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Abstract

lead to higher uterine capacity in Erhualian pigs.

transcriptomic studies.

Background: Erhualian pigs, one of Chinese Taihu pig breeds, are known to have the largest recorded litter size in
the world. A lower prenatal death rate is the major contributing factor to the prolificacy of Taihu pigs.
Cross-breeding experiments have demonstrated that Taihu sows exhibit a strong maternal effect and that their
large litter sizes are mainly caused by maternal genes. The growth and development of porcine embryos on
gestation day (GD) 12 are dependent on histotroph secreted by endometrium. Embryonic loss of Taihu pigs on
GD12 is lower than that of Western pigs. Here, endometrial samples were collected from pregnant Erhualian sows
(parity 3) and Landrace x Large White (LL) sows (parity 3) on GD12. Digital gene expression profiling (DGE) was
used to measure the gene expression in the endometrium of the two breeds.

Results: A total of 13,612 genes were differentially expressed between the two breeds (P <0.001, FDR < 0.001).
Gene Ontology (GO) analysis showed that the differential genes involved in reproduction and growth. Pathway
analysis revealed that the differentially expressed genes significantly enriched in 24 KEGG pathways. Quantitative
real-time RT-PCR confirmed the differential expression of eight genes. Analyses of the differentially expressed genes
suggested possible reasons for the difference in embryonic survival ratio between the two breeds. Specifically,
these findings point to a higher ratio of PGE,:PGF,, in the endometrium of Erhualian pigs, which facilitates the
establishment and maintenance of pregnancy. We also suggest that the differences in the uterine environment

Conclusions: The DGE expression profiles of Erhualian and LL endometrium demonstrated differential expression of
genes. Our results will increase understanding of the molecular mechanisms of the low rate of embryonic loss in
Chinese Taihu pigs, facilitate the identification of major genes that affect litter size, and be valuable for porcine

Background

Chinese Taihu pigs are highly prolific; the Erhualian (ER),
one of the Taihu pigs, is known for producing the highest
recorded litter sizes in the world [1]. Litter size is influ-
enced by many factors, such as the boar, season, and nutri-
tion. However, it has been demonstrated that these factors
do not account for the prolificacy of Meishan pigs, which
are another breed of Chinese Taihu pig [2]. In addition,
Meishan sows are little affected by the factors involved in
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stillbirth [3]. Taihu pigs express a high level of maternal
heterosis in litter size when used in crosses with Western
pig breeds [4,5]. Studies have indicated that the large litter
sizes of Meishan pigs are due to genes acting in the dam
[6,7]. The ER sows can give birth to more than 15 piglets
per litter, even when the coefficient of inbreeding is as high
as 0.25 [8]. These findings indicate that the desirable alleles
related to litter size are preponderant in Taihu sows.
Embryonic loss is one of the major barriers to large lit-
ter size [2,9]. It is estimated that approximately 20-30%
of embryonic death occurs during gestation days (GD)
11-12 [10]. The embryonic survival rate does not differ
among pig breeds until GD11, but it is elevated on
GD12 in Meishan pigs when compared with Landrace x
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Large Yorkshire (LL) pigs [7,11]. At this stage, the blas-
tocysts undergo dramatic morphological changes, devel-
oping from an 11-50 mm tubular structure into a
100 mm filamentous structure. The rapid changes in
shape and size caused by the elongation of porcine blas-
tocysts are not a result of cellular hyperplasis but cellular
rearrangements and remodeling of the trophectoderm
[12]. These changes coincide with the synthesis and re-
lease of maternal-fetal recognition signals (estrogen) and
cytokines required for the establishment of pregnancy
[13-15]. Porcine conceptuses initiate the secretion of es-
trogen on GD10-15 [16], although Meishan embryos are
smaller and contain fewer cells when they initiate steroi-
dogenesis and begin to elongate [17]. Meishan concep-
tuses also secrete less estrogen into the uterine luminal
fluid and elongate to a reduced length [18] and diameter
[17,19] when compared with Large White conceptuses.

