing in the 17 Mb interval between markers TMB2500
and DPL0489 were compared between the WT and Li;
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Figure 3 Cellulose synthase expression profiles in wild type and Li; mutant as determined by qPCR analysis. A) Ghi.1151 (GhCesA1),
B) Ghi6061 (GhCesA2), €) Ghi5191 (GhCesA3) and D) Ghi8518 (GhCesA5) demonstrated expression patterns consistent with secondary cell wall synthesis
and did not exhibit altered regulation in the Li; mutant. E) Ghi.3562.1 (Cellulose synthase-like E1, CSLET) also did not demonstrate altered gene expression
in the Li; mutant, however showed expression consistent with being primary cell wall-related. F) GhiAffx58712.1 is identified as GhCesA6 (ACS88358),
showed significant decreased expression in the Li; mutant at the mid to late elongation stages (8 and 12 DPA).

mutant. However, we were unable to identify additional
sequence polymorphisms to facilitate finer genetic map-
ping of the Li; locus.

Functional analysis of the Li; region

Based on the mapping results, genes within the 17-Mb re-
gion between the best hits of the flanking SSR markers
TMB2500 and DPL0489 in the G. raimondii reference

genome were further analyzed. Eighty probe sets from the
microarray corresponded to genes that were in this interval,
of which 24 showed altered expression in the Li; mutant
(Additional file 7). Three of these genes were further evalu-
ated by qPCR analysis to establish a link between the
mapping and expression data. Ghi.10603.1.S1_s_at, GraA
ffx.27319.1.51_s_at, GhiAffx.1589.25.S1_s_at have homology
with glycosyl hydrolase family protein 38 (E =5e-103),

Table 3 Microarray expression ratios of Li;/WT and corroboration by RT-qPCR analysis*

3DPA 12DPA 16DPA

Micro-array  RT-qPCR  Micro-array = RT-gPCR  Micro-array  RT-qPCR
GhiAffx.58712.1.51_at  cellulose synthase catalytic subunit 093 0.84 0.39 034 0.51 0.49
Ghi.3562.1.A1_at cellulose synthase-like protein e6-like  0.49 0.70 117 1.32 2.24 1.94
Ghi5057.1.51_s_at protein wax2 047 041 0.59 046 042 0.29
Ghi.6485.1.51_s_at pathogenesis-related protein 10 134 1.51 7042 127.01 77.04 191.91
Gra.3004.251_s_at expansin al0 0.82 0.82 0.46 0.38 0.46 033
Ghi.6465.2.51_at expansin-like b1 0.99 040 6.32 6.74 10.12 037
Gra.2056.1.A1_s_at beta-galactosidase 13 0.23 0.12 0.09 0.05 0.17 0.11
Ghi.1314.151_x_at Tubulin alpha 4 (Tua 4) 0.91 0.57 0.88 049 1.02 0.80

*Bold and underlined indicates significant at the Bonferroni-corrected 0.05 probability level for microarray data and at the 0.05 probability as determined by a

two-tailed t-test for gPCR data.
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Figure 4 Linkage map of Li; genetic locus region on Chr. 22.
The distances (cM) are indicated on the left of the map and marker
names on the right.
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xyloglucan endotransglucosylase/hydrolase 32 (E = 5e-150),
and AtTCP20 (E = 1e-42), respectively. The expression pro-
file of the glycosyl hydrolase 38 showed altered expression
in the mutant at 16 DPA by both microarray and qPCR
(Figure 5). Xyloglucan endotransglucosylase was up-
regulated at early and mid elongation stages (3 DPA and 8
DPA), and according to the microarray data remained
slightly elevated at 12 DPA. The transcription factor TCP-20
was up-regulated at the late elongation stage of 12 DPA and
16 DPA.

Discussion

A previous microarray experiment examining 0 and 3
DPA fibers from the Li; mutant found little evidence of
global or significant alterations in gene expression pat-
terns [27]. Conversely, microarray data of 6 DPA fibers
and proteomic analysis of 12 DPA from Li; fibers dem-
onstrated significant perturbation of expression profiles
in the mutant, indicating that processes related to pri-
mary cell wall elongation are affected in the Li; mutant
[27,29]. In addition, earlier studies of the Li; mutant fo-
cusing on secondary cell wall synthesis failed to report
findings of upstream processes being significantly af-
fected [28]. Thus this analysis on late elongation and
early SCW stages would complement and extend these
earlier findings aimed to better characterize the effects
of the mutation at both primary and secondary cell wall
synthesis, and provide data for the fiber development dur-
ing the transition period. The morphological and molecu-
lar data presented here supports the model that the Li;
mutation is an upstream factor primarily targeting elong-
ation processes. Several ontological categories of genes
and individual genes that have previously been identified
as having a role in fiber elongation were identified, as were
new targets for investigation.

