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Abstract

Background: MicroRNAs (miRNAs) are a large family of endogenous, non-coding RNAs, about 22 nucleotides long,
which regulate gene expression through sequence-specific base pairing with target mRNAs. Extensive studies have
shown that miRNA expression in the skin changes remarkably during distinct stages of the hair cycle in humans,
mice, goats and sheep.

Results: In this study, the skin tissues were harvested from the three stages of hair follicle cycling (anagen, catagen
and telogen) in a fibre-producing goat breed. In total, 63,109,004 raw reads were obtained by Solexa sequencing
and 61,125,752 clean reads remained for the small RNA digitalisation analysis. This resulted in the identification of
399 conserved miRNAs; among these, 326 miRNAs were expressed in all three follicular cycling stages, whereas 3,
12 and 11 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. We also identified 172
potential novel MiRNAs by Mireap, 36 miRNAs were expressed in all three cycling stages, whereas 23, 29 and 44
miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. The expression level of five
arbitrarily selected miRNAs was analyzed by quantitative PCR, and the results indicated that the expression patterns
were consistent with the Solexa sequencing results. Gene Ontology and KEGG pathway analyses indicated that five

major biological pathways (Metabolic pathways, Pathways in cancer, MAPK signalling pathway, Endocytosis and
Focal adhesion) accounted for 23.08% of target genes among 278 biological functions, indicating that these
pathways are likely to play significant roles during hair cycling.

Conclusions: During all hair cycle stages of cashmere goats, a large number of conserved and novel miRNAs were
identified through a high-throughput sequencing approach. This study enriches the Capra hircus miRNA databases
and provides a comprehensive miRNA transcriptome profile in the skin of goats during the hair follicle cycle.
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Background

The mammalian hair follicle (HF) is a unique, highly re-
generative neuroectodermal-mesodermal interaction sys-
tem, containing a large number of stem cells [1]. The
HF cycles throughout the entire life of mammals to pro-
duce new hair through stages of growth (anagen), re-
gression (catagen) and quiescence (telogen) [2]. The HF
transition between different stages is driven by a strictly
controlled interaction of numerous growth stimulatory
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and inhibitory factors, which originate from the skin epi-
thelium and mesenchyme [3]. Each stage is characterised
by specific patterns of gene activation and silencing
[4-6]. These conversions are controlled by the local signal
environment, cytokines, hormones, neurotransmitters, as
well as the transcription factors and enzymes that are
recognised by key mediators in the HF cycle [2,7].
MicroRNAs (miRNAs) are a large family of endo-
genous, non-coding RNAs, about 22-nucleotide (nt)
long, which regulate gene expression through sequence-
specific base pairing with target mRNAs [8]. Appro-
ximately 25,000 miRNAs have been identified in 193
species of animals, plants and microorganisms. Over the
past decade, accumulating evidence has shown that
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miRNAs play fundamental roles in the development,
function, and maintenance of tissues and cells in various
organisms [9]. miRNAs are involved in the control of
each stage of the hair cycle and regulate the transition
between distinct hair-cycle stages by targeting different
signalling pathways and transcription factors. Mice car-
rying a keratinocyte-specific Dicer deletion have severe
alterations in HF morphogenesis, formation of large
germ-like cysts, and hyperproliferation of the epidermis
[10,11]. miR-203 regulates the epidermal keratinocyte
differentiation and directed repression of p63 expression
[12,13]. Moreover, miR-200b and miR-196a have been
implicated in the control of HF development as potential
targets for the Wnt signalling pathway [14]. The expres-
sion of miR-31 markedly increases during anagen and
decreases during catagen and telogen. miR-31 is involved
in the establishment of an optimal balance of gene ex-
pression in the HF, which is required for its proper
growth and hair-fibre formation [15].

Cashmere goats have a double coat consisting of the
over hair produced by primary HFs and the under hair
(cashmere), produced by secondary HFs [16]. The
growth of secondary follicles consists of three stages an-
nually: anagen (April-November), catagen (December-
January) and telogen (February-March) [17,18].