The level of estrogen in porcine uterine flush samples
is determined primarily by the amount of estrogen
secreted by the embryos [20]. The estrogen level in the
uterine lumen will have multiple effects on the embry-
onic survival rate. Firstly, the estrogen level may affect
placental weight and survival of the conceptus. When
Meishan gilts were treated with estrogen on GD12
or GD13, placental weights were increased significan-
tly (P<0.05); litter size was not affected significantly
(P >0.05) but it tended to decrease [21]. However, others
have shown that placental weights are negatively corre-
lated with litter size (P < 0.05) [22] and uterine capacity
at GD105 [23] (P<0.01) in Western breeds. The non-
significant result in the former study [21] may have been a
consequence of smaller sample size. Secondly, embryonic
estrogen, as an embryo-maternal recognition signal, can
change uterine secretion of histotroph [24]. The lower
amount in Meishan embryos may cause a more gradual
change of the gravid uteri, which decreases the negative
impact that faster-developing embryos could have on their
slower-developing littermate embryos [25,26].

Endometrial synthesis of prostaglandins (PG) is essential
for the establishment and maintenance of pregnancy in pigs
[27,28]. During maternal recognition of pregnancy around
GD12, PGF,,, which is synthesized mainly by the endomet-
rium [15], has a luteolytic effect, while PGE, can antagonize
this effect [29,30]. The secretion of PGF,, is redirected
from the uterine venous drainage (endocrine) during luteo-
lysis to the uterine lumen (exocrine) at the time of maternal
recognition of pregnancy. Studies have shown that the
PGE:PGF,, ratio is crucial for the regulation of the estrous
cycle, and the establishment and maintenance of pregnancy
[31,32]. The sum of PGE, and PGF,, and their ratio were
higher in Meishan sows than that in Large White pigs [33].

On GD12, the placenta (trophectoderm) has not yet
formed, the conceptus is free-floating and not attached
to the endometrium [10,12], hence embryonic growth and
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development is dependent on histotroph in the uterine
lumen. Histotroph includes hormones, growth factors, and
transport proteins [34]. The uterine histotroph is synthe-
sized and secreted primarily by the epithelia of the mater-
nal uteri during early pregnancy [35]. Experiments have
demonstrated that embryonic growth and development are
affected by the environment of the uterine lumen [18,36].
In the present study, we detected the differentially ex-
pressed genes in the endometrium of ER and LL pigs on
GD12 by digital gene expression profiling (DGE) using an
[umina Genome Analyzer platform. This work will be
helpful for understanding the molecular basis of different
prolificacy between Chinese Taihu and Western pigs.

Results

DGE libraries

Pools of cDNA from the GD12 endometrium of three LL
(parity 3) and three ER (parity 3) sows were used to con-
struct the two DGE libraries. Global gene expression pro-
files were obtained by massive parallel sequencing using the
[lumina DGE system. The raw data of the DGE libraries
were filtered to obtain clean tags before further analysis.
The major characteristics of the two DGE libraries are
described in Table 1 and Additional file 1: Figure S1. A total
of 9,514,757 tags, including 3,723,534 for ER and 5,791,223
for LL, were obtained by sequencing. The clean tags con-
sisted of 3,448,173 in ER and 5,496,993 in LL, which con-
tained 400,769 and 493,761 unique tags in ER and LL,
respectively. In both raw tag libraries, more than 92% of the
tags were detected more than once within each library. The
distribution of tags revealed that high-expression tags (copy
number >100) represented the majority of sequences de-
tected, whereas the low-expression tags (copy number <5)
had the greatest sequence diversity. Tags that represented
less than 3% of the total categories of tags identified in this
study accounted for more than 61% of the total number of
tags. Conversely, tags that represented more than 60% of
the total tag types accounted for less than 7% of the total
tags. This indicates that only a small number of mRNAs
are expressed abundantly and that the vast majority of
mRNAs are present at low level. Saturation analyses of ER
and LL (Figure 1) demonstrated that the number of newly
identified unique tags and genes decreased as the total
number of sequencing tags increased, which shows that
the DGE libraries were becoming saturated, and validates
the integrity of the library for use in further analysis.