Previous proteomic analysis of Li; at 12 DPA [29] identi-
fied a limited number of proteins that could be corrobo-
rated by our microarray data. A comprehensive analysis
revealed that both data sets include the down regulation
of cytoskelatal tubulin proteins and metabolism-related
proteins (ie. glycolipid transfer protein and a pyrophos-
phatase). The stress response proteins nucleoredoxin and
germin-like proteins, a flavanone-3-hydroxylase and trans-
lation factor 6 were increased in both data sets. However,
the remainder of proteins identified as showing altered
regulation were not corroborated by our data. A detail list
is shown in the Additional file 8. This could be due to the
difference in genetic background, or due to the technical
limitations of 2-dimensional gel electrophoresis. Analysis
of more recent Affymetrix microarray data obtained at 6
DPA [27] is limited by the fact that the authors did not
provide probe set information, thus preventing a more
rigorous or comprehensive analysis from being conducted.
However, they also identified several actin and tubulin
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Figure 5 Transcript profiles of select genes near the Li; locus. Microarray (top row) and gPCR analysis (bottom row) of select genes found in
the interval of Chr. 22 containing the Li; locus. Probes with high homology to a glycosyl hydrolase (Ghi.10603.1.51_s_at), xyloglucan
endotransglucosylase/hydrolase 32 (GraAffx.27319.1.51_s_at) and TCP20 (GhiAffx.1589.25.51_s_at) were selected due to the altered regulation in

genes that were down-regulated in the mutant. At 6 DPA
there was an increase in xyloglucan endotransglucosylase,
fascilin-like arabinogalactan protein, and the ethylene
synthesis-related 1-aminocyclopropane —1-carboxylate oxi-
dase (GHACO3) which our data indicated remained true at
12 DPA. As expected several differences also exist. Analysis
of 6 DPA fibers showed decrease expression levels of auxin-
IAA-related genes and the ethylene responsive AP2/ERF
family genes, which then became up-regulated in the mu-
tant at 12 DPA. Conversely, another gene involved in ethyl-
ene production, GEACO4, was up-regulated at 6 DPA but
down-regulated in the mutant at 12 DPA. Genes that were
down-regulated in Li; at 6 DPA, but were at WT levels in
12 DPA were enriched in plasma membrane associated
proteins (GO:0005886, p =0.0008), such as filament-like
plant protein 4, myosin heavy chain, and perkl-like protein
kinase.

The use of the Li; mutant as a model system for both
elongation and secondary cell wall synthesis was based
on earlier studies utilizing Li; in a TM-1 genetic back-
ground that measured the ratio of fiber weight to length
and showed an increase in fiber mass throughout devel-
opment, implicating continued or increased cellulose de-
position [18]. Despite its very short fibers, the authors
claimed the dry mass of the Li; fiber was approximately
83% of its NIL. A second study using the same genetic
line that measured [*C] glucose deposition in the
secondary cell wall indicated a 5-fold higher rate of

cellulose deposition per mm of fiber in the Li; mutant
[30]. However, much of our data using Li; in a DP5690
genetic background suggested that molecular events
involved in cellulose deposition and secondary cell wall
synthesis were not affected to the degree that primary
cell wall processes were. Measurements indicated that
the dry mass of the fiber was approximately 20% of its
NIL and that the actual cellulose content per unit mass
remained unchanged (Figure 1B). Further, qPCR of
cellulose synthase genes showed that secondary cell wall
genes remained largely unaffected. These results support
the model that thickening of the cell wall is due to
inhibited elongation processes, but not due to increased
cellulose production. The “increased rate” of glucose
incorporation observed by Kohel et al. [30] was based on
measurements of cellulose production per unit length
instead of per unit mass. However, since elongation
ceases in the Li; mutant but its cellulose production
continues at WT levels, we speculate that Li; fibers
expand outwardly, thus resulting in an increased cellu-
lose production per unit length. It is worthy to mention
that the use of a different NIL in our study as compared
with previous studies may also account for differences in
fiber measurements.

The ontological categories of the 434 unique probes dif-
ferentially expressed at 12 DPA included Xyloglucan:
xyloglucosyl transferase activity (GO:0016762) (Table 1).
Xyloglucan endotransglycosylase/hydrolase (XTH) enzymes
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are proposed to disrupt xyloglucan-cellulose crosslinks,
thus permitting cell wall rearrangement and fiber elong-
ation [48]. Six probe sets identified as XTH showed differ-
ential regulation in the Li; mutant. One probe set
(Ghi.7911.1) was down-regulated at 3 DPA and significantly
up-regulated (9 fold) at 12 DPA and 16 DPA (Additional
file 6). This gene [GenBank:AY476737] remains uncharac-
terized in Gossypium, however its homeologous gene in A.
thaliana TCH4/XTH22 (TAIR;AT5G57560) demonstrated
very similar results in a study conducted on petiole elong-
ation that indicated XTH22 is under different genetic regu-
lation than other characterized XTH’s [74]. Of the
remaining XTHs identified in our microarray data, three
probe sets exhibited decreased expression at 12 DPA and
one slightly increased. While it is clearly plausible that a
decreased expression of XTHs could lead to the inhibition
of elongation, the role of XTHs that increased in the Li,
mutant warrants further investigation. Other ontological
categories affected in the mutant included “responses to
hormone synthesis” (GO:0009725) (ie. IAA synthetase and
auxin-response genes) and “hydrolase activity, hydrolyzing
O-glycosyl compounds” (GO:0004553), which contain 19
probe sets likely correlated with hormonal activation to
signal entry into the primary to secondary cell wall transi-
tion stage [75]. The role of IAA, auxin response genes, and
hormonal regulatory enzymes such as glucosyltranferases
in fiber development processes has been widely docu-
mented [75]. It is of interest to note here that the only cat-
egory identifying this set of related genes was the list of
probes that were up or down-regulated only at 12 DPA.
Probe sets that were also enriched or decreased in 16 DPA
mutant tissues (Additional file 5) were not enriched in these
ontological categories, implying that altered hormonal
regulation in the mutant was occurring primarily before
and at 12 DPA. Analysis of hormone contents by Chen
et al. [76] identified altered levels of Abscisic Acid,
dihydrozeatin, and others in the Li; mutant, but only ana-
lyzed up to 8 DPA. Microarray data on 6 DPA fibers
reported altered expression of several hormone related pep-
tides in the Li; mutant, such as auxin-related genes, gibber-
ellins, brassinosteroid, abscisic acid and jasmonic acid-
related genes [27]. These data suggest, when taken together
with molecular and morphological data, that the early ces-
sation of elongation in Lij, is in part due to the culmination
of altered hormonal factors that occurs during early to mid
elongation.