The Shanbei White cashmere goat (SWCG), a Chinese
domestic goat breed, is farmed to provide cashmere,
wool and meat. Here, we present a genetic study of the
miRNAs in SWCG HFs, and investigate the differential
expression of miRNAs in each distinct stage of SWCG
HF cycles by Solexa sequencing. We further explore
their functions in the regulation of the hair growth cycle.

Results

Solexa-sequencing of small RNAs

In order to identify miRNAs involved in the three
phrases (anagen, catagen and telogen) of the hair cycle,
three small RNA (sRNA) libraries representing the above
three phrases were constructed from a mixed pool of
ten adult cashmere goat skin samples. The sRNA
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libraries were subsequently sequenced by Solexa sequen-
cing. A total of 63,109,004 raw reads were obtained.
After discarding the sequences shorter than 18 nt, elim-
inating low-quality sequences and removing contami-
nants formed by adapter—adapter ligation, reads without
3" ligation and insert tags were obtained. Collectively,
61,125,752 clean reads remained for further analysis
(Table 1).

We then analysed the length distribution based on the
three libraries and distinct sequences to assess the se-
quencing quality (Figure 1). Among these sequences,
most were distributed in the 18-30 nt range. The
highest percentages of these sRNAs were 22-nt long,
which is consistent with the common size of miRNAs.

Subsequently, in order to analyse their expression and
distribution in the goat genome, all of the clean Solexa
reads were aligned with the goat genome sequence using
SOAP software (Additional file 1: Figure S1). Of 15,997,828
reads screened in the anagen stage, 10,791,973 reads and
598,873 unique sRNAs, representing 67.46% of total reads
and 45.76% of unique sRNAs, respectively, were matched
by the goat genome sequence (Additional file 1: Figure
S1A). To further assess the efficiency of Solexa sequencing
for miRNA detection, all of the clean reads were anno-
tated and classified using tag2annotation software (deve-
loped by Beijing Genomics Institute (BGI)), aligned
against the Rfam10.1 database and the miRBase19.0 data-
base. However, some sRNA reads may be mapped to more
than one category. In order to better align every unique
sRNA to one annotation, we conducted the following pri-
ority criteria: rRNA etc. (in which Genbank > Rfam) > con-
served miRNA > repeat > exon > intron.

The total rRNA proportion is a sign of the quality of the
samples, for instance, the proportion of total rRNA should
be less than 60% in plant samples [19], and 40% in animal
samples (unpublished data by BGI). The total rRNA
proportion in the present study was 36.5, 30.47 and
28.01% in anagen, catagen and telogen, respectively, indi-
cating that the skin samples used were of a high quality.
All of the clean reads were divided into the following

Table 1 The distribution of total small RNA tags by Solexa sequencing

Type Anagen Catagen Telogen Total
Counts Percent (%) Counts Percent (%) Counts Percent (%)
total_reads 16,861,573 18,788,688 27,458,743 63,109,004
high_quality 16,756,965 100 18,729,213 100 27,307,694 100 62,793,872
3'adapter_null 57,530 0.34 5433 0.03 44,385 0.16 107,348
insert_null 103,836 0.62 81,245 043 76,673 0.28 261,754
5'adapter_contaminants 30,860 0.18 31,809 0.17 15,778 0.06 78447
smaller_than_18nt 566,742 3.38 498,627 2.66 154,658 0.57 1,220,027
polyA 169 0.00 187 0.00 188 0.00 544
clean_reads 15,997,828 9547 18,111,912 96.70 27,016,012 98.93 61,125,752
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Figure 1 Sequence length distribution of the clean reads based on three total abundance and distinct sequences.

categories: exon_antisense, exon_sense, intron_antisense,
intron_sense, miRNA, rRNA, repeat, scRNA, snRNA,
snoRNA, srpRNA, tRNA, unan (unannotated) (Additional
file 1: Figure S1A). Among them, the conserved miRNAs
have 1,737,508 total reads and 2841 unique reads, which
represented 10.86% of total reads and 0.22% of unique
clean reads. Of the unique reads, 56.89% were identified
as potential novel miRNAs, representing 24.11% of
clean reads.