Tag mapping

Three databases (GenBank + EMBL + TIGR) were used
to generate an integrated reference library for DGE tag
mapping and sequence annotations. The tags in the
reference library consisted of CATG, the recognition site
for Nlalll, in conjunction with the next 17 nt sequences
that were created by Mmel. One mismatch was allowed for
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Table 1 Major characteristics of DGE libraries and tag
mapping to the integrated transcript database

ER LL

Total Unique Total Unique

Tags Tags Tags Tags
Raw Data 3,723,534 400,769 5,791,223 493,761
Low Quality Tag 6,749 5,681 68,587 48,070
Adaptors' 0 0 0 0
Tag CopyNum <2 268,612 268,612 225,643 225,643
Clean Tags 3448173 126476 5496993 220,048
CopyNum > =2 3448173 126476 5496993 220,048
CopyNum >5 3,225,291 45,507 5,124,374 87,931
CopyNum >10 3,102,559 29,281 4,884,200 56,377
CopyNum >20 2,944,609 18456 4,552,034 33,675
CopyNum >50 2,659,626 9,541 3,950,181 14,721
CopyNum >100 2,352,245 5212 3,399,787 6,871
3/ tag mapping
Tags Mapped to 3,279,258 98,673 4,218,582 159,029
Gene?
Unambiguous Tags 2,289,131 77,128 3,002,699 130,494

Mapped to Gene®

Tags Mapped to 355 39 562 55
Mitochondrion

Tags Mapped 90,041 16,150 170475 38,077
to Genome
Unknown Tags 78,519 11,614 1,107,374 22,887

"There is only adaptor but no tag sequence in the reads. Tag Mapped to
Gene represents the number of tags mapped to the reference library.
3Unambiguous tags mapped to Gene represents the number of tags mapped
to a gene in the reference library.

DGE tag mapping to allow for potential polymorphisms
between samples. This generated 649,443 reference tags,
which corresponded to 425,980 unambiguous reference
tags in the integrated reference library. Together, 95.10%
and 76.74% of the clean tags and 78.02% and 72.27% of the
unique clean tags were mapped to the reference library for
ER and LL, respectively; 66.39% and 54.62% of the total
clean tags and 60.98% and 59.30% of the unique clean tags
were mapped unambiguously to the integrated reference li-
brary for ER and LL, respectively. In total, 12.80% and
17.33% of the unique tags were mapped to the mitochon-
drial genome and nuclear non-coding genome sequence,
respectively. Other DGE unique tags (approximately 9.18%
and 10.40% for ER and LL, respectively) were not mapped
to the integrated reference library. These unknown tags
probably arose from incomplete reference tag libraries. Tag
position analyses (Additional file 2: Figure S2) indicated
that the most DGE tags that matched the reference tags
were close to the 3’ end of the transcripts. DGE based on
[lumina sequencing was able to discriminate the tags from
the sense and antisense strands of DNA. We found that
13,966 genes (2,210 NCBI, 1,153 GenBank, 3,575 TC,
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5,951 Unigene and 1,075 ENSEMBL) had antisense tran-
scripts for ER (Additional file 3: Table S1)), and 11,033
genes (1,542 NCBI, 1,437 GenBank, 2,980 TC, 4,129 Uni-
gene and 945 ENSEMBL) for LL (Additional file 4: Table
S2). In total, 16,150 and 38,077 unique tags were mapped
to the non-coding nuclear genome for ER (Additional
file 5: Table S3) and LL (Additional file 6: Table S4), re-
spectively, which suggests that novel transcripts may exist
close to these tags.

Identification and analysis of differentially expressed
genes

The tag number obtained via DGE reflects the level of
expression of the transcripts represented by those tags.
All the clean tags were mapped to the reference se-
quences; the number of unambiguous clean tags for each
gene was calculated and normalized to tags per million
(TPM). By comparing the normalized DGE profiles
between ER and LL, we obtained the global transcrip-
tional difference between ER and LL. The results showed
that 13,612 genes were significantly differentially ex-
pressed between the breeds (Additional file 7: Table S5);
5,912 genes were more abundantly represented and 7,700
were less abundant in ER than in LL.