Consistent with what has been reported at earlier devel-
opmental stages, multiple genes related to ethylene biosyn-
thesis and ethylene response were differentially expressed
in the Li; fibers [27]. A key enzyme in ethylene biosyn-
thesis, 1-aminocyclopropane-1-carboxylate synthase (ACS),
hybridized by probe set Ghi.5451and demonstrated a 2-fold
down-regulation at 12 DPA (Table 2). Previous studies
have correlated increased ACS activity with cotton fiber
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elongation [54]. 1-aminocyclopropane-1-carboxylate oxi-
dases (ACO) 1-4 are also involved in ethylene biosynthesis
[54]. ACO3 (Ghi.798.1) showed a significant up-regulation
at all stages analyzed, and ACO4 (Ghi.8025.1) exhibited
down-regulation at 12 DPA and 16 DPA. ACO! and ACO2
(Ghi.6953.1 and Gra.2141.1, respectively) did not show al-
tered expression in the Li; mutant. Consistent with our
data, previous studies have implicated ACO3 as having peak
expression at the late elongation stage near 12 DPA. ACO1
and 2 have demonstrated different expression patterns with
peak expression in early secondary cell wall synthesis stage
[54,55], implying that they may be involved in later devel-
opmental stages. The fact that ACO3 was related to elong-
ation in previous studies and showed altered regulation in
our microarray (in contrast to ACOI and 2) further sup-
ports Li; being a key elongation-related mutation.

Pathogenesis-related protein 10 family of proteins
(PR10) exhibited a significant alteration in their expres-
sion patterns in the Li; mutant, ranging from 8 to 96
fold difference between Li; and WT. This family of pro-
teins consists of a large and functionally diverse group of
proteins, ranging in function from antimicrobial/antiviral
activity, hormone/ligand binding, secondary metabolism,
and abiotic stress response (reviewed in [77]). Further
implying a role in growth and development, individual
PR10 proteins have been found to be regulated by
multiple phytohormone-related cis-regulatory sequences
including ethylene response elements [78] and
brassinosteroids [79]. However it remains unclear if the
stress response seen in the Li; is related to previously
mentioned ROS levels or a response to altered hormone
expression.

The cellulose synthase activity reported here is of particu-
lar interest. Previous reports have speculated that an in-
crease in secondary cell wall cellulose synthase activity may
account for the thickened cell wall of the Li; [30], however,
our data failed to confirm this. Rather, another GhCes,
probed by Ghi.58712, demonstrated altered expression at
the elongation stage of development and showed an expres-
sion pattern consistent with elongation-related activity in
the WT. Translation of the probe target’s consensus se-
quence and TAIR blast search showed the Ghi.58712 target
sequence shared highest homology, although not identity
with AtCesA9,-2,-5 -6 and -3 (E=0.0). AtcesA9 is only
expressed during embryogenesis, however the remaining
AtCesA2, -5, -6, and -3 are members of a primary cell wall
associated cellulose synthase complex (CSC) [72,80]. Sub-
stantial evidence exists that these closely related genes are
cell elongation related. Afces2 null mutations showed a se-
vere dwarf phenotype in A. thaliana, and functional studies
have demonstrated that AtCesA2 and -6 were partially
functionally redundant during elongation [80]. A. thaliana
mutants at the PROCUST1 locus, which encodes cesA6,
exhibited cell elongation effects in a pleiotropic manner
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[81]. cesA6 promoter-GUS fusion experiments have dem-
onstrated that its expression occurs throughout the hypo-
cotyl and root, peaking in the cell elongation zone of the
expanding root [72].

The Li; genetic locus was previously identified as residing
on chromosome 22 [31,32]. Our results confirmed this
chromosomal assignment. Based on the high density con-
sensus genetic map constructed by Blenda et al. [44], it
could be seen that the Li; locus might be close to the
centromeric region as original indicated by Rong et al. [32].
It is worthy of mention that the genetic distances observed
in our experiment were larger than those reported by Rong
et al. [32]. This greater recombination observed in our re-
search might be due to our much larger (151 vs 2,553)
population size and different population structure (interspe-
cific vs intraspecific cross). There is a large gap (9.6 cM) be-
tween the Li; locus and marker DPL0489 (Figure 4). We
have screened all the SSR markers mapped in this interval
based on the high density consensus map [44] and a newly
published map [82], and could not further close the gap.
Additionally, we were unable to identify sequence polymor-
phisms among the 23 gene introns that were located in the
region harboring the Li; locus even though some of these
genes demonstrated differential expression between WT and
mutant. This also indicates that altered gene expression may
not be necessary due to gene sequence change. This result
may also imply that the genomic region harboring Li; locus
is highly monomorphic. Recently, Cai et al. [20] reported a
similar phenomenon when mapping the Lix locus. One of
their flanking markers, NAU3469, was 24.5 cM away from
the Lix locus.