Expression analysis of conserved miRNAs
Since there are no goat miRNAs available in the miRbase
19.0 database, we compared the clean reads with the
miRNA precursor/mature miRNAs with known cattle se-
quences. Our results demonstrate that miRNA expression
is abundant in the skin of cashmere goats, as a total of 399
miRNAs were found in the three stages of the HF cycle
(Additional file 2: Figure S2). Among them, 326 miRNAs
were expressed in all three cycling stages, whereas 3, 12
and 11 miRNAs were specifically expressed in anagen,
catagen, and telogen, respectively (Figure 2).

We then analysed the differentially expressed miRNAs
between the samples from every two-hair-cycle stage

(Figure 3, Additional file 3: Figure S3). Most of the ex-
pression levels were equivalent, but there were also
some miRNA expression differences between the two
stages (Figure 3). 68.9% of the miRNA expression was
not significant, 0.8% of the miRNAs were significantly
different (0.01 <p<0.05) and 29.4% of the miRNAs
were significantly different (p < 0.01) in the catagen and
anagen stages (Figure 4).

miRNAs with similar expression patterns in different
sample pairs were clustered together. Clustering analysis
was based on the sample difference model by using
Cluster software, and the results were viewed with Java
Treeview. All differentially expressed miRNAs clustered
together after five rounds of clustering (Figure 5).

Quantitative RT-PCR validation

To verify the Solexa sequencing data, we randomly
selected five differentially expressed miRNAs (miR-1,
miR-206, miR-122, miR-222, and miR-133), and con-
ducted quantitative RT-PCR. The relative expression
levels of five selected miRNAs were consistent with the
Solexa sequencing results since they had a similar trend
of expression in all three periods (Figure 6).

anagen

telogen

parentheses are numbers of differentially expressed miRNAs at each stage.

Figure 2 Venn diagram of differentially expressed conserved miRNAs at the three stages of HF cycling in cashmere goats. Numbers in

catagen
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Figure 3 Differences of miRNA expression between the
samples from every two hair cycle stage. Each point represents
an miRNA. The X and Y axes show the expression level of miRNAs in
every two samples, respectively. Red points represent miRNAs with a
ratio > 2, Blue points represent miRNAs with 1/2 < ratio < =2, Green
points represent miRNAs with ratio < = 1/2, Ratio = Normalised
expression in Treatment/Normalised expression in Control. (A)

catagen-anagen; (B) telogen-anagen; (C) telogen-catagen.

Identification of novel miRNAs

The characteristic hairpin structure of miRNA precur-
sors can be used to predict novel miRNAs. We predicted
novel miRNAs by exploring the secondary structure, the
Dicer cleavage site and the minimum free energy of the
unannotated small RNA reads, which could be mapped
to goat genome sequences by using Mireap software. In
total, 15,592,654 unannotated sequences were used to
predict novel miRNAs by using the Mireap software.
Among 172 potential novel miRNAs identified, 36
miRNAs were expressed in all three cycling stages,
whereas 23, 29 and 44 miRNAs were specifically ex-
pressed in anagen, catagen, and telogen, respectively
(Additional file 4: Figure S4, S4-land S4-2). In addition,
the length of the novel miRNA sequences ranged from
20 to 24 nt, with a distribution peak at 22 nt and their 5'
ends were comprised most frequently of uridine (U)
(Additional file 4: Figure S4, S4-3).

Target gene prediction for miRNAs

miRNAs negatively regulate gene expression by base pairing
between the 5' end of the miRNA (ie., 2—-8 nt, the “seed”
region) and the 3’ untranslated regions (3'UTR) of target
mRNAs [8,15,20-22]. Mireap software was used to predict
target genes of the miRNA by searching the bovine re-
ference gene database (http://hgdownload.cse.ucsc.edu/
goldenPath/bosTau7/bigZips/refMrna.fa.gz). In the anagen
stage, 750,038 target sites in 13,860 target genes were pre-
dicted for 352 miRNAs, whereas 796,849 target sites in
13,867 target genes were predicted for 372 miRNAs in
catagen, and 803,957 target sites into 13,864 target genes
were predicted among 374 miRNAs in telogen.