There were apparent differences in the proportions of
expressed genes unique to ER and LL. A total of 52,298
genes were represented in the combined endometrial DGE
profiles. The proportions of genes expressed uniquely in
ER and LL were 13.5% (7,060/52,298) and 40.3% (21,066/
52,298), respectively; the remaining genes were shared by
the transcriptomes. Of the total number of genes ex-
pressed, 1.53% (800/52,298) and 1.84% (970/52,298) had an
expression level of >0.01% in the ER and LL transcrip-
tomes, respectively.

Gene Ontology (GO) and signalling pathway analysis
GO is an international standard system of classification
for the comprehensive description of the properties of
genes and their products. It was used to classify all the
genes expressed in ER and LL endometrium into one of
three groups according to their biological process, cellular
component, and molecular function (Additional file 8:
Figure S3 and Figure 2). GO analysis of all the genes
expressed in this period revealed that the overall genomic
expression profiles were very similar between ER and LL,
but differences were detected in specific aspects such as
cellular synapses and proteasome regulation. The GO
annotation (Figure 2) indicated that the differentially ex-
pressed genes were involved in many processes, such as
reproduction, growth, cellular component biogenesis and
organization, biological adhesion, and immune function.
To identify the metabolic and signal transduction path-
ways in which the differentially expressed genes are likely
to be involved, we performed pathway analysis on the
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Figure 1 Saturation analysis. ER: (a) and (c); LL: (b) and (d). Saturation analysis of DGE libraries showed that new emerging genes and unique
tags were gradually reduced with increasing total sequence tags when the library of total sequencing tags was large enough. Percentage of genes
(@ and b) or unique tags (c and d) identified gradually decreased with increasing total tags when the number of tag sequenced was high enough.

basis of the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database using an ultra-geometric test.
In total, 4,006 differentially expressed genes had KEGG
pathway annotations. As shown in Additional file 9: Table
S6, the significant signaling pathways included steroid
biosynthesis, oxidative phosphorylation, basal transcrip-
tion factors, and the transcription machinery.

gPCR analysis

Quantitative real-time RT-PCR (qPCR) was performed on
eight genes to confirm the patterns of differential gene ex-
pression between ER and LL pigs. The detailed information
about these genes was listed in Additional file 10: Table S7.
This set included five genes that showed increased DGE
representation in ER (TIMP1, CST3, PLTP, PTGES, and
RLN) and three genes with lower DGE representation in
ER (RBP4, ODC, and PTGS2). As shown in Figure 3, qPCR
validated the results of the DGE analysis in all cases.

Expression analysis of candidate genes for embryonic
survival

Quantitative trait loci (QTL) related to the embryonic sur-
vival rate in pigs have rarely been reported so far [37], prob-
ably because of the high costs of such experiments. Hence,
candidate genes have been selected on the basis of their
physiological functions and the results of candidate gene
studies. We concentrated on maternal genes related to em-
bryonic growth and PG synthesis. The expression levels
and functions of the candidate genes are listed in Table 2.

Discussion

In this study, we generated the endometrial expression pro-
files and identified the genes differentially expressed in
GD12 ER and LL endometrium. The results in this paper
will be valuable for future studies on the identification of
major genes for embryonic survival.
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The genes for growth factors and nutrient-delivery
proteins

The secretion of uteroferrin (UF) is not responsive to the
plasma levels of iron [56], thus it is speculated that the
iron supply to the embryos during the peri-implantation

period is determined by genotypes. Retinol-binding protein
4 (RBP4) is significantly associated with litter size in
German Landrace pigs (P < 0.05) [57]. Receptors for HB-
EGF [58], KGF [59], IGF1 [60,61], and IGF2 [62] are all
expressed by porcine embryos on GD12. Studies have
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Figure 3 Validation of the DGE results by gPCR. This figure illustrates that the gPCR results are consistent with those of DGE. The gPCR results
were normalized to the expression level of RPS20. See Additional file 7: Table S5 for DGE results, and Additional file 10: Table S7 for details of
these genes. DGE results: FDR < 0.01 for all listed genes between breeds. gPCR results: error bars represent SE; the expression levels of all listed
genes differ highly significantly (P <0.01) between breeds.
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Table 2 Differentially expressed genes in the
endometrium that may affect sow prolificacy

Gene Expression FDR  Function

Level (TPM)
ER LL
PTGST 14.5 3.64

1.37E-06 — Converts arachidonic acid to
PGH, [28,38].