The mapping data coupled with the recently released
G. raimondii sequences provided the opportunity for
additional analysis of sequences in the vicinity of the Li,
locus. Probe sets from the microarray with high
homology to a glycosyl hydrolase family 38, a xyloglucan
endotrans-glucosylase hydrolase 32, and AtTCP-20 are
near the Li; locus, demonstrated differential expression
in the Li; mutant and have apparent associations with
elongation processes. In addition to the already
discussed XTH enzymes, glycosyl hydrolase family 38, a
family of related mannosidases, affect cell wall pheno-
types when mutated in A. thaliana [83]. Interference
with AtTCP-20 in planta in A. thaliana by fusion with a
repressor domain resulted in severe developmental phe-
notypes characterized by reduced cellular elongation
[84]. Additionally, a transcription factor identified in
Gossypium barbadense with a highly homologous TCP
domain, GbTCP, produced a short fiber phenotype when
silenced by RNAi [85].

Determining which, if any of these is the Li; mutation
is currently under investigation. Next-generation sequen-
cing of transcripts by RNA-seq is currently under way in
our laboratory, and may reveal SNPs or splice variants
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responsible for either altered regulation of an elongation-
specific gene, or a mutation resulting in a nonfunctional
protein. Identification of these variations will facilitate de-
veloping closer markers, and help to eventual cloning of
the Li; gene.

The identification of the gene responsible for the Li;
phenotype would provide an invaluable tool in the quest
to understand fiber elongation processes. In the mean-
time, the data generated here, in combination with pub-
lished data from other developmental time points, has
the potential to provide a sound basis for the examin-
ation of key hormonal, structural, and other pathways
involved in cotton fiber elongation.

Conclusions

Measurements of fiber characteristics and microarray
analysis of the Li; mutant and its W'T were conducted at
3,12, and 16 DPA with the goal of enhancing our under-
standing of cotton fiber elongation. Both methodologies
supported the notion that the early cessation of elong-
ation in Li; was due to disruption of primary cell wall
elongation-related processes. Further, we identified and
discussed several elongation-related genes that exhibited
altered expression profiles in the Li; mutant, including a
putative primary cell-wall related cellulose synthase. We
conducted SSR marker analysis on a large population,
and using the G. raimondii reference sequence identified
elongation-related genes near the Li; locus with altered
expression levels. The data here will contribute to devel-
oping a comprehensive understanding of cotton fiber
elongation.

Availability of supporting data
The data sets supporting the results of this article are
included within the article and its Additional files.

Additional files

Additional file 1: Pedigree of the Li1 mutant and WT NiILs. L/;Li; and
lili; were created using a G. hirsutum pure inbred cv. DP5690
backcrossed for 5 generations to a Fy generation DP5690/Li;.

Additional file 2: qPCR Primer Sequences. Primer sequences used for
quantitative PCR analysis.

Additional file 3: Li;Li;, Li;li; and li;li; (WT) plants. Image of wild type
(DP5690) (left), a heterozygous Li;/li; plant (center) and homozygous (Li;/
Li;) (right) grown in standard field conditions and harvested five months
after planting.

Additional file 4: Distribution of cell wall-related genes based on
microarray data. The relative distribution of elongation, primary cell wall
and secondary cell wall related probe sets and there relative expression
in the Li; mutant in the developmental stages analyzed.

Additional file 5: Gene Ontology Enrichment Analysis for probe
sets unique to 12 and 16 DPA. Gene Ontology Enrichment Analysis for
the probe sets that show altered regulation in both 12 DPA and 16 DPA
fibers but exclude 3 DPA.



http://www.biomedcentral.com/content/supplementary/1471-2164-14-403-S1.tiff
http://www.biomedcentral.com/content/supplementary/1471-2164-14-403-S2.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-14-403-S3.tiff
http://www.biomedcentral.com/content/supplementary/1471-2164-14-403-S4.tiff
http://www.biomedcentral.com/content/supplementary/1471-2164-14-403-S5.xlsx

Gilbert et al. BMIC Genomics 2013, 14:403
http://www.biomedcentral.com/1471-2164/14/403

Additional file 6: Putative fiber-related probe sets and microarray
data. List of putative fiber-related genes that show altered expression in
the Li; mutant at 3, 12, and 16 DPA.

Additional file 7: Microarray results for targeted genes near the Li;
locus. List of probe sets showing altered expression in the Li; mutant
that were determined to be near the Li; locus.

Additional file 8: Transcript comparison between the present
research and prior studies. List of probe sets that were identified in

prior studies and their status in the present research.

Abbreviations

CSC: Cellulose synthase complex; DOA: Day of anthesis; DPA: Days post-
anthesis; EST: Expressed sequence tag; GOEA: Gene ontology enrichment
analysis; IVT: In-vitro transcription; NIL: Near-isogenic line; PCW: Primary cell
wall; RFLP: Restriction fragment length polymorphism; RT-gPCR: Reverse
transcription quantitative polymerase chain reaction; SCW: Secondary cell
wall; SNP: Single nucleotide polymorphism; SSR: Simple sequence repeat;
TM-1: Texas Marker 1; WT: Wild type.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

DDF conceived the experiment, coordinated and supervised the research,
identified molecular markers and conducted linkage mapping. MKG had the
main responsibility for the study including the field work, tagging and
sample harvest; RNA isolations and assessment of RNA quality; gene
selection for corroboration of the microarray results; RT-qPCR and statistical
analysis of the RT-gPCR data; and analyzing the microarray results. RBT
developed the Li; mutant and WT NILs and the F, mapping population used
as plant materials. HJK conducted fiber measurements and cellulose synthase
assays. PL assisted with the molecular marker analysis. GT and MN assisted in
sequence analysis. YT performed statistical analysis on the microarray data.
CDD conducted fiber imaging analysis. MKG and DDF wrote the manuscript.
All authors read and approved the final manuscript.