Gene Ontology (GO) enrichment and KEGG pathway
analysis of target genes

GO enrichment analysis is used for predicting candidate
target genes of miRNAs. GO enrichment analysis for
target genes based on the cellular component showed
that 10,830 genes were termed good or better than 1
using the Component Ontology with p-value analysis
(Additional file 5: Figure S5). More than 83.9% of genes
were clustered into the cell part, followed by the intra-
cellular part accounting for 76.2% of target genes. Ana-
lysis of molecular function showed that 10,178 genes
were assigned different functions, specifically 81.6% of
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Figure 4 Changes in miRNA expression among different hair cycle stages.
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genes were related to binding functions, and 9979 genes
were related to biological processes. Most of the genes
were involved in cellular or metabolic processes. For
example, 79.4% of the genes were involved in cellular
processes, and 55.8% and 47.2% of the genes were in-
volved in metabolic processes and biological regulation,
respectively.

KEGG pathway annotation showed that 10,563 target
genes were annotated for 278 biological functions. Most of
these genes were involved in cellular metabolism, diseases
and signal transduction (Additional file 6: Figure S6). The
most commonly indicated pathway was the Metabolic
pathways, with 1213 genes representing 11.49% of the total
target genes, followed by the Pathways in cancer (3.26%),
MAPK signalling pathway (3%), Endocytosis (2.68%), and
Focal adhesion (2.66%).

Discussion

The sRNA digitalisation analysis based on high-through
put sequencing uses the sequencing-by-synthesis (SBS)
technology predicts novel miRNAs and constructs the
sRNA differential expression profile between samples
from every two-hair-cycle stage, which could be used
as a powerful tool for the functional studies of sSRNA
[23-26].

In this study, objective preliminary analysis of three
c¢DNA libraries has shown that 22-nt sRNA is the major
type of sRNA, which is consistent with the majority of
sRNA-lengths in cattle [23], fish [24], goats [25,26], swine
[27] and chickens [28]. Mature miRNAs, which are identi-
cal to the classical size of Dicer cleavage products [29],
also have a similar trend. However, the major type of
sRNA screened by Solexa sequencing in wheat is 24-nt in

4

log2(Treatment/control) :
0
Gray indicates missing data :

Figure 5 Clustering of miRNAs differentially expressed during HF Cycling. Red indicates that the miRNA has a higher expression level in the
treatment samples; green indicates that the miRNA has a higher expression in the control samples and gray indicates that the miRNA has no
expression in at least one sample. Each row in the figure represents one miRNA, and each column shows one sample pair. Each cell shows the
differential expression of a miRNA in one sample pair. Heat map represents differentially expressed miRNAs between distinct stages of the hair

cycle. Colour map is used to visualise the difference in expression.
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length [30], implying that there are length differences
between miRNAs from animal and plant species.

Several HF miRNAs have been shown to be involved
in the regulation and forming of hair loss, hypertrichosis
and skin diseases in mice and humans [1,8], however,
rarely have been performed in goats for fibre. Of the
nine miRNAs were specifically expressed in cashmere
goat dorsal skin [18], only four of them were examined
in the present study: miR-1, miR-374, miR-455-3p and
miR-92b. This discrepancy might be caused by inaccur-
ate processing, base modification and sequencing/PCR
errors, and analysis used inconsistencies of the database.
Moreover, different genome assembly (bovine vs. cap-
rine) may lead to the identification of various miRNAs,
even in the same goat breed. For instance, compared
with 352 conserved miRNAs and 83 novel miRNAs
identified in the present study, Liu et al. (2012) disco-
vered 316 conserved miRNAs and 22 novel miRNAs in
another Chinese cashmere goat breed (Aerbasi White
Cashmere Goat) by deep sequencing skin tissues that
represented the anagen stage [26].