— Rate-limiting enzymes in PG
synthesis [38].

— Essential to reproduction
[39-43].

1.20E-02 — The same as those of PTGS1.
1.68E-12 — Converts PGH, to PGE, [30].

836E-08 — Converts PGH, to PGE,
[44,45].

1.70E-02 — Converts PGE, into PGF,, [46].

1.17E-  — Converts PGE, into PGF,,
136 according to KEGG pathway.

PTGS2 522
PTGES
PTGES2

10.92

9193 15.10

2552 9.64

CBR1 1.16 0.01

CBR2 522 141.9

RBP4 1160.03 1609.79 7.06E-67 — Transports vitamin A to the
embryos [47], thereby affecting
the growth and development

of the embryos [48].

UF 102.37 117501 0.00E-00 - Transports iron to the embryos

[491.

— Additively has metabolic,
mitogenic and differentiation
actions and are essential for
prenatal growth of the
conceptus [50,51].

1401 499E-13

— Control and differentiation of
the uterus for blastocyst
implantation [52].

IGF2 13.92 218  283E-05 — The same as those of IGF1.

HB-EGF 0.01 164  362E-02 - Blastocyst growth, and
trophoblast outgrowth [53]

and development [54].

FGF7/ 8.70 7131  3.07E-48 - Proliferation and differentiation
KGF of trophectoderm [55].

See Additional file 7: Table S5 for details of all the differentially expressed
genes. Numbers in square brackets are the numbers of the papers in the
reference list.

shown that IGF1 promotes embryonic growth in response
to the nutrient supply [63,64], while IGF2 may regulate
the supply of maternal nutrient to conceptus [65]. The ex-
pression levels of the five genes (RBP4, UF, HB-EGF, KGF,
and /GFI) and IGF2 in LL versus ER pigs were signifi-
cantly up-regulated and down-regulated (Table 2), re-
spectively. Vallet et al. (1998) [36] reported that
expressions of UF and RBP were lower in pregnant
Meishan endometrium than in White crossbred. The GO
molecular function classification showed that the differen-
tial genes were associated with growth (Figure 2). The ex-
pression patterns and the physiological functions of these
genes (Table 2) indicated that the endometrium of ER pigs
had a lower growth-promoting ability to embryos than
that of LL pigs. The above results can partially explain the

Page 6 of 10

phenomenon that embryos in uteri of Taihu sows grow
slower than those in the uteri of Western sows.

IGF1 was expressed significantly higher in LL endo-
metrium than in ER endometrium (Table 2). IGFI,
rather than IGF2, is known to induce estrogen synthesis
by stimulating expression of aromatase in the conceptus
[60,66]. Aromatase is the rate-limiting enzyme in estro-
gen synthesis in the pig conceptus [67]. Therefore, it is
very likely that ER embryos secret less estrogen than LL
embryos, which will contribute to the higher embryonic
survival rate in ER pigs. Moreover, IGF2 increases the
permeability of the placenta in mice [65,68], and thus a
higher level of IGF2 in ER endometrium (Table 2) may
improve the placental efficiency.

The genes in the prostaglandin (PG) synthetic pathway
PG synthesis in endometrum, especially the PGE,:PGF,,
ratio, is crucial for the establishment and maintenance
of pregnancy in pigs [27,31,46]. The high PGE,:PGF,,
ratio may be a beneficial factor for large litter size in
Meishan sows [31,33]. The expressions of the genes,
PTGSI1/PTGS2, PGES/PGES2 and CBRI1/CBR2, play crit-
ical roles in the PG synthesis.