Acknowledgments

This research was funded by United States Department of Agriculture-
Agricultural Research Service CRIS project 6435-21000-016-00D. We greatly
thank Mr. Chris Florane and Mrs. Tracy Condon for their assistance with field
work, sample collection, and fiber structure analysis. We thank Mrs. Holly
King for her expertise in fiber sectioning and imaging. Our great
appreciation goes to Mrs. Sheron Simpson and Dr. Brian Scheffler at
Genomics and Bioinformatics Research Unit at Stoneville, MS for their
excellent support in SSR marker analysis. Mention of trade names or
commercial products in this article is solely for the purpose of providing
specific information and does not imply recommendation or endorsement
by the U. S. Department of Agriculture that is an equal opportunity provider
and employer.

Author details

Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional
Research Center, New Orleans, LA 70124, USA. 2Crop Genetics Research Unit,
USDA-ARS, Mid South Area, Stoneville, MS 38772, USA. *The Samuel Roberts
Noble Foundation, Genomics Core Facility, Ardmore, OK 73401, USA. *Cotton
Structure and Quality Research Unit, USDA-ARS, Southern Regional Research
Center, New Orleans, LA 70124, USA.

Received: 27 March 2013 Accepted: 12 June 2013
Published: 17 June 2013

References

1. Lee JJ, Woodward AW, Chen ZJ: Gene expression changes and early
events in cotton fibre development. Ann Bot 2007, 100(7):1391-1401.

2. Basra AS, Malik CP: Development of the cotton fiber. Int Rev Cytol 1984,
89:65-113.

3. Tiwari SC, Wilkins TA: Cotton (Gossypium hirsutum) seed trichomes
expand via diffuse growing mechanism. Can J Bot 1995, 73(5):746-757.

20.

21.

22.

23.

25.

26.

27.

Page 15 of 17

Meinert MC, Delmer DP: Changes in biochemical composition of the cell
wall of the cotton fiber during development. Plant Physiol 1977,
59(6):1088-1097.

Kim HJ, Triplett BA: Cotton fiber growth in planta and in vitro. Models for
plant cell elongation and cell wall biogenesis. Plant Physiol 2001,
127(4):1361-1366.

Schubert AM, Benedict CR, Berlin JD, Kohel RJ: Cotton fiber development -
kinetics of cell elongation and secondary wall thickening. Crop Sci 1973,
13(6):704-709.

Hinchliffe DJ, Meredith WR, Delhom CD, Thibodeaux DP, Fang DD: Elevated
growing degree days influence transition stage timing during cotton
fiber development resulting in increased fiber-bundle strength.

Crop Sci 2011, 51:1683-1692.

Willison JH, Brown RM: An examination of the developing cotton fiber:
wall and plasmalemma. Protoplasma 1977, 92(1-2):21-42.

Seagull RW: Changes in microtubule organization and wall microfibril
orientation during in vitro cotton fiber development: an
immunofluorescent study. Can J Bot 1986, 64(7):1373-1381.

Ruan YL: Recent advances in understanding cotton fibre and seed
development. Seed Science Research 2005, 15(4):269-280.

Liakatas A, Roussopoulos D, Whittington WJ: Controlled-temperature
effects on cotton yield and fibre properties. J Agric Sci 1998,
130(4):463-471.

Roussopoulos D, Liakatas A, Whittington WJ: Controlled-temperature effects
on cotton growth and development. J Agric Sci 1998, 130(4):451-462.
Davidonis GH, Johnson AS, Landivar JA, Fernandez CJ: Cotton fiber quality
is related to boll location and planting date. Agron J 2004, 96(1):42-47.
Turley RB, Kloth RH: Identification of a third fuzzless seed locus in
upland cotton (Gossypium hirsutum L.). J Hered 2002, 93(5):359-364.
Ji'SJ, Lu YC, Feng JX, Wei G, Li J, Shi YH, Fu Q, Liu D, Luo JC, Zhu YX:
Isolation and analyses of genes preferentially expressed during early
cotton fiber development by subtractive PCR and cDNA array.

Nucleic Acids Res 2003, 31(10):2534-2543.

Wang QQ, Liu F, Chen XS, Ma XJ, Zeng HQ, Yang ZM: Transcriptome
profiling of early developing cotton fiber by deep-sequencing reveals
significantly differential expression of genes in a fuzzless/lintless mutant.
Genomics 2010, 96(6):369-376.

Lee JJ, Hassan OS, Gao W, Wei NE, Kohel RJ, Chen XY, Payton P, Sze SH,
Stelly DM, Chen ZJ: Developmental and gene expression analyses of a
cotton naked seed mutant. Planta 2006, 223(3):418-432.

Kohel R, Quisenberry JE, Benedict CR: Fiber elongation and dry weight
changes in mutant lines of cotton. Crop Sci 1974, 14:471-475.

Kohel RJ, Narbuth EV, Benedict CR: Fiber development of Ligon lintless-2
mutant of cotton. Crop Sci 1992, 32(3):733-735.

Cai C, Tong X, Liu F, Lv F, Wang H, Zhang T, Guo W: Discovery and
identification of a novel Ligon lintless-like mutant (Lix) similar to the
Ligon lintless (Li1) in allotetraploid cotton. Theor Appl Genet 2013,
126(4):963-970.

Wu Y, Machado AC, White RG, Llewellyn DJ, Dennis ES: Expression profiling
identifies genes expressed early during lint fibre initiation in cotton.
Plant and Cell Physiology 2006, 47(1):107-127.

Wu Y, Llewellyn DJ, White R, Ruggiero K, Al-Ghazi Y, Dennis ES: Laser
capture microdissection and cDNA microarrays used to generate gene
expression profiles of the rapidly expanding fibre initial cells on the
surface of cotton ovules. Planta 2007, 226(6):1475-1490.