In the whole hair cycle, the abundance of expression
of let-7a-5p, let-7f, let-7b, let-7c, let-7g, miR-199a-3p,
miR-143, miR-1, and miR-320a reached their highest
levels in the present study (Table 2). These miRNAs are
involved in cell differentiation [31,32], and proliferation
[33], and the development of nerves [34], heart [35],
lung [36] and muscle [37,38], suggesting that these
miRNAs may play major roles in the regulation of fun-
damental biological processes, as well as the develop-
ment of skin and HF.

HFs undergo a process of cyclical regeneration: growth,
regression and quiescence. The transition from one stage
to another is regulated by abundant molecules. Our results
showed that the expression patterns of miR-1, miR-
133a, miR-133b, miR-144, miR-206, miR-299, miR-331
and miR-4286 (Additional file 3: Figure S3) were signifi-
cantly different in the three stages (p <0.01), indicating
that they may participate in the regulation of follicular
transition.

According to the results of our Cluster analysis, the ex-
pression patterns of miRNAs in cashmere goat skins could

Table 2 Highly expressed miRNAs (top 10) in the three stages of HF cycling

Anagen Catagen Telogen

miRNA count miRNA count miRNA count
bta-let-7a-5p 1,975,152 bta-let-7a-5p 1,661,018 bta-let-7a-5p 2,270,869
bta-let-7f 1,886,542 bta-let-7f 1,423,572 bta-let-7f 1,885,418
bta-let-7b 1,131,783 bta-miR-1 1,273,960 bta-let-7b 1,563,491
bta-let-7¢ 324,995 bta-let-7b 1,069,133 bta-miR-1 496,437
bta-let-7 g 168,427 bta-miR-199a-3p 335,203 bta-let-7¢ 452,270
bta-miR-199a-3p 159,586 bta-let-7¢ 306,476 bta-miR-199a-3p 391,284
bta-miR-143 155,737 bta-let-7 g 149,045 bta-miR-143 224,149
bta-miR-101 68,706 bta-miR-143 90,997 bta-let-7 g 185,293
bta-miR-1 58,142 bta-miR-103 80,670 bta-miR-26a 103,535
bta-miR-320a 55,595 bta-miR-320a 74,766 bta-miR-320a 87,364
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be divided into five types during hair cycling (Figure 5).
One of the patterns is the miRNA expression level
increases at anagen and then decreases during catagen
and telogen (such as miR-502a, -199c, -885, -222, -1249, -
1271, -345-3p). In comparison with telogen and catagen,
most of the miRNAs demonstrated dramatic expression
changes in the anagen stage of HFs and skin, implying that
these miRNAs probably participate in the formation of
new hair shafts and activation of a large number of signal-
ling pathways controlling the expression of genes encod-
ing hair-specific molecules [2,15].

The major pathways predicted in this study were also
mentioned previously. The findings of HF signal path-
ways in humans and mice indicates that the Wnt [39],
TGE-p [40], MAPK [41], Shh [42], Notch and JAK-STAT
[43] pathways widely participate in every part of the HF
cycle, development, and morphogenesis, and greatly
contribute to all kinds of HF. Of the target genes identi-
fied, 3% were from the MAPK pathway, 1.52% from
Wnt, 0.87% from TGF-B, 0.42% from Shh, 0.43% from
Notch and 1.37% from JAK-STAT. The miRNAs that
correspond to these target genes will be our main candi-
date miRNAs for further studies on hair cycles.

Conclusions

During the anagen-catagen-telogen transformation of
the hair cycle in cashmere goats, 399 conserved
miRNAs and 172 novel miRNAs were found via a
high-throughput sequencing approach. Our findings
enrich the caprine miRNA databases and provide new
insights into the miRNA transcriptome in cashmere
goat skin and the HF cycle.

Methods

Animal and sample preparation

Approximately 1-cm? skin samples were harvested from
the side of the body of adult goats at distinct hair cycle
stages (anagen, catagen and telogen) in SWCG (five
males and five females), frozen in liquid nitrogen and
stored at —80°C for analysis. All the experimental pro-
cedures with goats used in the present study had been
given prior approval by the Experimental Animal Man-
age Committee of Northwest A&F University under con-
tract (2011-31101684).