PTGS1 and PTGS2 are rate-limiting enzymes in PG
synthesis pathway [38]. The expression level of PTGS2 is
higher than that of PTGSI in the endometrium of LL
pigs on GD12 (Table 2), which is consistent with other
studies using Western pigs [38,69]; while the expression
level of PTGS2 is lower than that of PTGSI in ER sows
(Table 2). In Western sows, PTGS2 is the primary en-
zyme involved in elevated PG synthesis [38,69], whereas
PTGS1 may perform this function in ER sows according
to our results. It has been demonstrated that both the
mRNA and the protein of PTGS2 have shorter half-lives
than those of PTGS1 [70]. Hence, the higher PTGSI
expression can contribute to the larger capacity for PG
synthesis in ER pigs on GD12.

The convert of PGH, to PGE, in PG synthesis is cata-
lyzed by PTGES [30] and PTGS2 [44,45]. The higher
expression of PTGES and PTGES2 in ER endometrium
(Table 2) is helpful for the higher PGE,, which will be con-
tribute to the higher ratio of PGE, to PGF,, on GD 12.

In Western breeds, expression of CBRI has been exam-
ined [31] but CBR2 neglected. Although the levels of
endometrial CBR1 on GD12 and GD14 did not differ [31],
the ratio of PGE, to PGF,, on GD14 was higher than that
on GD12 [33]. CBR2 may play a role in the conversion of
PGE, into PGF,, according to our results and KEGG
pathway (http://www.genome.jp/kegg-bin/show_pathway?
org_name =ssc&mapno = 00590&mapscale = 1.0&show_-
description = show), and that higher expression of CBR2
may decrease the ratio of PGE, to PGF,,. In the present
study, the patterns of expression of CBRI and CBR2
observed in the two breeds (Table 2) suggest that the ratio
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in the endometrium of ER pigs be greater than that in the
endometrium of LL pigs on GD12.

Conclusions

In summary, we have described genes that are expressed
differentially in the endometrium of ER and LL pigs on
GD12. Compared with those in the LL pigs, the gene
expression profiles in the endometrium of the prolific ER
pigs are found to benefit for the establishment and main-
tenance of pregnancy, delay embryonic development and
growth, and enhance uterine capacity via reduced estrogen
secretion. The gene-driven events that are characteristic
of ER pigs could contribute to the lower embryonic mor-
tality and higher prolificacy of this indigenous Chinese
Taihu breed. The data provided by this study will be useful
for porcine transcriptomic studies.

Methods

Animal and tissue collection

All animal procedures were performed according to
protocols approved by the Biological Studies Animal Care
and Use Committee of Guangdong Province, China. Three
LL sows (parity 3) and three ER sows (parity 3) were artifi-
cially inseminated (AI), and slaughtered on GD12. Endo-
metrial samples were collected and stored at —80°C until
RNA extraction was performed [71].

RNA extraction and cDNA libraries construction

Total RNA was isolated from the frozen endometrium
of the two breeds using the TRIzol reagent (Invitrogen).
The qualified total RNA was diluted to the same con-
centration, and then was reverse transcribed individually
to generate cDNA libraries by first-strand cDNA synthe-
sis kit (Takara).

Construction of reference tag library

In order to generate a reference tag library, we downloaded
the Sus scrofa Unigene from the National Center for Bio-
technology Information (NCBI, www.ncbi.nlm.nih.gov)
(UniGene Build #36), reference cDNA library (Sscrofa9.58.
cdna.all) from ENSEMBL (www.ensembl.org), and Tenta-
tive Consensus sequences (TCs, Release 13.0) from The In-
stitute of Genome Research porcine index (TIGR, http://
compbio.dfci.harvard.edu/tgi/). These databases were used
according to a preset priority. The priority order was
Unigene from NCBI, confirmatory gene/cDNA from
ENSEMBL, TCs from TIGR, and novel and pseudogene
predictions from ENSEMBL. The sense and antisense tags
sequences of the references genes were included in the
reference tag library.

DGE library construction and tag sequencing
Equal quantities of mRNA from three LL animals were
pooled as a control sample, and mRNA from three ER
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as treatment sample. For sequence tag preparation, the
two mRNA samples (6 pug respectively) were treated with
Illumina’s Digital Gene Expression Tag Profiling Kit
[72,73]. The DGE tag libraries were anchored on the
flowcell. During in situ amplification the single tag be-
came clusters, which served as a template for sequencing
on the Illumina Cluster Station and Genome Analyzer.
Raw image data were transformed into the DGE tag
sequence by base calling.