Kohel RJ: Linkage tests in Upland cotton, Gossypium hirsutum L.

Il. Crop Science 1972, 12:66-69.

Narbuth EV, Kohel RJ: Inheritance and linkage analysis of a new fiber
mutant in cotton. J Hered 1990, 81:131-133.

Hinchliffe DJ, Turley RB, Naoumkina M, Kim HJ, Tang Y, Yeater KM, Li P, Fang
DD: A combined functional and structural genomics approach identified
an EST-SSR marker with complete linkage to the Ligon lintless-2 genetic
locus in cotton (Gossypium hirsutum L.). BMC Genomics 2011, 12:445,
Naoumkina M, Hinchliffe DJ, Turley RB, Bland JM, Fang DD: Integrated
metabolomics and genomics analysis provides new insights into the
fiber elongation process in Ligon lintless-2 mutant cotton (Gossypium
hirsutum L.). BMC Genomics 2013, 14:155.

Liu K, Sun J, Yao L, Yuan Y: Transcriptome analysis reveals critical genes
and key pathways for early cotton fiber elongation in Ligon lintless-1
mutant. Genomics 2012, 100(1):42-50.


http://www.biomedcentral.com/content/supplementary/1471-2164-14-403-S6.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-14-403-S7.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-14-403-S8.xlsx

Gilbert et al. BMIC Genomics 2013, 14:403
http://www.biomedcentral.com/1471-2164/14/403

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Bolton JJ, Soliman KM, Wilkins TA, Jenkins JN: Aberrant expression of
critical genes during secondary cell wall biogenesis in a cotton mutant,
Ligon Lintless-1 (Li-1). Comp Funct Genomics 2009:Article ID 659301.

Zhao PM, Wang LL, Han LB, Wang J, Yao Y, Wang HY, Du XM, Luo YM, Xia
GX: Proteomic identification of differentially expressed proteins in the
Ligon lintless mutant of upland cotton (Gossypium hirsutum L.).

J Proteome Res 2010, 9(2):1076-1087.

Kohel RJ, Benedict CR, Jividen GM: Incorporation of ('*C) glucose into
crystalline cellulose in aberrant fibers of a cotton mutant. Crop Sci 1993,
33(5):1036-1040.

Karaca M, Saha S, Jenkins JN, Zipf A, Kohel R, Stelly DM: Simple sequence
repeat (SSR) markers linked to the Ligon lintless (Li1) mutant in cotton.
J Hered 2002, 93(3):221-224.

Rong J, Pierce GJ, Waghmare VN, Rogers CJ, Desai A, Chee PW, May OL,
Gannaway JR, Wendel JF, Wilkins TA, et al: Genetic mapping and
comparative analysis of seven mutants related to seed fiber
development in cotton. Theor Appl Genet 2005, 111(6):1137-1146.
Updegraff DM: Semi-micro determination of cellulose in biological
materials. Anal Biochem 1969, 32(3):420-424.

Boylston EK, Thibodeaux DP, Evans JP: Applying microscopy to the
development of a reference method for cotton fiber maturity. Textile Res
71993, 63(2):80-87.

Taliercio EW, Boykin D: Analysis of gene expression in cotton fiber initials.
BMC Plant Biol 2007, 7:22.

Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C,
Aach J, Ansorge W, Ball CA, Causton HC, et al: Minimum information about
a microarray experiment (MIAME)-toward standards for microarray data.
Nat Genet 2001, 29(4):365-371.

Benedito VA, Torres-Jerez |, Murray JD, Andriankaja A, Allen S, Kakar K,
Wandrey M, Verdier J, Zuber H, Ott T, et al: A gene expression atlas of the
model legume Medicago truncatula. The Plant Journal 2008,
55(3):504-513.

Du Z, Zhou X, Ling Y, Zhang Z, Su Z: agriGO: a GO analysis toolkit for the
agricultural community. Nucleic Acids Res 2010, 38:W64-W70.

Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a
universal tool for annotation, visualization and analysis in functional
genomics research. Bioinformatics 2005, 21(18):3674-3676.

Persson S, Wei H, Milne J, Page GP, Somerville CR: Identification of genes
required for cellulose synthesis by regression analysis of public
microarray data sets. Proc Natl Acad Sci U S A 2005, 102(24):3633-8638.
Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D,
Showmaker KC, Shu S, Udall J, et al: Repeated polyploidization of
Gossypium genomes and the evolution of spinnable cotton fibres.
Nature 2012, 492(7429):423-427.

Obayashi T, Nishida K, Kasahara K, Kinoshita K: ATTED-Il Updates: condition-
specific gene coexpression to extend coexpression analyses and
applications to a broad range of flowering plants. Plant and Cell
Physiology 2011, 52(2):213-219.

Fang DD, Xiao J, Canci PC, Cantrell RG: A new SNP haplotype
associated with blue disease resistance gene in cotton (Gossypium
hirsutum L.). Theor Appl Genet 2010, 120(5):943-953.

Blenda A, Fang DD, Rami J-F, Garsmeur O, Luo F, Lacape J-M: A
high density consensus genetic map of tetraploid cotton that
integrates multiple component maps through molecular marker
redundancy check. PLoS One 2012, 7(9):e45739.

Rong J, Abbey C, Bowers JE, Brubaker CL, Chang C, Chee PW,
Delmonte TA, Ding X, Garza JJ, Marler BS, et al: A 3347-locus
genetic recombination map of sequence-tagged sites reveals
features of genome organization, transmission and evolution of
cotton (Gossypium). Genetics 2004, 166(1):389-417.