Small RNA library construction and sequencing

Total RNA from the mixed skin tissues of ten adult
goats was isolated using the RNAiso plus kit (TaKaRa,
Dalian, China) according to the manufacturer’s protocol.
The RNA quality and quantity were determined using
an Agilent 2100 Bioanalyzer (Agilent, CA, USA). Small
RNA fragments of 18-30 nt in length were isolated and
purified from total RNA using 15% denaturing polyacryl-
amide gel electrophoresis (PAGE). Subsequently, a 3’
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RNA adaptor and 5" RNA adaptor were ligated to the
RNA pool using T4 RNA ligase. The sRNAs ligated with
adaptors were subjected to RT-PCR amplification, and
the ¢cDNA was further amplified. The PCR products
were purified using 10% PAGE to construct an sRNA li-
brary. The sRNA libraries were constructed from skin
tissue from the anagen, catagen and telogen stages, and
were sequenced using an Illumina/Solexa 1G Genome
Analyzer at the BGI, Shenzhen.

Sequence analysis

The basic figures from sequencing were converted into
sequence data by base calling. After removing low qual-
ity reads and reads with 5’ primer contaminants, reads
without 3" primer, reads without the insert tag, reads
with poly (A), and reads shorter than 18 nt, the clean
reads were obtained. We then summarised the length
distribution of these clean reads. The clean reads that
were obtained were compared with the ncRNAs (rRNAs,
tRNAs, snRNAs, and snoRNA) deposited in the NCBI
GenBank database and the Rfam10.1 database using
BLAST to annotate the sRNA sequences. The clean
reads were mapped to the goat genome (http://goat.kiz.
ac.cn/GGD/download.htm) by SOAP v1.11 to analyse
their expression and distribution in the genome. The
clean reads were aligned against the miRNA precursor/
mature miRNA of Bos taurus in miRBasel9.0 (http://
www.mirbase.org/) to identify the conserved miRNAs.
The unannotated sequences were used to predict potential
novel miRNA candidates by Mireap (http://sourceforge.
net/projects/mireap/). For an sRNA to be considered a
potential novel miRNA candidate, the predicted sequences
should also meet the following parameters according to
Mireap: minimal miRNA sequence length (18 nt), max-
imal miRNA sequence length (26 nt), minimal miRNA
reference sequence length (20 nt), maximal miRNA re-
ference sequence length (24 nt), minimal depth of
Drosha/Dicer cutting site (3 nt), maximal copy number of
miRNAs on reference (20 nt), maximal free energy
allowed for a miRNA precursor (-18 kcal/mol), maximal
space between miRNA and miRNA* (35 nt), minimal base
pairs of miRNA and miRNA* (14 nt), maximal bulge of
miRNA and miRNA* (4 nt), maximal asymmetry of
miRNA/miRNA* duplex (5 nt), and the flank sequence
length of miRNA precursor (10 nt).

The selected sequences were then folded into a second-
ary structure using the RNA folding program, Mfold 3.2
software. If a perfect stem-loop structure was formed, the
sRNA sequence was located at one arm of the stem, and
the above criteria were met, the sSRNA was considered to
be a potential novel miRNA candidate. We predicted the
target genes of the miRNA using the Mireap software pro-
gram based on the following criteria: no more than four
mismatches between the sRNA and target (G-U bases
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count as 0.5 mismatches), no more than two adjacent mis-
matches in the miRNA/target duplex, no adjacent mis-
matches in positions 2—-12 of the miRNA/target duplex
(5" of miRNA), no mismatches in positions 10-11 of the
miRNA /target duplex, no more than 2.5 mismatches in
positions 1-12 of the miRNA/target duplex (5° of
miRNA), and the minimum free energy (MFE) of the
miRNA/target duplex should be > 75% of the MFE of the
miRNA bound to its perfect complement.