Analysis of DGE tag sequences

Raw data were filtered by Solexa mRNA tag pipeline (the
copyrights are reserved by Beijing Genomics Institute,
the number of copyright registration is 2009SR05447 in
China) to remove adaptors, low quality tags and tags of
copy number =1, and a clean tag library was generated.
The total tags were classified according to the copy num-
bers in the library and their percentages in the total tags
and unique tags were shown. In addition, saturation ana-
lyses of the two DGE clean tag libraries were executed to
determine their overall quality.

Mapping DGE tags

All clean DGE tags were mapped by aligning the se-
quences of DGE tags to the reference tag library. Unam-
biguous tags were annotated and ambiguous tags
discarded. The clean tags corresponding to each gene
were counted to quantify expression abundance of the
genes. The raw expression levels were normalized to TPM
[72,73]. Statistical analysis of abundance of gene expres-
sion in endometrium was preformed, and the differently
expressed genes were screened [74,75]. Genes were
deemed significantly differentially expressed with P values
<0.001, false discovery rate (FDR) <0.001 and absolute
value of log2-fold change>2 in TPM between libraries.
Genes with antisense reference tags corresponding to
DGE tags were exclusively listed and annotated. The DGE
tags that were unable to be mapped to the reference tag
library and mitochondria were aligned to the nuclear
genome to detect potential novel transcripts.

GO analysis

The hypergeometric test was preformed to identify sig-
nificantly enriched GO terms by comparing to the whole
genomic background [76]. GO terms with a Q-value (i.e.
Bonferroni adjusted P value) was less than 0.05 were
defined as the significantly enriched GO terms. Further-
more, WEGO was employed to plot GO annotations of
all expressed and differentially expressed genes [77].

Pathway analysis

According to KEGG database, hypergeometric test and
multiple hypotheses correction were used to classify the
pathway category [76]. Pathways with a Q-value was less
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than 0.05 were defined as a significantly pathway en-
riched with differential gene expressions.

Validation of DGE results by real-time qPCR

qPCR was employed, and eight genes were selected to ver-
ify the DGE results. The details of these eight genes are
summarized in Additional file 10: Table S7. Independent
cDNA from the three sows for tag sequencing was used as
template in LL and ER, respectively. qPCR was preformed
with SYBR® Premix Ex Taq " (Takara) on Lightcycler480
(Roche). For each biological replicate, the reactions of all
eight genes and one pre-selected housekeeping gene were
run on one plate in triplicate for each gene to represent
technical replicates. The relative expression levels were
calculated with the 272" method [78]. We had found
that ribosomal protein S20 (RPS20) was the most suitable
reference gene for comparison due to the stable expres-
sion between the two pig breeds [79], hence the results
were normalized to the expression level of RPS20. The ¢-
test was used to compare the levels of expression between
the two breeds [80].

Additional files

Additional file 1: Figure S1. Distribution of total clean tags and
unique clean tags. The top panel displays the distribution of total clean
tags and the bottom panel displays the distribution of unique clean tags.
The left row shows the details of ER and right row shows the situations
of LL.

Additional file 2: Figure S2. Tag position analysis. Tag position
analysis reveals the positions of tags in the gene.

Additional file 3: Table S1. Antisense transcripts and their
corresponding genes of ER.

Additional file 4: Table S2. Antisense transcripts and their
corresponding genes of LL.

Additional file 5: Table S3. Tags mapped to nuclear genome for ER.
Additional file 6: Table S4. Tags mapped to nuclear genome for LL.
Additional file 7: Table S5. All differentially expressed genes.

Additional file 8: Figure S3. GO analysis of all expressed genes in
endometrium. GO analyses of all expression genes were performed
according to Gene Ontology database.

Additional file 9: Table S6. Significantly enriched pathway of
differentially expressed genes.

Additional file 10: Table S7. The details of the eight genes for gPCR.
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