Yu JZ, Kohel RJ, Fang DD, Cho J, Van Deynze A, Ulloa M, Hoffman
SM, Pepper AE, Stelly DM, Jenkins JN, et al: A high-density simple
sequence repeat and single nucleotide polymorphism genetic
map of the tetraploid cotton genome. G3, Gene|Genome|Genetics
2012, 2(1):43-58.

Van Ooijen JW: JoinMap 4.0: Software for the calculation of genetic
linkage maps in experimental populations. Wageningen, The Netherlands:
Kyazma B.V; 2006.

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Page 16 of 17

Shao MY, Wang XD, Ni M, Bibi N, Yuan SN, Malik W, Zhang HP, Liu YX, Hua
SJ: Regulation of cotton fiber elongation by xyloglucan
endotransglycosylase/hydrolase genes. Genet Mol Res 2011,
10(4):3771-3782.

Thaker VS, Saroop S, Singh YD: Physiological and biochemical changes
associated with cotton fibre development. IV. Glycosidases and f-1,3-
glucanase activities. Ann Bot 1987, 60(5):579-585.

Li J, Nam KH, Vafeados D, Chory J: BIN2, a new brassinosteroid-insensitive
locus in Arabidopsis. Plant Physiol 2001, 127(1):14-22.

Evans ML: The action of auxin on plant cell elongation. CRC Crit Rev Plant
Sci 1985, 2(4):317-365.

Murphy MP: How mitochondria produce reactive oxygen species.
Biochem J 2009, 417(1):1-13.

Wang X, Zhang Y, Zhang J, Cheng C, Guo X: Molecular characterization of
a transient expression gene encoding for 1-aminocyclopropane-1-
carboxylate synthase in cotton (Gossypium hirsutum L.). J Biochem Mol
Biol 2007, 40(5):791-800.

Wang H, Mei W, Qin Y, Zhu Y: 1-Aminocyclopropane-1-carboxylic acid
synthase 2 is phosphorylated by calcium-dependent protein kinase 1
during cotton fiber elongation. Acta Biochem Biophys Sin (Shanghai) 2011,
43(8):654-661.

Shi YH, Zhu SW, Mao XZ, Feng JX, Qin YM, Zhang L, Cheng J, Wei LP, Wang
7Y, Zhu YX: Transcriptome profiling, molecular biological, and
physiological studies reveal a major role for ethylene in cotton fiber cell
elongation. Plant Cell 2006, 18(3):651-664.

Hare PD, Moller SG, Huang LF, Chua NH: LAF3, a novel factor required for
normal phytochrome A signaling. Plant Physiol 2003, 133(4):1592-1604.

Li J, Yu M, Geng L-L, Zhao J: The fasciclin-like arabinogalactan protein
gene, FLA3, is involved in microspore development of Arabidopsis.

The Plant Journal 2010, 64:482-497.

Chen YH, Yang XY, He K, Liu M, Li J, Gao Z, Lin ZQ, Zhang Y, Wang X, Qiu X,
et al: The MYB transcription factor superfamily of Arabidopsis: expression
analysis and phylogenetic comparison with the rice MYB family.

Plant Mol Biol 2006, 60(1):107-124.

Padmalatha KR, Patil DP, Kumar K, Dhandapani G, Kanakachari M, Phanindra
ML, Kumar S, Mohan TC, Jain N, Prakash AH, et al: Functional genomics of
fuzzless-lintless mutant of Gossypium hirsutum L. cv. MCU5 reveal key
genes and pathways involved in cotton fibre initiation and elongation.
BMC Genomics 2012, 13:624.

Cernac A, Andre C, Hoffmann-Benning S, Benning C: WRI1 is required for
seed germination and seedling establishment. Plant Physiol 2006,
141(2):745-757.

Brill E, van Thournout M, White RG, Llewellyn D, Campbell PM, Engelen S,
Ruan Y, Arioli T, Furbank RT: A novel isoform of sucrose synthase is
targeted to the cell wall during secondary cell wall synthesis in cotton
fiber. Plant Physiol 2011, 157(1):40-54.

Takahashi N, Nakazawa M, Shibata K, Yokota T, Ishikawa A, Suzuki K,
Kawashima M, Ichikawa T, Shimada H, Matsui M: shk1-D, a dwarf
Arabidopsis mutant caused by activation of the CYP72C1 gene, has
altered brassinosteroid levels. The Plant Journal 2005, 42(1):13-22.

Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX: Saturated very-
long-chain fatty acids promote cotton fiber and Arabidopsis cell
elongation by activating ethylene biosynthesis. Plant Cell 2007,
19(11):3692-3704.

Frigerio M, Alabadi D, Perez-Gomez J, Garcia-Carcel L, Phillips AL, Hedden P,
Blazquez MA: Transcriptional regulation of gibberellin metabolism genes
by auxin signaling in Arabidopsis. Plant Physiol 2006, 142(2):553-563.
Cowling RJ, Harberd NP: Gibberellins control Arabidopsis hypocotyl
growth via regulation of cellular elongation. J Exp Bot 1999,
50(337):1351-1357.

Xiao YH, Li DM, Yin MH, Li XB, Zhang M, Wang YJ, Dong J, Zhao J, Luo M,
Luo XY, et al: Gibberellin 20-oxidase promotes initiation and elongation
of cotton fibers by regulating gibberellin synthesis. J Plant Physiol 2010,
167(10):829-837.

Loguerico LL, Zhang JQ, Wilkins TA: Differential regulation of six novel
MYB-domain genes defines two distinct expression patterns in
allotetraploid cotton (Gossypium hirsutum L.). Mol Gen Genet 1999,
261(4-5):660-671.