GO enrichment and KEGG pathway analyses

We revealed the functions significantly associated with
the predicted target gene candidates of the miRNAs
using GO analysis. This method first maps all target
gene candidates to GO terms in the database (http://
www.geneontology.org/), calculating gene numbers for
each term, then uses hyper geometric testing to find sig-
nificantly enriched GO terms in target gene candidates
compared with the reference gene background. The cal-
culating formula is:

()
=0

In the formula above, N is the number of all genes
with GO annotation; n is the number of target gene can-
didates in N, M is the number of all genes that are anno-
tated to a certain GO term, and m is the number of
target gene candidates in M. We used the Bonferroni
Correction for the p-value to obtain a corrected p-value.
GO terms with corrected p-values of <0.05 are defined
as significantly enriched in target candidate genes. This
analysis is able to recognise the main biological func-
tions for target gene candidates.

Subsequently, the main pathways in which the target
candidate genes are involved were revealed by KEGG
pathway analysis. The calculating formula is the same as
that for GO analysis. Here, N is the number of all genes
with a KEGG annotation, n is the number of target gene
candidates in N, M is the number of all genes annotated
to a certain pathway, and m is the number of target gene
candidates in M. Genes with FDR <0.05 are considered
to be significantly enriched in target gene candidates.
The KEGG analysis reveals the main pathways involving
the target gene candidates.

Differential expression analysis

Scatter plots were used to demonstrate differentially
expressed miRNA between every two follicular stages.
The procedures are as follows: (1) The expression of the
miRNA in two samples (control and treatment) is
normalised to get the expression of transcript per million
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(TPM). Normalisation formula: Normalised expression =
actual miRNA count/total count of clean reads*1000000;
(2) The fold-change and p-value are calculated from the
normalised expression. Then log2ratio plot and scatter
plot are generated. Fold-change formula:

Fold_change = log2 (treatment/control)

p-value formula:

Y<Ymin

CO=Ymnld) = 2 "P(yk)
Ny \” (x+y)!
p(x[y) = <N72) VAN Y]
! x!y!(l +&) <
Ni D(y2¥mulx) = Z plylx)

After normalisation, if the miRNA gene expression
amount of both samples is zero, then revise to 0.01, and
if the miRNA gene expression amount for both samples
is less than 1, these samples do not participate in the dif-
ferential expression analysis because their expression
levels are too low.

Quantitative RT-PCR

Total RNA from the mixed skin tissues of ten adult
goats was isolated using the RNAiso plus kit (TaKaRa,
Dalian, China), and real-time quantification of miRNAs
was performed by stem-loop RT-PCR. 1 pg of total RNA
was reverse transcribed to ¢cDNA using the RevertAid
First Strand cDNA Synthesis Kit (Thermo Scientific
Fermentas) and stem-loop RT primers (Additional file 7:
Figure S7) [44]. The mix was then incubated at 42°C for
60 min and 70°C for 5 min. Real-time PCR was
performed using iQ5 (Bio-Rad, Hercules, CA, USA) and
a standardised protocol. In a 25 pl reaction mixture,
2.0 pl of cDNA (at a 1:4 dilution) was used for amplifica-
tion, with 12.5 pl of SYBR Premix Ex Taq'™ II (TaKaRa,
Dalian, China), 1.0 ul of specific forward primer, 1.0 pl
of universal primer, and 8.5 pl of water. The reactions
were incubated at 95°C for 3 min, followed by 45 cycles
of 94°C for 15 s, 60°C for 30 s and 72°C for 45 s. The
abundance of selected miRNAs was normalised relative
to that of U6 snRNA. All reactions were performed in
triplicate. The threshold cycle (CT) was determined
using the default threshold settings and the data was
analysed using the 27" program.

Additional files

Additional file 1: Figure S1. The flowing results of data filtration and
the distribution of sequenced small RNAs.

Additional file 2: Figure S2. Conserved miRNAs in the three stages of
HF cycling.

Additional file 3: Figure S3. Differentially expressed of conserved
miRNAs during HF cycling.
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Additional file 4: Figure S4. Predicted information on the novel
cashmere goat miRNAs.

Additional file 5: Figure S5. GO enrichment analysis for the target
genes of conserved miRNAs.

Additional file 6: Figure S6. KEGG pathways for the target genes of
conserved miRNAs.

Additional file 7: Figure S7. Primers for real time qPCR.
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