Perazza D, Vachon G, Herzog M: Gibberellins promote trichome formation by
Up-regulating GLABROUST in arabidopsis. Plant Physiol 1998, 117(2):375-383.



Gilbert et al. BMIC Genomics 2013, 14:403
http://www.biomedcentral.com/1471-2164/14/403

69.

70.

7.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa
Y, Allen RD: Xyloglucan endotransglycosylase/hydrolase genes in cotton
and their role in fiber elongation. Planta 2010, 232(5):1191-1205.

Hwang JU, Vernoud V, Szumlanski A, Nielsen E, Yang Z: A tip-localized
RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the
cell apex. Curr Biol 2008, 18(24):1907-1916.

Seo PJ, Lee AK, Xiang F, Park CM: Molecular and functional profiling of
Arabidopsis pathogenesis-related genes: insights into their roles in salt
response of seed germination. Plant Cell Physiol 2008, 49(3):334-344.
Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F, Hofte H,
Gonneau M, Vernhettes S: Organization of cellulose synthase complexes
involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl
Acad Sci USA 2007, 104(39):15572-15577.

Liu FJ, Liang WH, Zhang TZ: Genetic analysis of homozygous-dominant
-surviving ligon lintless recombinants in cotton (Gossypium hirsutum L.).
Acta Agronomica Sinica 2010, 36(12):2020-2027.

Sasidharan R, Chinnappa CC, Staal M, Elzenga JT, Yokoyama R, Nishitani K,
Voesenek LA, Pierik R: Light quality-mediated petiole elongation in
Arabidopsis during shade avoidance involves cell wall modification by
xyloglucan endotransglucosylase/hydrolases. Plant Physiol 2010,
154(2):978-990.

Sembdner G, Atzorn R, Schneider G: Plant hormone conjugation. Plant Mol
Biol 1994, 26(5):1459-1481.

Chen J, Du X, Zhou X, Zhao H: Levels of cytokinens in the ovules of
cotton mutants with altered fiber development. J Plant Growth Regul
1997, 16:181-185.

Liu J, Ekramoddoullah AK: The family 10 of plant pathogenesis-related
proteins: their structure, regulation, and function in response to biotic
and abiotic stresses. Physiol Mol Plant Pathol 2006, 68(1-3):3-13.

Liu J, Ekramoddoullah AK, Piggott N, Zamani A: Molecular cloning of a
pathogen/wound-inducible PR10 promoter from Pinus monticola and
characterization in transgenic Arabidopsis plants. Planta 2005,
221(2):159-169.

Markovic-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E,
Clemens S, Susani M, Ferreira F, Scheiner O, Breiteneder H: Crystal structure
of a hypoallergenic isoform of the major birch pollen allergen Bet v 1
and its likely biological function as a plant steroid carrier. J Mol Biol 2003,
325(1):123-133.

Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov
N, Auer M, Somerville CR: Genetic evidence for three unique components
in primary cell-wall cellulose synthase complexes in Arabidopsis.

Proc Natl Acad Sci USA 2007, 104(39):15566—15571.

Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann
M, Rayon C, Vernhettes S, Hofte H: PROCUSTE1 encodes a cellulose
synthase required for normal cell elongation specifically in roots and
dark-grown hypocotyls of Arabidopsis. Plant Cell 2000, 12(12):2409-2423.
Zhao L, Lv Y, Cai C, Tong X, Chen X, Zhang W, Du H, Guo X, Guo W:
Toward allotetraploid cotton genome assembly: integration of a high-
density molecular genetic linkage map with DNA sequence information.
BMC Genomics 2012, 13:539.

Liebminger E, Huttner S, Vavra U, Fischl R, Schoberer J, Grass J, Blaukopf C,
Seifert GJ, Altmann F, Mach L, et al- Class | alpha-mannosidases are
required for N-glycan processing and root development in Arabidopsis
thaliana. Plant Cell 2009, 21(12):3850-3867.

Herve C, Dabos P, Bardet C, Jauneau A, Auriac MC, Ramboer A, Lacout F,
Tremousaygue D: In vivo interference with AtTCP20 function induces
severe plant growth alterations and deregulates the expression of many
genes important for development. Plant Physiol 2009, 149(3):1462-1477.
Hao J, Tu L, Hu H, Tan J, Deng F, Tang W, Nie Y, Zhang X: GbTCP, a cotton
TCP transcription factor, confers fibre elongation and root hair
development by a complex regulating system. J Exp Bot 2012,
63(17):6267-6281.

doi:10.1186/1471-2164-14-403

Cite this article as: Gilbert et al.: Transcript profiling by microarray and
marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant
Ligon lintless-1 (Li;). BMC Genomics 2013 14:403.

Page 17 of 17

Submit your next manuscript to BioMed Central
and take full advantage of:

* Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BioMed Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Plant materials for microarray and quantitative PCR (qPCR) experiments
	Mapping population
	Fiber length and cellulose content measurements
	Imaging analysis of fiber cross-sections
	RNA isolation from cotton fibers
	Microarray hybridizations and data analysis
	Reverse transcription and quantitative PCR
	SSR marker analysis and genetic mapping
	Functional analysis of the Li1 region
	Sequencing introns to develop additional polymorphic markers

	Results
	Fiber structure analysis
	Microarray analysis
	Transcription analysis of cellulose synthase activity
	Corroboration of microarray data
	Mapping the Li1 locus region with SSR markers
	Functional analysis of the Li1 region

	Discussion
	Conclusions
	Availability of supporting data

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

